N
N

N

HAL

open science

Ensemble-based Deep Learning model for network traffic
classification

Ons Aouedi, Kandaraj Piamrat, Benoit Parrein

» To cite this version:

Ons Aouedi, Kandaraj Piamrat, Benoit Parrein.
work traffic classification. IEEE Transactions on Network and Service Management, 2022, pp.1-12.
10.1109/TNSM.2022.3193748 . hal-03736603

HAL Id: hal-03736603
https://hal.science/hal-03736603

Submitted on 22 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Ensemble-based Deep Learning model for net-


https://hal.science/hal-03736603
https://hal.archives-ouvertes.fr

Ensemble-based Deep Learning model for network
traffic classification

Ons Aouedi, Kandaraj Piamrat and Benoit Parrein
University of Nantes, LS2N (UMR 6004)
2 Chemin de la Houssiniere
BP 92208, 44322 Nantes Cedex 3, France
{firstname.lastname } @1s2n.fr

Abstract—Network Traffic Classification enables a number
of practical applications ranging from network monitoring to
resource management, with security implications as well. Nowa-
days, traffic classification has become a challenging task in
order to distinguish among a variety of applications due to the
huge amount of generated traffic. Therefore, developing Machine
Learning (ML) models, which can successfully identify network
applications, is one of the most important tasks. However, among
the ML models applied to network traffic classification so far,
no model outperforms all the others. To solve these issues, this
paper proposes a novel Deep Learning (DL)-based approach that
incorporates multiple Decision Tree based models. This approach
employs a non-linear blending ensemble method by combining
tree-based classifiers through DL in order to maximize gener-
alization accuracy. This ensemble consists of two levels called
base classifiers and meta-classifiers. In the first level, Decision
Tree-based models are used as the base classifiers while in the
second level, DL is used as a meta-model to combine the outputs
of the base classifiers. Using two publicly available datasets,
we show that our proposed ensemble is suitable for network
traffic classification and outperforms the linear blending (using
logistic regression as meta-model) as well as several well-known
ML models, which are Support Vector Machine (SVM), Decision
Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP),
AdaBoost, K-Nearest Neighbors (KNN), LightGBM, Catboost,
and XGBoost.

Index Terms—Blending, traffic classification, ensemble learn-
ing, machine learning, deep learning, decision tree.

I. INTRODUCTION

Traffic classification is a subgroup of traffic analysis strate-
gies that aims to classify the traffic into predefined categories,
such as normal or abnormal traffic, the type of application
(e.g., streaming, Web browsing, etc.), or the name of the
application (e.g., YouTube, Netflix, Google, etc.) [24]. It helps
Internet Services Providers (ISPs) to manage their infrastruc-
tures efficiently and ensures Quality of Services requirements.
The earliest traffic classifiers were based on the port number
used by each application [23], where an analysis of the
packet header is applied to identify only the port numbers
and their correspondence to the well-known port numbers.
This made the port number-based method the simplest and
fastest classifier. However, this approach has limitations, for
example, some applications may use dynamic port numbers
or ports associated with other protocols to hide from network
security tools and hence deteriorate the accuracy of port-
based classifiers. To avoid total reliance on the semantics
of port numbers, Deep Packet Inspection (DPI) tools have

appeared [14]. It checks all packet data, which consumes a lot
of CPU resources and can cause a scalability problem as well
as fails to classify encrypted traffic. To address these issues,
Machine Learning (ML) is opening the ways to model, learn,
and recognize hidden and complex patterns within the network
traffic behavior using training data.

ML-based models can be broadly divided into two cat-
egories: simple (i.e., single) and ensemble models. Ensem-
ble models aim to combine heterogeneous or homogeneous
models (commonly classifiers) in order to obtain a model
that outperforms every one of them and overcome their
limitations [34]. They can be generally divided into two
groups: homogeneous and heterogeneous ensembles. More
specifically, several homogeneous ensemble frameworks such
as bagging (e.g., Random Forest) and boosting (e.g., XGBoost)
have been proposed and most of them are based on the
decision tree (DT) model. On the other hand, a heterogeneous
ensemble has been proposed in order to take advantage of the
diversity of the models’ strengths. The blending and majority
voting are heterogeneous models. Blending consists of two
levels: base classifier and meta-classifier. Through the use of
a meta-classifier, that combines the base classifier, blending
is a powerful ensemble technique. However, little attention
has been paid to the application of the blending ensemble in
network traffic classification. Furthermore, it is well-known
that Deep Learning (DL) outperforms the other shallow ML
models in several fields such as healthcare, computer vision,
and network resource management, and has shown success
in network traffic classification [24] [23]. DL is a branch
of ML that evolved from Neural Networks (NNs) and has
a unique nature and features for solving complex problems.
In addition, the DT algorithm is known due to its simplicity
and can be easily understood by human experts. It is one
of the most suitable learning algorithms for network traffic
classification [23] [3].

Based on the aforementioned reasons, in this paper, we fo-
cus on blending ensemble using DL and DT-based classifiers.
During the process of ensemble construction, model selection
and model combination are explored. Then, several DT-based
classifiers are used as base classifiers including simple DT, RF,
AdaBoost, XGBoost, and then DL is used as a meta-classifier.
DL has been used as a meta-classifier in order to learn the non-
linear relationship among the base classifiers. Furthermore, as
ML models highly depend on the quality of data, we have
used the feature selection method to identify the appropriate



features and then discard the irrelevant/redundant ones, with
the goal of obtaining a subset of features that best represent
the problem and decrease the training time. Finally, we have
also used a second dataset including encrypted traffic (contains
only time-related features) to evaluate the performance of the
proposed model with several scenarios (binary classification
and multi-classification). To the best of our knowledge, this
investigation of the blending method is performed in network
traffic classification for the first time.

A. Motivations:

From a large body of literature in network traffic classifica-

tion research, we have noticed that:

e ML models are constructed and tested in specific envi-
ronments (e.g., dataset, features); therefore, it is a risky
and difficult task to choose the best model for general
traffic classification.

« Each model has its own strength and weakness and they
can complement each other to overcome their individual
shortcomings.

e DL and tree-based models are widely used for traffic
classification tasks and their combination can give a
robust model.

o The non-linear blending model can give promising results
and outperforms the linear blending model [11].

B. Key Contributions:

To address the above motivations, we propose a blending
ensemble using multiple DT-based models as base classifiers
and DL as a meta classifier. The main contributions of our
research are as follows:

« Performance investigation of seven DT-based models with
respect to their algorithms (e.g., gradient boosting or
bagging).

o Improved generalization performance by combining deci-
sions from several classifiers using the ensemble method.

« Boosted performance of traffic classification with a blend-
ing model of DT-based models and the use of DL model
as meta-classifier.

o Performance evaluation of the proposed ensemble using
both non-encrypted and encrypted network traffic.

o Comparison of the results against, neural networks, en-
semble, and simple models, as well as some state-of-the-
art approaches.

The rest of the paper is organized as follows. Section II
discusses related works. Section III introduces the essential
background in order to understand Section IV, which presents
the proposed models. In Section V, experimental results and
performance of the proposed model are presented. Discussion
and analysis of the results are provided in Section VI. Finally,
the conclusion is given in Section VIL.

II. RELATED WORK

This section presents an overview of state-of-the-art meth-
ods that adopt ensemble learning. Then, it presents the recent
achievements of state-of-the-art approaches proposed to solve
the traffic classification problem using ML/DL models.

A. Ensemble-models related work

Possebon et al. [26] focused on combining individual meta-
learning techniques, including Voting, Stacking, Bagging, and
Boosting, in order to find the most robust classification models
for the anomaly detection system. They presented a compar-
ative analysis among meta-learning approaches and simple
classifiers for network traffic classification tasks.

Kumar et al. [20] proposed an ensemble that combines DT,
Naive Bayes, and RF as first-level individual classifiers. In
the next level, the classification results are used by XGBoost
as a meta-classifier in order to identify normal and attack
observations. The experimental results demonstrated that their
ensemble model outperforms some of the existing state-of-art
techniques.

Xiao et al. [35] proposed a new ensemble model using DL.
The DL applied to ensemble five classification models, which
are KNN, SVMs, DT, RF, and gradient boosting decision
trees (GBDTs), to construct an ensemble model and predict
better cancer in normal and tumor conditions. The test results
indicated that the proposed ensemble increases the prediction
accuracy of cancer for all the tested RNA-seq data sets as
compared to using a single classifier or the majority voting
algorithm.

Fang et al. [16] presented four heterogeneous ensemble-
learning techniques, that is, stacking, blending, simple averag-
ing, and weighted averaging, to predict landslide susceptibility
in Yanshan County, China. These ensembles combine several
classifiers such as convolutional neural network, recurrent
neural network, SVM, and logistic regression in order to avoid
the problem of model selection. For the stacking and blending
methods, the logistic regression model was the meta-classifier
for the final prediction. The experimental results indicated
that the heterogeneous ensemble learning methods give better
performance than the base classifiers. More specifically, the
stacking and blending ensembles achieved higher prediction
performance than other ensembles because they use meta-
classifiers to correct the errors that occur during the learning
process of the base classifiers and improve the accuracy. In
addition, the blending ensemble-learning achieves the highest
accuracy compared to other ensemble learning methods.

Moreover, Song et al. [30] proposed an ensemble approach
where five tree-based methods are used as base learners,
including Classification and Regression Tree (CART), two
bagging methods of RF, Extremely Randomized Tree (Extra-
Trees), two boosting methods (GBDT and XGBoost), and
Linear Regression is used as a meta-learner. The experimental
results indicate that their approach is more effective than the
conventional tree-based classifiers and other ensemble learning
tree methods. For more details about the ML-based model for
traffic classification, please refer to our survey [6] [1].

Remarks: As presented in this section, the blending models
have been widely used due to their remarkable generalized
performance; however, to the best of our knowledge, their
potential in network traffic classification is not fully stud-
ied. Consequently, our approach leverages their successful
experiences and creates a new model to perform a better
classification.



B. Traffic classification related work

Using the ML method, many solutions have been pro-
posed for network traffic classification. In this context, Cherif
and Kortebi [13] used the Symmetric uncertainty feature
selection method followed by XGBoost for traffic classi-
fication. Peng et al. [25] tested ten well-known classifiers
including Adaboost, DT (j48), RF, and Naive Bayes classifiers.
Also, Belavagi and Muniyal [7] have compared several ML
models for intrusion detection which are Logistic Regression,
Gaussian Naive Bayes, SVM, and RF. The results indicate that
RF outperforms the other classifiers. Qazi et al. [27] presented
a mobile application detection framework called Atlas. This
framework enables fine-grained application classification using
DT (C5.0) as a classifier.

DL models have advanced considerably and are being
widely adopted in several domains. Several studies show that
it completely outperforms traditional methods in most areas.
Thus, researchers have tried to apply DL for traffic classifica-
tion and it has been used as semi-supervised and supervised
learning [4] [33] based on the amount of label data. Wang
[33] used deep neural networks and a deep AutoEncoder to
identify protocols and they achieve excellent precision and
recall rates. In addition, Aouedi et al. [4] have used DL as
semi-supervised learning for network traffic classification with
the help of dropout and denoising code hyper-parameters in
order to improve the classification performance.

Moreover, the increasing demand for user privacy and data
encryption has tremendously raised the amount of encrypted
traffic on today’s Internet. Consequently, encrypted traffic clas-
sification has become a challenge in modern networks. In this
context, DT-based classifiers and DL can be good classifiers
for encrypted traffic characterization. For instance, Draper-Gil
et al. [15] have used two common machine learning algo-
rithms, which are DT (C4.5) and KNN (K-Nearest Neighbor),
to distinguish between VPN and non-VPN network traffic. The
results show that DT has achieved better results. Also, Alsham-
mari and Zincir-Heywood [2] show that DT (C5.0) performs
much better than Genetic Programming and AdaBoost algo-
rithms in classifying VoIP Skype network traffic. In this field,
DL models have been used in order to accurately classify an
encrypted network traffic [32] [22]. Wang et al. [32] developed
encrypted data classification framework called DataNet, which
is embedded in the SDN home gateway. This classification
was achieved through the use of several DL techniques using
encrypted traffic. The DL models used in their work are
multilayer perceptron (MLP), stacked autoencoder (SAE), and
convolutional neural networks (CNN).

Remarks: The current literature shows that it is promising
to classify network applications using ML-based approaches.
Additionally, strategies such as bagging and boosting are
widely used to build ensemble models. However, our literature
review shows that heterogeneous ensemble learning is still
rarely used in traffic classification. Moreover, although the
efficiency of DT-based classifiers and DL for network traffic
classification, to the best of our knowledge no paper exploits
them together in one model.

III. BACKGROUND

This section details the theoretical background of the basic
concepts, which are useful to understand our proposition.

A. Blending Ensemble

Blending ensemble is very close to stacking, which is orig-
inally introduced in the Netflix competition [31]. But, unlike
stacking, blending uses only a holdout (validation) set from the
train set to make predictions. Consequently, it is simpler and
requires less computation for the training task. Moreover, it
works better than stacking ensemble [16]. Blending ensemble
consists of two levels, which are base-classifiers used in level-
1 and meta-classifier used in level-2. The base classifiers are
used to provide base predictions as new features. Then the
meta-classifier is trained on these new features to give the
final decision. Thus, the blending can collectively estimate the
errors of all base classifiers through basic learning steps and
use a meta-classifier to reduce the prediction residuals. All this
made the blending leads to greater awareness and familiarity
in a dataset [11]. A general overview of the training and testing
process is shown in Figure 1 and Figure 2. For more details,
the blending method consists of two levels and several steps:

1) Use a hold-out method to divide the training set into a
new training set and validation set.

2) Train the base classifiers through the new training
dataset, and the prediction of the base classifiers on the
validation set forms the meta-training dataset (level-1).

3) Join the prediction on the validation set of the base clas-
sifiers to form the meta-training dataset. In other word,
the prediction of the base classifiers on the validation
set is concatenated to compose the meta-training set.

4) Train the meta-classifier using the meta-training dataset
(level-2).

5) Use the meta-classifier to make the final prediction
through the intermediate test produced by the base
classifiers (Figure 2).

B. Tree-Based Single Model and Ensemble Models

1) Decision tree: is a simple algorithm that can be used
for both regression and classification tasks. It is a tree-like
structure where each node represents a test and the branches
correspond to the partitioning of the variable above or below a
splitting value for a predictor. In this work, we use the CART
algorithm to build single and ensemble tree models.

2) Tree-Based Ensemble Learning Models: DT has unfa-
vorable performance that we cannot use as a final model
(low bias because it overfits the training data). One way to
improve the accuracy without losing the benefits of DT is the
combination of several DT models’ predictions. Consequently,
two well-known DT-based ensemble techniques have been
proposed, namely Bagging [9] and Boosting [17].

- Bagging called bootstrap aggregating is one of the earliest
ensemble method [9]. It is a parallel ensemble method that
aims to decrease the variance (i.e., overfitting). The Bagging
process consists of three steps (i) sub-sampling the training
set randomly to obtain the sub-training sets, (ii) using these
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Fig. 1: Training process of the blending ensemble

sub-training sets to train several weak models independently,
and (iii) combining the outcome of these models by voting
technique. RF model is one of the most popular bagging-
based models developed by Breiman [10]. It is an ensemble
of independent DT in which the base trees train not just on a
randomly chosen subset of the data, but also on a randomly
chosen subset of input features. Then, the outputs of the base
classifiers are combined by the majority voting technique. The
main advantage of the RF algorithm, compared to the gradient
boosting algorithms, is that it requires fewer hyper-parameter
tuning [8] [5].

- Boosting is a sequential ensemble method used to improve
the performance of the DT model [17]. It adds the models in
a sequential manner and each base model reduces the error of
previous base models. AdaBoost is the first boosting algorithm
developed by Freund and Schapire [17]. It does not randomly
select training samples like RF but focuses on the samples that
do not have accurate predictions (misclassified samples). In
other words, after training the base model, AdaBoost increases
the weight of the misclassified samples. Therefore, AdaBoost
obtains different training sets by focusing on the instances that
are misclassified by the previously trained classifiers.

XGBoost is one of the most efficient implementations of
gradient boosted decision trees and it is developed by Chen
and Guestrin in 2014 [12]. It has been selected as one of the
best ML algorithms used in Kaggle competitions due to its
advantages such as easy parallelism and use as well as high
prediction accuracy. This algorithm learns from the error of
prior trees to improve the accuracy in subsequent iterations.
However, instead of increasing the instance weights at every
iteration as AdaBoost does, XGBoost tries to fit the new model
according to residual errors made by the previous model.

IV. PROPOSITION

This paper introduces a blending ensemble learning method
for network traffic classification. In this section, the architec-
ture of the proposed ensemble model and its design principles
are presented. Figure 3 summarizes the methodology of this
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Fig. 2: Test process of the blending ensemble

model. For the training data, data pre-processing is performed.
It includes data normalization using Min-Max as well as the
feature selection process. To automatically obtain an optimal
ensemble classifier, model hyper-parameters tuning of each
base classifier has been conducted. After extensive experi-
ments, we decide to deploy a blending ensemble learning to
improve the performance and the generalization capability for
network traffic classification.

A. Data pre-processing

The learning algorithms require the representation of the
data via a feature (attribute) set where the incoming traffic has
different types of features, including numeric and categorical
values. Therefore, it is important to pre-process this traffic in
order to build the proposed model. Data pre-processing is a
data mining technique that is used to transform the data and
make it suitable for other processing use (e.g. classification,
clustering). It is a preliminary step that can be done with
several techniques among which are data cleaning, and feature
selection.

One of the crucial steps with our model is to find the opti-
mum number of features that can provide the best classification
performance in a real dataset. To do so, we have used feature
selection methods to identify the best features set in the offline
run. Features selection methods try to pick a subset of features
that are relevant to the target concept and have become an
indispensable component of the ML process.

This task has been done in our preliminary work [5], in
which we have compared Recursive Feature Elimination (RFE)
against Information Gain Attribute Evaluation (IG). RFE is
a wrapper method that recursively evaluates alternative sets
by running some induction algorithms. Starting from all the
feature sets, the method recursively removes the less relevant
features. The algorithm used here is the classification and
regression tree (CART). As the optimal subset has been
selected by RFE we will use these features as input for the
proposed ensemble.
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B. Models hyper-parameters tuning

The combination of several classifiers is not enough, we
should also find the right configuration of the models for
the base and meta classifiers by tuning its hyper-parameters,
i.e. parameters that are not directly set during the training
phase because they should not be learned from the training
set [37]. The main steps of hyper-parameters tuning are
summarized in Algorithm 1. In particular, to find the optimal
hyper-parameters, we have trained our model using different
combinations of hyper-parameters. Then, we evaluated the
performances of the different models on the validation set.
This process has been repeated until we achieved a satisfactory
performance.

Algorithm 1: Hyper-parameters and parameters tuning

while Accuracy on validation set not satisfactory do
Choose a set of hyper-parameters;
Given the chosen hyper-parameters train the model
and optimize its parameters using the training set;
Evaluate the model performance on the validation
set;
end

C. Blending ensemble model

The traffic classification framework proposed in this paper
is presented in Figure 3. It is mainly composed of two levels,
which are base-classifiers using DT models (level-1) and meta-
classifiers using DL (level-2). The principal purpose of level-1
is to construct base classifiers models through the training set
and to produce the meta-data using the validation set. Then,
the meta-classifier uses the meta-data (i.e., DL in our case) for
the training task and makes the final classification on the test
set. More specifically, we use a hold-out method to divide the
training set into a new training set and validation set. Then,

the base classifiers are trained through the new training set and
their predictions on the validation set are used as the meta-data
for the meta-classifier. Next, the meta-classifier uses the meta-
data for the training process and makes the final classification
using the test set. In order to construct an ensemble model
with both good generalization and classification performance,
as discussed in the literature review, DT-based models are our
choice as base classifiers (level-1). Since, the base classifiers
need to be accurate, diverse, and complementary as possible in
order to provide highly discriminative meta-data for classifica-
tion [29], a comparative analysis has been done on seven DT-
based models with respect to the algorithm on which it is based
(e.g. gradient boosting or bagging). Next, in level-2, we use
the DL model as a meta-classifier that combine the prediction
output of the base classifiers (level-1), and explore the non-
linear relationship among them and hence getting a non-linear
blending model. This step is known as the combination phase
where the DL learns from the meta-data generated by the base
classifiers to find one and final decision. As DL acts as a
combination method and its inputs are the prediction of the
base-classifiers, known as meta-data, we use a simple Neural
Network architecture (i.e., three hidden layers.)

Algorithm 2 describes the steps involved in designing
blending-based ensemble design, and Table I describes the
notations used in Algorithm 2.

V. EXPERIMENTAL STUDY AND RESULTS ANALYSIS

In this section, we evaluate the performance of the proposed
ensemble model by performing extensive experiments using
two different datasets. Then, the obtained results are analyzed
and discussed.

A. Evaluation metrics

To determine the quality of features after using feature
selection methods and to evaluate the classification quality,



Algorithm 2: Learning step of the proposed model

1: Input: Training Dataset DT = {z;,y;} (i =1,2,...,n,
r, € X,y, €Y);
2: Output: An Ensemble Algorithm H;
Use Hold-out validation to divide the training set into a
new training (D_train) set and validation set (D_val);
Step 1: Train the base classifiers used in the level 1
for j=1 to 4 do in parallel
Train M; from D_train;
end for
Step 2: Construct new dataset of prediction
D'={P,Y}, where P=M;(D_val),..., My(D_val);
10: Step 3: Train the meta-classifier MC
11: Train M C based on meta-data D’ (level 2);
12: return H(X) = MC(M(X),..., M4(X))

hed

D I AN AN

TABLE I: List of notations used in ensemble learning model.

List of notations | Meaning

X Set of features

Y Class label set

M Base classifier

H Ensemble classifier

n Number of training samples

D_train training set of the base classifier (level-1)

P Base classifier prediction using D_val

D’ meta-data used to train the meta-classifier (level-2)

several performance metrics have been used; time-related
metrics (classification and training time), accuracy, Fl-score,
precision, and recall [22]. To calculate these metrics, there are
four important terms: 7P: True Positive, FP: False Positive,
TN: True Negative, FN: False Negative.

Accuracy is the proportion of correct classification (TP and
TN) from the overall number of cases.

TP+ TN
TP+ FP+ FN+TN
F1l-score is the harmonic mean of precision and recall. If

its value is high and closer to accuracy, the performance of
classification is better.

Accuracy =

)]

2 x Precision x Recall

F— e = 2
measure Precision + Recall @)

where: TP

Precision = ——————
recision TP+ FP 3)
TP

=" 4
Recall TP+ FN 4)

There are different evaluation models such as k-fold cross-
validation and train/validation/test split. In this research, we
used the train/validation/test split because the validation set is
an essential part to build our blending ensemble. For reliable
evaluation, the reported results are averaged from ten runs of
each model.

B. Experiment setup

The purpose of this experiment is to select relevant fea-
tures from the initial dataset to constitute a reduced dataset.

Then, the performance of several supervised machine learn-
ing algorithms was analyzed and followed by a blending
ensemble used for traffic classification that combines those
algorithms. Python 3.7 is used as a programming language and
Scikit — learn 0.23 the conventional model and Keras 2.4
framework for the Deep learning meta-classifier. X G Boost,
LightGBM, and Catboost libraries were used for those
models. All experiments were run using four core Intel®
Core™ i7-6700 CPU@3.40GHz processor, and 32.00 GB of
RAM.

1) Dataset description: We evaluate the different classifiers
on a real-world traffic dataset'. It is a public dataset and
has been presented in a research project and collected in
a network section from Universidad Del Cauca, Popayan,
Colombia [28]. It has been constructed by performing packet
captures at different hours, during the morning and afternoon
over six days in 2017. We chose this dataset because it
can be useful to find many traffic behaviors as it is a real
dataset and rich enough in diversity and quantity. It consists
of 87 features, 3,577,296 instances, and 78 classes (Facebook,
Google, YouTube, Yahoo, Dropbox, etc.). In this experiment,
we have separated the dataset into 80% for training, 10% for
validation, and 10% for testing.

It is important to note that this dataset consists of flow and
packet-based features (attributes) for network traffic classifi-
cation tasks (e.g., flow duration, packet length, port number,
etc.). The statistical classification is able to identify a protocol
without the need to examine the payload carried by the
packet [18]. A flow is a set of network packets with the
same source/destination IP addresses, source/destination port
numbers, and protocol [1].

2) Hyper-parameters selection: The selection of hyper-
parameters (also called parameter tuning) is a crucial step
in the construction of ML/DL-based models and the final
classification results. These hyper-parameters were set to reach
the right trade-off between latency and accuracy. All the
hyper-parameters descriptions and settings in our experiments
are presented in Table II, which lists the hyper-parameters
description and their values for each model. It is important
to note that the unmentioned hyper-parameters are set to the
default values.

C. Ensemble-based deep learning classifier

In order to find the optimized model, we have conducted
feature selection and base classifier selection as explained
below.

1) Feature Selection: Using RFE, we have derived a
method to identify the best 15 features out of 87 features
in our preliminary work [5]. The 15 selected features are
listed hereafter : DestinationIP. sourcelP. sourcePort, destination-
Port, FlowIATMax, FwdIATTotal, Timestamp, FlowDuration, InitWin-
BytesBackward, InitWinBytesForward, FwdPacketLengthMax, Bwd-
PacketLengthMax, SubflowFwdBytes, BwdPacketLengthMean, Fwd-
PacketLengthStd.

Uhttps://www.kaggle.com/jsrojas/ip-network-traffic-flows-labeled-with-87-
apps



TABLE II: Hyper-parameters values of the different classifiers

Model Hyper-parameters Values
Decision Tree max_depth 40
min_samples_split 40
Random Forest max_depth 50
n_estimators 50
AdaBoost max_depth 35
n_estimators 50
learning_rate 0.4
XGBoost max_depth 35
learning_rate 0.2
n_estimators 100
CatBoost max_depth 8
n_estimators 1000
LightGBM max_depth 35
boosting_type goss
learning_rate 0.2
num_leaves 1000
top_rate 0.6
other_rate 0.4
n_estimators 250
Meta-classifier (DL) hidden_layer 3
activation_function ReLu
Learning_rate 0.001
Optimizer Nadam

2) Base classifiers selection: To start, we first randomly
partitioned the data into a ratio of 80% for training, 10% for
validation, and 10% for testing the different models. Table III
shows the accuracy of different DT-based models. It can be
seen that RF has the best accuracy as a Bagging method
with 85.28% accuracy whereas the accuracy of Extra-Trees
is 84.87%. Also, it is more efficient in terms of training and
classification time compared to Extra-Trees. Coming to the
boosting models, where the AdaBoost and XGBoost outper-
form the LightGMB and CatBoost in terms of accuracy. They
also outperform LightGBM in terms of classification time and
CatBoost in terms of training time.

TABLE III: Comparison of different methods

Methods | Learning Algo- | Accuracy | Training time (s) | Test time (s)
rithms (%)

Single Decision Tree 82.24 110.21 0.24

classifier

Bacein Random Forest 85.28 193.67 9.63

EEME | Extra Tree 84.87 205.874 150.544

AdaBoost 88.51 7921.74 53.44

Boosting XGBoost 88.70 52423.84 197.07

’ CatBoost 77.79 231064.01 15.54

LightGBM 84.57 6292.55 987.50

To improve the generalization performance of Tree-based
models and based on the above results, we will use DT, RF,
XGBoost, and AdaBoost as base classifiers (i.e., level-1 of
the blending). DT is a simple and classical model, RF is a
bagging model that improves the classification performance
and builds different versions of the training set by sampling
with replacement. XGBoost and AdaBoost as boosting models
can help to avoid the problem of underfitting (bias). We have
chosen XGboost and Ababoost as they perform better than
the other boosting models (i.e., LightGBM, CatBoost) and
their boosting process is different as explained in Section III.
Although all the base models in this study are based on DT,
they work in a different way (e.g., their training process does
not use the same training set) and hence guarantee the diversity
of level-1 of the ensemble model.

3) Proposed Ensemble classifier: The classification per-
formance of the proposed ensemble using training and test
set is presented in Table IV. It can be seen that using the
training set AdaBoost gives the best results, followed by RF
and XGBoost, our model, and DT. The accuracy achieved by
the base classifiers which are DT, RF, AdaBoost, and XGBoost
on the training set is 87.56%, 94.68%, 97.13%, and 92.59%,
respectively. However, the classification performance of these
models using the test set is different where their accuracies
are 82.24%, 85.28%, 88.51%, and 88.70%, respectively. It is
important to note here that ML models need to perform very
well on the test set (i.e., unseen data during the training). In
contrast to the base classifiers, the difference between classi-
fication results using the training and test set of our ensemble
model is almost negligible compared to the base classifiers
(Table 1V), where the training and test accuracy are 91.57%
and 91.51%. This demonstrates that this ensemble does not
have a problem with overfitting. This may be attributed to the
generalization ability of the blending ensemble. Moreover, its
accuracy is 2.81%, 3%, 6.23%, 9.27 % better than XGBoost,
AdaBoost, RF, and DT, respectively. Similarly, in terms of the
other measures, the proposed model also outperforms its base
classifiers.

o Impact of the hold-out validation set

Figure 4 shows the impact of the hold-out validation set on
the performance of the blending method as well as the base
classifiers. The hold-out method is used to divide the training
set into a new training set and a validation set. Here, the ratio
of the validation set varied between 10% and 40% with a step
size of 10% (we stopped because the performance started to
decrease). It can be seen that the blending method maintained
a better prediction performance than the base classifiers.
Moreover, when the ratio of the hold-out validation set is 10%,
the blending method can obtain the best results. In addition,
we can notice that the performance of the base classifiers
decreases with more validation sets (i.e., fewer training sets),
and hence the performance of the blending method decreases.
It is important to note here that we have used the same test
with all the ratios of the hold-out validation set as well as for
the rest of the paper.

This may be attributed to the fact that increasing the hold-
out validation set (i.e., the training data for the meta-classifier)
means decreasing the training set of the base classifiers.
Consequently, we can notice that the performance of the
blending method depends on the quality of the base classifiers.
That is why choosing the appropriate models for the ensemble
is a crucial step.

o Impact of the base classifiers

To find the base classifier that can optimize the performance
of the proposed ensemble model, some experiments have been
conducted (Figure 5). To do so, we try to evaluate the per-
formance of the proposed model with different combinations
of base classifiers. Figure 5 shows the accuracy of different
combinations of three base classifiers and the one with all the
base classifiers (proposed model). It is important to note here
that with all the cases we used DL as a meta-classifier.



TABLE IV: Statistical measures of the base classifiers and blending methods using Training and Test sets.

Dataset Model Accuracy | Precision | Recall | Fl-score
DT 87.56 87.55 87.56 87.36
RF 94.68 94.81 94.68 94.59
Training set AdaBoost 97.13 97.18 97.13 97.11
XGBoost 92.59 92.71 92.59 92.43
Proposed model 91.57 91.81 91.57 91.70
DT 82.24 82.06 82.24 81.99
RF 85.28 85.57 85.28 84.71
Test set AdaBoost 88.51 88.72 88.51 88.16
XGBoost 88.70 88.72 88.70 88.47
Proposed model 91.51 91.59 91.51 91.64
a5 o Comparative analysis over various ML algorithms
1 M R In order to further validate the efficiency of the proposed en-
% : Ezm‘;‘ semble, which demonstrated the best performance against the
T | base classifiers, we compared this framework with other ML
$ " | models. The optimal hyper-parameters of these models have
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Fig. 4: Effect of hold-out validation set ratio.

The proposed model that integrates all the base classifiers
has a better result than the three base classifiers. This means
that no model negatively impacts the performance of the pro-
posed ensemble. Moreover, as shown in this figure, dropping
out one of the boosting models (AdaBoost and XGBoost) the
accuracy of our ensemble decreases. Specifically, XGBoost
plays the most critical role in achieving good performance. The
accuracy of the blending decreases notably without XGBoost,
which means that this model is an important component of
our ensemble-learning method.

DT+RF+AdaBoost
DT+RF+XGBoost
DT+AdaBoost+XGBoost

RF+AdaBoost+XGBoost

Froposed moel _

82 84 86 88 90 92
Accuracy (%)

Fig. 5: Results of base classifier experiments.

been used. These models include (i) simple classifiers such
as SVM and KNN, (ii) ensemble models such as Extra-Trees,
LightBGM, and CatBoost, (iii) neural network classifier,
which is Multi-layer Perceptron (MLP) classifier. We select
these classifiers as our baselines because Extra-Trees, Decision
Tree, and KNN are easy to train, SVM is widely used and
proved to be useful in several applications [19], and MLP is a
neural network model (we have used the optimal architecture,
which is two hidden layers, learning rate=0.001, and ReLu as
an activation function), as well as CatBoost and LightBGM
because they are recent models for the classification task.

Figure 6 shows the accuracy of the proposed ensemble and
the various ML models. In this case, a clear hierarchy of mod-
els emerges from best to worst. We can see from the results
that the proposed model performs well when compared with
the different ML algorithms. Its accuracy is 6.64%, 6.94%,
13.72%, 16.03%, 17.85%, 44.75% better than Extra-Trees,
LightBGM, CatBoost, MLP, KNN, and SVM, respectively.
This may be attributed to the fact that the combination of DT-
based models and DL helps the proposed ensemble to yield far
superior results compared to several ML models. From this,
we can conclude that our model is a good model and can better
differentiate among applications.
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Fig. 6: Comprehensive comparison of well-known classifiers



TABLE V: Linear blending vs our model for application classification

Linear Blending Our model
Class Name —p _ iGon (%) Recall (%)  Fl-score (%) Precision (%) Recall (%) Fl-score (%)
Google 85.3 93.43 89.18 95.11 86.93 90.83
HTTP 93.65 93.26 9345 94.45 94.83 94.64
Amazon 98.52 93.11 95.74 94.94 98.84 96.85
Microsoft 90.24 81.93 85.88 89.82 9335 91.55
Skype 91.49 80.36 8557 92.55 92.15 9235
Faccbook 97.89 91.26 94.46 9427 98.52 96.35
Dropbox 98.61 92.62 95.52 96.84 98.1 97.47
Yahoo 90.87 7746 83.63 86.79 93.59 90.06
Twitter 94.24 73.86 82.81 84.81 94.81 $9.53
Apple 93.80 8§2.45 87.76 94.11 95.65 94.87
Whatsapp 94.57 742 83.15 945 947 94.6
Tnstagram 94.76 79.74 86.6 93.24 97.78 95.46
Wikipedia 99.32 7171 83.29 9041 98.01 94.06
Netflix 98.99 69.01 8133 8§2.91 97.76 $9.72
Spotify 9.3 80 §7.39 88.63 96.69 92.49
TeamViewer 100 8§73 9322 96.82 100 9838
Telegram 0 0 0 100 100 100

o Comparative analysis over linear blending

In this section, we compare the proposed model with the linear
blending model where the logistic regression model is used
as a meta-classifier instead of a DL model. In other words,
here we have used the same base classifiers and we only
changed the meta-classifier in order to study the impact of DL
on our ensemble. Figure 7 shows that our model outperforms
the linear blending on all metrics. Then, Table V presents the
achieved performance of both linear and non-linear blending
for the application identification task. It can be seen that
the Fl-score (the harmonic mean of precision and recall)
of our model outperforms that of linear blending for all the
applications. Also, we can notice that linear blending can not
detect the Telegram application whereas our model achieved a
100% F1-score. This is maybe attributed to the non-linearity
of the DL as a meta-classifier in our model.
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Fig. 7: Our model vs linear blending

« Computational costs of the proposed model

Also, we have analyzed the computational efficiency of the
proposed model against other ML models. This comparison
has been done in terms of training and classification time.

One of the advantages of this model is that the base classifiers:
DT, RF, AdaBoost, and XGBoost can be trained in parallel.
Consequently, since boosting models take a long time to train
(Table III), thus they can impact the training time of the
proposed model more than RF and DT.

As shown in Table VI, we have compared the classification
time (CT) per sample and the training time (TT) taken by
respective models. As explained in Section IV, our model
consists of two main phases (level 1, and level 2 process)
and it trains data more than the base classifier (training
set+validation set). Thus, this can explain its high training
time. In addition, there is a slight difference with XGBoost.
However, the training time can be proceeded offline and thus
does not impact the real-time utilization of the classification
process.

TABLE VI: Training and classification time comparison
Metric XGBoost | AdaBoost | Linear blending | Our model
TT (s) 52423 7921 52523 53100
CT_per_sample | 550.89 149.38 552.67 5827

(ps)

D. Experiments on the second dataset (VPN-nonVPN dataset)

To validate the effectiveness of the proposed ensemble, we
also implemented experiments based on another public dataset,
which includes encrypted data (VPN and nonVPN data). This
is one of the most popular encrypted traffic classification
datasets. It contains only time-related features. For more de-
tails on the captured traffic and the traffic generation process,
refer to [15].

To evaluate the performance of the proposed ensemble,
we used two scenarios as shown in Table VIII. Scenario A,
(Sc_A), is a binary classification to indicate whether the traffic
flow is VPN or not. Both scenario B, (Sc¢_B), and scenario C,
(Sc_C), are 7-classification tasks. Scenario B is to distinguish
between seven non-VPN traffic services like audio, browsing,
etc. Scenario C is similar to Scenario B, while its target labels
are seven traffic services of the VPN version Scenario D,



TABLE VII: Linear blending vs our model using VPN-nonVPN dataset

Linear Blending Our model
Class Name ™, gon (%) Recall (%) Fl-score (%) Precision (%) Recall (%) Fl-score (%)
Browsing 92.73 98.08 95.33 98.91 97.15 98.02
Chat 9524 90.91 93.02 97.50 95.12 96.29
FT 95.45 87.50 91.30 85.71 98.82 91.80
Mail 100 100 100 92.30 100 96.00
P2P 93.75 100 96.77 100 95.91 97.91
Streaming 100 75.00 85.71 §7.17 97.14 91.89
VOIP 100 98.48 99.24 99.62 100 99.81
VPN-Browsing 91.67 89.19 90.41 97.39 97.39 97.39
VPN-Chat §3.33 86.96 85.11 90.32 97.39 9372
VPN-FT 90.70 90.70 90.70 96.27 99.04 97.64
VPN-Mail 100 8333 90.91 100 9333 96.55
VPN-P2P 80.95 94.44 §7.18 9532 8031 §7.17
VPN-Streaming 100 100 100 97.82 100 98.90
VPN-VOIP 97.73 100 98.85 100 9954 99.77

(Sc_D), mixes all fourteen applications to perform the 14-
classification task. To find the most relevant features in the two
scenarios, we have used RFE also as a feature selection set in
order to find the optimal subset. Then, using those features, we
compared the performance of our model against several ML-
based classifiers as well as against the linear-blending model
in the two scenarios.

TABLE VIII: Scenario description.

Scenario | Description
Sc_A VPN and Non-VPN traffic identification 2-class
Sc_D All traffic classification 14-class

o Comparative analysis over various ML algorithms

It can be seen from Table IX that our ensemble achieves
the best results with the VPN-nonVPN dataset on the two
scenarios. This demonstrates that our model can achieve high
performance using only time-related features. Specifically, for
example, in scenario A, the accuracy of our model is 9.69%,
14.67%, 36.22%, 28.21%, 7.12%, 6.85%, 5.89%, 5.28%,
6.88%, 5.02% better than DT, KNN, SVM, MLP, Extra-Tree,
RF, CatBoost, LightGBM, AdaBoost, XGBoost, respectively.
Also, in scenario D, the accuracy of our model is 18.02,
24.14, 52.66, 42.22, 12.73, 12.66, 11.65, 9.95, 13.21, 10.15,
better than DT, KNN, SVM, MLP, Extra-Tree, RF, CatBoost,
LightGBM, AdaBoost, XGBoost, respectively. These results
illustrate the high performance of our model with both binary
and multi-classification scenarios.

o Comparative analysis over linear blending

Similar to the first dataset, we compared the proposed
model with the linear blending model using the VPN-nonVPN
dataset. Figure 8 shows that our model outperforms the linear
blending on all metrics, similar to the first dataset. Also, to
better evaluate the performance of our model, the fourteen
classification tasks of the VPN-nonVPN dataset are reported
in Table VII. From Table VII, it can be seen that our model,
achieves the F1-score up to 91% in mostly all categories. Also,
our model has a better F1-score than linear blending in 11 out
of 14 cases. Consequently, we can conclude that our model is a
promising model and can better differentiate the applications.

o Performance against state-of-the-art models

TABLE IX: The classification accuracy (%) of baseline and
ensemble methods on VPN-nonVPN Dataset.

Model Sc_A | Se_ D
DT 87.85 | 78.83
KNN 82.87 | 72.71
SVM 61.32 | 44.19
MLP 69.33 | 54.63
Extra-Tree 9042 | 84.12
RF 90.69 | 84.19
CatBoost 91.65 | 85.20
LightGBM 92.26 | 86.90
AdaBoost 90.66 | 83.64
XGBoost 92.52 | 86.70
Linear blending 95.48 | 93.88
Proposed model | 97.54 | 96.85
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Fig. 8: Our model vs linear blending

Finally, we apply our ensemble on the VPN-nonVPN
dataset with some state-of-art approaches including [15], [36],
and [21] to validate the performance of our ensemble model.
[15] is the original dataset paper, where the authors used
a decision tree, i.e., C4.5 and KNN classifiers in order to
characterize network traffic. However, since the decision tree
performed a little better we use its result for the comparison



task. In contrast, the authors in [36] and [21] proposed DL-
based ensemble approaches. More specifically, Yao et al. [36]
used the Attention Based Long Short-Term Memory (LSTM)
model in order to improve the classification performance.
Then, Lin et al. [21] combined Convolutional neural networks
and LSTM models to extract the spatio-temporal features and
realize the traffic classification.

From the simulation results in Table X, we find that the
blending scheme (linear/non-linear) can achieve competitive
accuracy with the state-of-art methods. In particular, we
can see that our model outperforms the proposed approach
in [15] for both scenarios (Sc_A and Sc_D), however, it
is not the case with [36] and [21] for the Sc_A (binary
classification). For Sc_D (multi-classification) we can see that
the blending scheme and especially our model (non-linear
blending) achieves much better accuracy performances. This
demonstrates that with a more complicated classification task
(multi-classification) our model performs well. This is because
the use of a meta-classifier corrects the errors that occur during
the learning process of the base classifiers.

TABLE X: The classification accuracy (%) of baseline and
ensemble methods on VPN-nonVPN Dataset.

Schemes Sc_A | Sc_D
DT [15] 89.7 81.77
Attention-LSTM [36] 99.7 91.2
CNN-LSTM [21] 99.7 91.7
Linear blending (ours) 95.48 | 93.88
Non-linear blending (ours) | 97.51 | 96.85

VI. DISCUSSION

In this study, a novel classifier model is proposed to
explore the potential of ensemble learning and improve the
performance of DT-based models. The results demonstrate that
by taking advantage of several classifiers, our ensemble model
is shown to be accurate and efficient for traffic classification
tasks. Specifically, the use of a meta-classifier corrects the
errors that occur during the learning process of the base
classifiers. Moreover, it prevents overfitting and reduces bias
simultaneously to some extent (Table IV). The presented
results also confirm that deep learning discovers the nonlinear
relationships with very little engineering by hand and increases
the learning ability of the whole ensemble model. In addition,
as the performance of the classifier depends on the quality
of features used during the training process, we used the
feature selection method in order to reduce the complexity and
improve the performance of the proposed model. However, the
shortcoming of the proposed method is that (i) it takes more
training time than the base classifiers, and (ii) it is difficult to
decide which classifiers should be used in level-1.

VII. CONCLUSION

In this paper, ensemble learning based on DL and four DT-
based models has been proposed consisting of pre-processing
tasks and classification tasks in the proposed ensemble. For

the base classifiers selection, a comparative analysis has been
conducted based on the complexity and the accuracy of the
classifiers. Next, an ensemble model that incorporates several
DT-based models and DL is applied to improve overall classifi-
cation accuracy. By using DL as a meta-classifier, the relation-
ships among the base classifiers are learned automatically, thus
enabling the ensemble method to achieve better classification.
The simulation results show that the proposed ensemble model
outperforms other traditional machine learning models (DT,
SVM, KNN) and ensemble learning models (e.g., RF, MLP)
as well as the linear blending model (logistic regression as
meta-classifier). Moreover, we have studied the impact of the
base classifiers and the hold-out validation set ratio on the
performance of the whole model. In addition, the performance
of the proposed model is evaluated using two datasets with
different use cases and scenarios.
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