
HAL Id: hal-03736526
https://hal.science/hal-03736526v2

Preprint submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal displacement of spectrally negative branching
Lévy processes
Christophe Profeta

To cite this version:
Christophe Profeta. Maximal displacement of spectrally negative branching Lévy processes. 2022.
�hal-03736526v2�

https://hal.science/hal-03736526v2
https://hal.archives-ouvertes.fr


MAXIMAL DISPLACEMENT OF SPECTRALLY NEGATIVE

BRANCHING LÉVY PROCESSES

CHRISTOPHE PROFETA

Abstract. We consider a branching Markov process in continuous time in which the par-
ticles evolve independently as spectrally negative Lévy processes. When the branching
mechanism is critical or subcritical, the process will eventually die and we may define its
overall maximum, i.e. the maximum location ever reached by a particule. The purpose of
this paper is to give asymptotic estimates for the survival function of this maximum. In
particular, we show that in the critical case the asymptotics is polynomial when the under-
lying Lévy process oscillates or drifts towards +∞, and is exponential when it drifts towards
−∞.

1. Introduction

1.1. Description of the model. We consider a one-dimensional spectrally negative branch-
ing Lévy process in the sense of Kyprianou [10]. It is a continuous-time particle system in
which individuals move according to independent spectrally negative Lévy processes, and
split at exponential times into a random number of children.

More precisely, an initial ancestor begins its existence at the origin at time t = 0. It
moves according to a spectrally negative Lévy process L up to an independent exponential
random variable e of parameter 1. It then dies and splits into a random number of children
with distribution p = (pn)n≥0. Each of these children starts his life at the location of the
ancestor and behaves independently of the others, following the same stochastic pattern as
the ancestor : it moves according to L and branches at rate 1.

We assume that the offspring distribution p is non trivial, has expectation smaller or equal
to one and admits moments of order at least 3 :

p1 6= 1, E[p] ≤ 1, E[p3] < +∞.

As a consequence of the first two conditions, the branching process will almost surely die
in finite time, and one may define its overall maximum M, i.e. the maximum location ever
reached by one particle. The purpose of this paper is to study the asymptotics of the survival
function of M.

The investigation of the maximal displacement of branching processes, or equivalently of
their right-most particles, has already received a lot of attention in the literature. The em-
phasize has been put so far on the supercritical branching Brownian motion for which it is
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known that the survival function of the right-most particle is a travelling wave solution of
the F-KPP equation, see Bransom [3].

In our subcritical/critical set-up, this problem was first tackled by Fleischman & Sawyer
[6] in the case of the branching Brownian motion, as a model of propagation of an allele muta-
tion in a population. In this case, one may write an ODE satisfied by the survival function of
M, and the result follows by standard analytic methods. A generalization to symmetric sta-
ble Lévy processes was obtained by Lalley & Shao [12], using a pseudo-differential equation
and a Feynman-Kac representation of the solution. More recently, the case of α-stable Lévy
processes with positive jumps was solved in [15], using a different method based on integral
equations. It was in particular proven that the asymptotics of the survival function of M is
given as a power −α in the subcritical case, and −α/2 in the critical case. We will see in the
following theorems that the situation is different for spectrally negative stable Lévy processes.

It is finally noteworthy to point out that in the literature, the term ”branching Lévy
process” might refer to a construction more general than the one we just described. One
may indeed encodes both the displacement of particules and the offspring reproduction into
a general Lévy measure : we refer for instance to Bertoin & Mallein [5] or Mallein & Shi [14]
for a study of such processes.

1.2. Statement of the results. For λ ∈ C such that ℜ(λ) ≥ 0, let us define the Laplace
exponent Ψ(λ) = lnE

[

eλL1

]

of the spectrally negative Lévy process L by

Ψ(λ) = aλ +
η2

2
λ2 +

∫ 0

−∞

(

eλx − 1− λx1{|x|<1}

)

ν(dx)

where a ∈ R is the drift coefficient, η ∈ R the Gaussian coefficient and the Lévy measure

ν satisfies
∫ 0

−∞
(x2 ∧ 1) ν(dx) < +∞. We exclude the case where −L is a subordinator (for

which M = 0 a.s.). As a consequence the function Ψ is strictly convex and tends to +∞
as λ → +∞. This implies that for any q ≥ 0, the equation Ψ(λ) = q admits at most two
solutions, and we denote by Φ(q) the largest one :

Φ(q) = sup{λ ≥ 0, Ψ(λ) = q}.

The function Φ is well-known to be related to the maximum of L. Indeed, let us denote by
S the running supremum of L :

St = sup
s≤t

Ls, t ≥ 0,

and let e be an exponential random variable with parameter 1 independent of L. Then, the
random variable Se is also exponentially distributed, see Bertoin [4, Corollary VII.2] :

P (Se ≥ x) = e−Φ(1)x. (1.1)

We start with the subcritical case.
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Theorem 1. Assume that the branching process is subcritical, i.e. E[p] < 1. Then, there
exists a finite constant κ > 0 such that

P (M ≥ x) ∼
x→+∞

κe−Φ(1−E[p])x.

Comparing this asymptotics with (1.1), we see that in the subcritical case the branching
mechanism reduces the decay of the survival function of M, although it remains exponential.
Of course, when there are no branching, i.e. E[p] = 0, then M = Se a.s. and the equivalence
is in fact an equality.

Before turning our attention to the critical case, we need to introduce the scale functions
W (q), with q ≥ 0, which are defined on [0,+∞) via their Laplace transforms by

∫ +∞

0

e−βxW (q)(x)dx =
1

Ψ(β)− q
for ℜ(β) > Φ(q). (1.2)

These functions are increasing, a.e. differentiable, and known to be related with the exit
time problem for spectrally negative Lévy processes, see for instance Kuznetsov, Kyprianou
& Rivero [9] or Hubalek & Kyprianou [7]. Analytically, the behavior at +∞ of the scale
function W (0) = W will explain the difference in the two cases of the following Theorem 3.
Indeed, when Ψ′(0+) < 0, the function W (q) has an exponential growth at +∞ given for
q ≥ 0 by

W (q)(x) ∼
x→+∞

1

Ψ′(Φ(q))
eΦ(q)x (1.3)

while in the case Ψ′(0+) ≥ 0, this asymptotics is rather subexponential. To simplify the
proof, we shall make the following assumption when Ψ′(0+) ≥ 0.

Assumption 2. The random variable max(−Le, 0) is integrable and the process L is either

• of unbouded variation,
• or of bounded variation with a Lévy measure having no atoms.

The first part of the assumption will ensure that the Fourier transforms we shall use in
the proof are well-defined, while the second part implies that the scale function W is of class
C1(0,+∞), see [7].

Theorem 3. Assume that the branching process is critical, i.e. E[p] = 1.

(1) If Ψ′(0+) > 0 and Assumption 2 is satisfied, then :

P (M ≥ x) ∼
x→+∞

2Ψ′(0+)

σ2 x
.

(2) If Ψ′(0+) = 0 and Assumption 2 is satisfied, then there exist two positive constants
κ1, κ2 such that for x large enough :

κ1

xW (x)
≤ P (M ≥ x) ≤ κ2

xW (x)
.

(3) If Ψ′(0+) < 0, then there exists a finite constant κ > 0 such that :

P (M ≥ x) ∼
x→+∞

κe−Φ(0)x.
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To better understand Theorem 3, it might be useful to recall the following facts on the large
time behavior of the underlying Lévy process L, see Bertoin [4, Corollary VII.2] :

i) When Ψ′(0+) > 0, the process L drifts a.s. towards +∞. As a consequence, each
particule tends to drift upward, and the branching mechanism allows to obtain a power
decay instead of an exponential one. Note that the inequalities given in Point (2) remain
valid in this case since lim

x→+∞
W (x) = 1/Ψ′(0+).

ii) When Ψ′(0+) = 0, the process L oscillates, i.e. lim sup
t→+∞

Lt = − lim inf
t→+∞

Lt = +∞. In this

case, the fact that some particules may enjoy big deviations towards +∞ also yields a
power decay. This is typically the case of the branching Brownian motion.

iii) Finally, when Ψ′(0+) < 0, the process L drifts a.s. towards −∞. This case is then very
similar to the subcritical case of Theorem 1, i.e. the branching mechanism only slightly
reduces the tail of the asymptotics.

When Ψ′(0+) = 0, as is usual, Theorem 3 may be refined by assuming a specific asymptotics
of Ψ at 0.

Corollary 4. Assume that E[p] = 1 and that Ψ is regularly varying at 0, i.e. that there
exists a constant α ∈ (1, 2] and a slowly varying function ℓ such that

Ψ(λ) ∼
λ↓0

λαℓ

(

1

λ

)

. (1.4)

Then,

κ1
ℓ(x)

xα
≤ P (M ≥ x) ≤ κ2

ℓ(x)

xα

and there exists a sequence (xn) such that

P (M ≥ xn) ∼
xn→+∞

2

σ2

Γ(2α)

Γ(α)
ℓ(xn)x

−α
n .

Remark 5. From Bertoin [4, Proposition VII.6], Assumption (1.4) is equivalent to the
Spitzer’s condition :

lim
t→+∞

1

t

∫ t

0

P(Ls ≥ 0)ds =
1

α
.

The simplest example is of course the α-stable spectrally negative Lévy process for which
one may choose Ψ(λ) = λα, hence Φ(q) = q1/α. Note that in this case, Assumption 2 is sat-
isfied as α-stable spectrally negative Lévy processes are of unbounded variation, and admit
moments of order 1.

1.3. An integral equation. To prove Theorems 1 and 3, we shall write down an integral
equation which is similar to the stable case with positive jumps studied in [15] or to the
centered branching random walk case studied in Lalley & Shao [13]. Let us set

u(x) = P (M ≥ x) for x ≥ 0,
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and u(x) = 0 for x < 0. The choice to take u null on the negative half-line will allow to work
with Fourier transforms without need of renormalization.

Lemma 6. The function u is a solution of the nonlinear integral equation :

u(x) = E[p]E
[

1{Le<x}u(x− Le)
]

− 1

2
E
[

p2 − p
]

E
[

1{Le<x}u
2(x− Le)

]

+ E
[

1{Le<x}R(x− Le)
]

+∆(x) (1.5)

where the function R is such that

∀z ∈ R, 0 ≤ R(z) ≤ E[p3]u3(z), (1.6)

and the remainder ∆ satisfies the bounds :

|∆(x)| ≤
{

Ke−Φ(1)x if x ≥ 0,

KP(Le < x) if x < 0
(1.7)

for some constant K > 0.

Proof. Let x ∈ R and recall that e is an exponential random variable of parameter 1 inde-
pendent of L. We start by applying the Markov property at the first branching event :

P(M < x) = p0P (Se < x) +

+∞
∑

n=1

pn P
(

Se < x, Le +M(1) < x, . . . , Le +M(n) < x
)

where the random variables (M(n))n∈N are independent copies ofM, and are also independent
of the pair (Le, Se). Using the formula P(M ≥ x) = u(x)+1{x<0} we thus obtain the integral
equation :

1− u(x)− 1{x<0} = p0P (Se < x) +
+∞
∑

n=1

pn E
[

1{Se<x} (1− u(x− Le)− 1{x<Le})
n
]

. (1.8)

Note that developing the power n on the right-hand side, one may remove the indicator
1{x<Le} since by definition {Se < x < Le} = ∅. Plugging the Taylor expansion with integral
remainder

(1− u)n = 1− nu+
n(n− 1)

2
u2 − n(n− 1)(n− 2)

6
u3

∫ 1

0

(1− ut)n−3(1− t)2dt

in (1.8), we deduce after some simplifications that

u(x) = P (Se ≥ x)− 1{x<0} + E[p]E
[

1{Se<x}u(x− Le)
]

− 1

2
E
[

p2 − p
]

E
[

1{Se<x}u
2(x− Le)

]

+ E
[

1{Se<x}R(x− Le)
]

(1.9)

where the function R equals :

R(z) = u3(z)
∑

n≥3

pn
n(n− 1)(n− 2)

6

∫ 1

0

(1− u(z)t)n−3(1− t)2dt ≤ E[p3]u3(z).
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Looking at (1.9) and adding and substracting 1{Le<x}, one now obtains formula (1.5) with
∆ given by

∆(x) = P (Se ≥ x)− 1{x<0}

+ E

[

(

1{Se<x} − 1{Le<x}

)

(

E[p]u(x− Le)−
1

2
E
[

p2 − p
]

u2(x− Le) +R(x− Le)

)]

.

Finally, for x < 0, we have using that Se ≥ 0 a.s. and u(z) ≤ 1 :

|∆(x)| ≤ E
[

1{Le<x}

(

E[p] + E
[

p2
]

+ E[p3]
)]

≤ KP(Le < x)

while for x > 0, using the explicit distribution of Se given by (1.1) :

|∆(x)| ≤ P(Se ≥ x) + 2E
[

1{Se>x}

(

E[p] + E
[

p2
]

+ E[p3]
)]

≤ Ke−Φ(1)x.

�

Starting from Lemma 6, the proofs of Theorems 1 and 3 both rely on the same three steps :

i) We first obtain some a priori estimates on u using Equation (1.5).
ii) We then use these estimates to write down a new integral equation satisfied by u.
iii) We finally compute the asymptotics of u using this new equation.

One of the key observation will be to notice that the three expectations on the right-hand
side of Equation (1.5) are in fact convolution products. This will lead us to work with
Laplace and Fourier transforms.

2. The subcritical case : proof of Theorem 1

We start with the subcritical case and first prove that the asymptotics of u must be at
least exponential. In the following, we shall exclude the case E[p] = 0 for which M = Se a.s.

Lemma 7. Assume that E[p] < 1. There exists two constants C, δ > 0 such that

∀x ≥ 0, u(x) ≤ Ce−δx.

Proof. Using that u is decreasing and bounded by 1, we first write

P(Le > 0)u2(x) ≤ E
[

1{Le>0}u
2(x− Le)

]

≤ E
[

1{Se<x}u
2(x− Le)

]

+ P(Se ≥ x). (2.1)

Of course, since L is not the opposite of a subordinator, we necessarily have P(Le > 0) > 0.
Going back to Equation (1.9), and using the bound on R given in (1.6) as well as the obvious
inequality Le ≤ Se a.s., we obtain for x ≥ 0 :

1

2
E
[

p2 − p
]

P(Le > 0)u2(x) ≤ E[p]E
[

1{Se<x}u(x− Se)
]

− u(x)

+ E[p3]E
[

1{Se<x}u
3(x− Se)

]

+
(

1 + E
[

p2
])

P(Se ≥ x). (2.2)
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Notice that we have implicitly used the fact that E [p2 − p] > 0 since p is integer-valued.
We now integrate this relation on [0, n] with n ∈ N and δ > 0 :
∫ n

0

eδx
(

1

2
E
[

p2 − p
]

P(Le > 0)u2(x)− E[p3]E
[

1{Se<x}u
3(x− Se)

]

)

dx

≤ E[p]E

[

eδSe

∫ (n−Se)+

0

eδxu(x)dx

]

−
∫ n

0

eδxu(x)dx+
(

1 + E
[

p2
])

∫ n

0

eδxP(Se ≥ x)dx

≤
(

E[p]E
[

eδSe

]

− 1
)

∫ n

0

eδxu(x)dx+
(

1 + E
[

p2
])

∫ n

0

eδxP(Se ≥ x)dx.

Since E[p] < 1, we may choose δ ∈ (0,Φ(1)) small enough such that E[p]E
[

eδSe

]

< 1. Then,
letting n → +∞, we obtain :

lim sup
n→+∞

∫ n

0

eδx
(

1

2
E
[

p2 − p
]

P(Le > 0)u2(x)− E[p3]E[eδSe ]u3(x)

)

dx ≤ 1 + E[p2]

δ
E[eδSe ].

Since u decreases to 0 as x → +∞, we deduce that
∫ +∞

0

eδxu2(x)dx < +∞

and finally, for x ≥ 1,
∫ +∞

0

eδzu2(z)dz ≥
∫ x

x−1

eδzu2(z)dz ≥ eδ(x−1)u2(x) (2.3)

which implies the result. �

Thanks to Lemma 7, we may now take the Laplace transform of Formula (1.5) with
λ ∈ (0, δ). To simplify the computation, we set

g(x) = R(x)− 1

2
E
[

p2 − p
]

u2(x).

Using the Fubini theorem to compute the convolution products on the right-hand side of
(1.5), we obtain :

∫

R

eλxu(x)dx = E[p]E
[

eλLe

]

∫

R

eλxu(x)dx+ E
[

eλLe

]

∫

R

eλxg(x)dx+

∫

R

eλx∆(x)dx.

By definition, the Laplace transform of the random variable Le admits the expression

E[eλLe ] =

∫ +∞

0

e−tetΨ(λ)dt =
1

1−Ψ(λ)

which yields the formula
∫

R

eλxu(x)dx =
1

1− E[p]−Ψ(λ)

∫

R

eλx(g(x) + E[p]∆(x))dx+

∫

R

eλx∆(x)dx. (2.4)
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Observe that this expression remains in fact valid for 0 ≤ λ < Φ(1 − E[p]). We now prove
that the fraction on the right-hand side may be written as a Laplace transform. Indeed

1

1− E[p]−Ψ(λ)
=

∫ +∞

0

e−(1−E[p]−Ψ(λ))tdt

=

∫ +∞

0

e−(1−E[p])t
E
[

eλLt

]

dt =

∫

R

eλz
∫ +∞

0

e−(1−E[p])t
P(Lt ∈ dz)dt.

From Kyprianou [11, Corollary 8.9], the q-potential measure of L is known to be absolutely
continuous with density θ(q) given for q > 0 by :

∫ +∞

0

e−qt
P(Lt ∈ dz)dt = θ(q)(z)dz =

(

Φ′(q)e−Φ(q)z −W (q)(−z)
)

dz. (2.5)

As a consequence, inverting Equation (2.4), we obtain a new integral equation for u :

u(x) =

∫

R

(g(z) + E[p]∆(z)) θ(1−E[p])(x− z) dz +∆(x). (2.6)

To study the limit of u, observe first that from Formula (1.6), the function g is ultimately
negative. As a consequence, let us take A large enough such that g(x) ≤ 0 for x ≥ A. Using
the Definition (2.5) of θ(q), we have the upper bound

u(x) ≤ Φ′(1− E[p])

∫ A

0

g(z)eΦ(1−E[p])(z−x)dz + E[p]

∫

R

∆(z)θ(1−E[p])(x− z) dz +∆(x)

where we have used that g(x) and W (q)(x) are null for x < 0. Furthermore, the second
integral may be decomposed into
∫

R

∆(z)θ(1−E[p])(x− z) dz = Φ′(1− E[p])

∫

R

∆(z)eΦ(1−E[p])(x−z)dz −
∫ +∞

x

∆(z)W (q)(z − x)dx

and, thanks to the bound (1.7) on ∆ and the asymptotics (1.3),
∫ +∞

x

|∆(z)|W (q)(z−x)dx ≤
∫ +∞

0

|∆(z+x)|W (q)(z)dz ≤ K

∫ +∞

0

e−Φ(1)(z+x)W (q)(z)dz < +∞.

As a consequence, taking the limit superior, we have proven that for A large enough :

lim sup
x→+∞

eΦ(1−E[p])xu(x) ≤ Φ′(1− E[p])

∫

R

eΦ(1−E[p])z
(

g(z)1{0≤z≤A} + E[p]∆(z)
)

dz.

The lower bound may be obtained similarly by observing that since W (q) is positive,
∫ +∞

A

g(z)θ(1−E[p])(x− z) dz ≥ Φ′(1− E[p])

∫ +∞

A

g(z)eΦ(1−E[p])(z−x)dz

and is this time independent of A :

lim inf
x→+∞

eΦ(1−E[p])xu(x) ≥ Φ′(1− E[p])

∫

R

eΦ(1−E[p])z (g(z) + E[p]∆(z)) dz = κ.

Theorem 1 now follows by letting A ↑ +∞. It seems however difficult to compute explicitly
κ as it is given in terms of u. �
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3. The Critical case : Proof of Theorem 3 when Ψ′(0+) ≥ 0

We now assume that E[p] = 1 and we recall that in this case σ2 = E[p2 − p] denotes the
variance of p. For the first part of the proof, we shall deal with Point (1) and Point (2) of
Theorem 3 simultaneously.

Remark 8. Notice that by a coupling argument with the subcritical case obtained in The-
orem 1, we deduce that for any δ > 0,

lim inf
x→+∞

eδxu(x) = +∞. (3.1)

Indeed, starting from a critical spectrally negative branching process X defined on a prob-
ability space Ω, consider a second spectrally negative branching process X∗ defined on the
same space Ω and where only the offspring distribution is modified as follows. Fix n0 ≥ 1
such that pn0

> 0 and let ε > 0. Then define the new offspring distribution p∗ by :

∀ω ∈ Ω,

{

if p(ω) 6= n0, then p∗(ω) = p(ω)

if p(ω) = n0, then p∗(ω) = n01{U(ω)≤1−ε}

where U is a uniform random variable on [0, 1] independent from X . In other words, if
a particule has n0 children, we remove, with probability ε, the paths of all these children.
As a consequence, X∗ is a subcritical spectrally negative branching process since E [p∗] =
1−n0pn0

ε < 1. By coupling, we deduce with obvious notation that u(x) ≥ u∗(x), i.e., thanks
to Theorem 1,

lim inf
x→+∞

eΦ(1−E[p∗])xu(x) > κ∗ > 0.

This implies (3.1) since Φ(0) = 0 in the case Ψ′(0+) ≥ 0.

3.1. A priori estimates. As in the subcritical case, we start by proving some a priori esti-
mates on the function u. These estimates will be necessary to justify some of the computation
later.

Lemma 9. For any δ > 0, there exists a finite constant Cδ such that :

∀x > 0, u(x) ≤ Cδ

x1−δ
.

Proof. We shall prove by induction that for every n ∈ N, there exists a constant Cn such
that

∀x > 0, u(x) ≤ Cn x
1

2n
−1. (3.2)

3.1.1. The base case n = 1. We start by taking the Laplace transform of Equation (2.2),
whose right-hand side only involves the random variable Se. This yields with λ > 0 :

P(Le > 0)
σ2

2

∫ +∞

0

e−λzu2(z)dz−E
[

e−λSe

]

E[p3]

∫ +∞

0

e−λzu3(z)dz ≤
(

1 + E[p2]
) 1− E

[

e−λSe

]

λ

i.e. using the explicit distribution of Se

∫ +∞

0

e−λz

(

P(Le > 0)
σ2

2
u2(z)− E[p3]u3(z)

)

dz ≤ 1 + E[p2]

λ+ Φ(1)
.
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As before, since u is decreasing and converges towards 0 as x → +∞, we deduce by letting
λ ↓ 0 that u2 is integrable. Then a change of variables yields

u2

(

1

λ

)
∫ 1

0

e−zdz ≤ λ

∫ +∞

0

e−λzu2(z)dz ≤ λ

∫ +∞

0

u2(z)dz.

Setting λ = 1/x, we finally conclude that there exists a finite constant C1 such that :

u(x) ≤ C1√
x

which is (3.2) for n = 1.

3.1.2. Induction step. Fix n ∈ N and assume that Formula (3.2) holds true. Multiplying
Equation (2.2) by x and taking the Laplace transform, we obtain after some simplifications
using the decomposition x = x− Se + Se :
∫ +∞

0

e−λxx

(

P(Le > 0)
σ2

2
u2(x)− E[p3]u3(x)

)

dx

≤ E
[

See
−λSe

]

∫ +∞

0

e−λxu(x)dx+
1 + E[p2]

(λ+ Φ(1))2
+ E[p3]E

[

See
−λSe

]

∫ +∞

0

e−λxu3(x)dx.

Fix ε small enough and take A > 0 such that for any x ≥ A

E[p3]u(x) ≤ P(Le > 0)
σ2

2
− ε.

A change of variables then yields

ε

λ2

∫ +∞

λA

e−zzu2
(z

λ

)

dz

≤ E [Se]

λ

∫ +∞

0

e−λz
( z

λ

)

dz+
1 + E[p2]

(λ+ Φ(1))2
+E[p3]E [Se]

∫ +∞

0

u3(z)dz+E[p3]

∫ A

0

zu3(z)dz

i.e., for λ small enough such that λA ≤ 1/2,

εu2

(

1

λ

)
∫ 1

1/2

e−zzdz ≤ λE [Se]

∫ +∞

0

e−zu
(z

λ

)

dz + λ2K

for some constant K > 0. Plugging the induction hypothesis in the right-hand side yields

εu2

(

1

λ

)
∫ 1

1/2

e−zzdz ≤ λ2− 1

2n CnE [Se]

∫ +∞

0

e−zz1−
1

2ndz + λ2K

and replacing λ = 1/x as before, we finally obtain the existence of a constant Cn+1 such
that :

u(x) ≤ Cn+1 x
1

2n+1 −1.

As a consequence, we deduce that (3.2) holds for every n ∈ N, which proves Lemma 9 by
monotony.

�
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3.2. A new equation for u. The purpose of this subsection is to prove the following new
equation for the function u :

Proposition 10. The function u is a solution of the integral equation :

u(x)−∆(x) =

∫ +∞

0

(

σ2

2
u2(x+ z)−R(x+ z)−∆(x+ z)

)

W (z)dz.

In the following, we shall denote the Fourier transform of a measurable function f , provided
it exists, by :

F(f)(ξ) = lim
n→+∞

∫ n

−n

eiξzf(z)dz =

∫

R

eiξzf(z)dz.

In particular, since u is decreasing and converges towards 0, we deduce from the Abel-
Dirichlet’s convergence test for improper integrals that F(u) is well-defined (although u
might not be integrable). Taking the Fourier transform of Equation (1.5), and applying the
Fubini theorem on the left-hand side since u2 is integrable from Lemma 9, we deduce that

σ2

2
E[eiξLe ]F(u2)(ξ) =

∫

R

eiξx
∫

R

u(x−z)P(Le ∈ dz)dx−F(u)(ξ)+E[eiξLe ]F(R)(ξ)+F(∆)(ξ).

(3.3)
Note that the Fourier transform of ∆ is well-defined, since from Lemma 6 and Assumption
2 the function ∆ is integrable, i.e.
∫

R

|∆(x)|dx ≤ K

∫ +∞

0

e−Φ(1)xdx+K

∫ 0

−∞

P(Le < x)dx =
K

Φ(1)
+KE[max(−Le, 0)] < +∞.

To compute the remaining convolution product on the right-hand side, we shall rely on the
following lemma :

Lemma 11. Let f : R → R be an integrable function and let ϕ : [0,+∞) → [0,+∞) be a
decreasing function converging towards 0. Then, the Fourier transform of the convolution
product is given by :

∫

R

eiξx
(
∫

R

ϕ(x− z)f(z)dz

)

dx = F(ϕ)(ξ)× F(f)(ξ), ξ 6= 0.

Proof. Of course, Lemma 11 is just a consequence of Fubini theorem if ϕ is integrable. But
when ϕ is not integrable, as will be the case here, some care is needed. In particular, observe
first that thanks to the Abel-Dirichlet’s convergence test for improper integral, the Fourier
transform of ϕ is well-defined for ξ 6= 0 :

∀ξ 6= 0,

∣

∣

∣

∣

∫ +∞

0

eiξxϕ(x)dx

∣

∣

∣

∣

< +∞.

Now, fix n > 0. Since, by assumption,
∫ n

−n

∫ +∞

0

∣

∣eiξxf(x− z)ϕ(z)
∣

∣ dz dx ≤ 2nϕ(0)

∫ +∞

−∞

|f(x)|dx < +∞



12 CHRISTOPHE PROFETA

we may apply the Fubini theorem and a change of variable to obtain
∫ n

−n

eiξx
∫ +∞

0

f(x− z)ϕ(z)dz dx =

∫ +∞

0

eiξzϕ(z)

∫ n−z

−n−z

eiξyf(y)dy dz.

To avoid lengthy expressions, we shall proceed in two steps by cutting the last integral at 0.
Integrating by parts, we first write:

F(ϕ)(ξ)×
∫ +∞

0

eiξyf(y)dy −
∫ +∞

0

eiξzϕ(z)

∫ n−z

0

eiξyf(y)dy dz

=

∫ +∞

0

eiξzϕ(z)dz

∫ +∞

n

eiξyf(y)dy +

∫ +∞

0

(
∫ +∞

y

eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy.

The first term will converge to 0 as n → +∞. To study the limit of the second term, let
ε > 0 and fix A large enough such that

∀x ≥ A,

∣

∣

∣

∣

∫ +∞

x

eiξzϕ(z)dz

∣

∣

∣

∣

≤ ε.

We then have :
∣

∣

∣

∣

∫ A

0

(
∫ +∞

y

eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ +∞

A

(
∫ +∞

y

eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy

∣

∣

∣

∣

≤ sup
y≥0

∣

∣

∣

∣

∫ +∞

y

eiξzϕ(z)dz

∣

∣

∣

∣

∫ A

0

|f(n− y)|dy + ε

∫

R

|f(x)|dx −−−−→
n→+∞

ε

∫

R

|f(x)|dx,

which proves that

lim
n→+∞

∫ +∞

0

eiξzϕ(z)

∫ n−z

0

eiξyf(y)dy dz = F(ϕ)(ξ)×
∫ +∞

0

eiξyf(y)dy.

A similar argument shows that

lim
n→+∞

∫ +∞

0

eiξzϕ(z)

∫ 0

−n−z

eiξyf(y)dy dz = F(ϕ)(ξ)×
∫ 0

−∞

eiξyf(y)dy.

As a consequence, we have obtained that
∫

R

eiξx
∫ +∞

0

f(x− z)ϕ(z)dz dx = lim
n→+∞

∫ n

−n

eiξx
∫ +∞

0

f(x− z)ϕ(z)dz dx

= lim
n→+∞

∫ +∞

0

eiξxϕ(x)

∫ n−x

−n−x

eiξzf(z)dz dx

= F(ϕ)(ξ)×F(f)(ξ)

which concludes the proof of Lemma 11. �

Recall now that the distribution of Le is actually the 1-potential measure of L, i.e. from
(2.5) the random variable Le is absolutely continuous with density given by θ(1). Applying



13

Lemma 11 to Equation (3.3) with f = θ(1) which is integrable, and ϕ = u which is decreasing
and converging towards 0, we thus obtain

σ2

2
E[eiξLe ]F(u2)(ξ) = E[eiξLe ]F(u)(ξ)− F(u)(ξ) + E[eiξLe ]F(R)(ξ) + F(∆)(ξ).

By definition, the characteristic function of Le is given by

E
[

eiξLe

]

=

∫ +∞

0

e−tetΨ(iξ)dt =
1

1−Ψ(iξ)

which yields the equation

F
(

σ2

2
u2 − R−∆

)

(ξ) = Ψ(iξ)F(u−∆)(ξ),

or equivalently,

iξ

Ψ(iξ)
F
(

σ2

2
u2 −R −∆

)

(ξ) = iξF(u−∆)(ξ). (3.4)

The next step consists in showing that the function ξ −→ iξ/Ψ(iξ) is actually the Fourier
transform of W ′, which is well-defined thanks to Assumption 2. Integrating by parts the
definition of W given in (1.2) we obtain

∫ +∞

0

e−βxW ′(x)dx =
β

Ψ(β)
, ℜ(β) > 0. (3.5)

We now write down the extension of Formula (3.5) to the case β = iξ with ξ 6= 0. Since W
is increasing and concave, the function W ′ is positive and decreasing, and we shall denote by
w∞ its limit : lim

x→+∞
W ′(x) = inf

x≥0
W ′(x) = w∞. As a consequence, from the Abel- Dirichlet’s

convergence test for improper integrals, the Fourier transform of W ′−w∞ is well-defined for
ξ 6= 0. Let ε > 0 and take A large enough such that

∀x ≥ A,

∣

∣

∣

∣

∫ +∞

x

e−iξz(W ′(z)− w∞)dz

∣

∣

∣

∣

≤ ε.

Integrating by parts, we have for h > 0 :
∣

∣

∣

∣

∫ +∞

0

(

e−hx − 1
)

e−iξx(W ′(x)− w∞)dx

∣

∣

∣

∣

= h

∣

∣

∣

∣

∫ +∞

0

e−hx

∫ +∞

x

e−iξz(W ′(z)− w∞)dz dx

∣

∣

∣

∣

≤ h

∫ A

0

∣

∣

∣

∣

∫ +∞

x

e−iξz(W ′(z)− w∞)dz

∣

∣

∣

∣

dx+ ε

which proves that

lim
h↓0

∫ +∞

0

e−hxe−iξx(W ′(x)− w∞)dx =

∫ +∞

0

e−iξx(W ′(x)− w∞)dx.
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Then, using the continuity of Ψ, we obtain still for ξ 6= 0 :

iξ

Ψ(iξ)
= lim

h↓0

h+ iξ

Ψ(h+ iξ)

= lim
h↓0

∫ +∞

0

e−hxe−iξx(W ′(x)− w∞)dx+

∫ +∞

0

e−hxe−iξxw∞dx

=

∫ +∞

0

e−iξx(W ′(x)− w∞)dx+
w∞

iξ
.

Plugging this last expression in (3.4) and computing the convolution product, using again

Lemma 11 with f = σ2

2
u2−R−∆ which is integrable thanks to Lemma 9, and ϕ = W ′−w∞

which is decreasing with limit 0, one obtains :
∫ +∞

−∞

eiξx
∫ +∞

0

(

σ2

2
u2(z + x)−R(z + x)−∆(z + x)

)

(W ′(z)− w∞)dz dx

= iξF(u−∆)(ξ)− w∞

iξ
F
(

σ2

2
u2 − R−∆

)

(ξ). (3.6)

We now check that the terms in w∞ cancel. When Ψ′(0+) > 0, we necessarily have w∞ = 0
since the function W ′ is integrable as can be seen by letting β ↓ 0 in Formula (3.5) and
applying the monotone convergence theorem

∫ ∞

0

W ′(x)dx =
1

Ψ′(0+)
.

When Ψ′(0+) = 0, the cancelation will follow from the observation that

F
(

σ2

2
u2 − R−∆

)

(0) =

∫ +∞

−∞

(

σ2

2
u2(z)− R(z)−∆(z)

)

dz = 0.

Indeed, applying the dominated convergence theorem in (3.4) thanks to Lemma 9, we have
∣

∣

∣

∣

F
(

σ2

2
u2 − R−∆

)

(0)

∣

∣

∣

∣

= lim
ξ↓0

|Ψ(iξ)F (u−∆) (ξ)|

≤ lim
ξ↓0

|Ψ(iξ)|
(

2

ξ
+

∫

R

|∆(x)|dx
)

= 0.

As a consequence, integrating by parts the last term of (3.6), we obtain :

w∞

iξ
F
(

σ2

2
u2 −R −∆

)

(ξ) = w∞

∫

R

eiξx
∫ +∞

x

(

σ2

2
u2(z)−R(z)−∆(z)

)

dzdx.

Similarly, using a change of variable, the left-hand side of (3.6) equals
∫ +∞

−∞

eiξx
∫ +∞

x

(

σ2

2
u2(y)−R(y)−∆(y)

)

(W ′(y − x)− w∞)dy dx

i.e., Equation (3.6) reduces to
∫ +∞

−∞

eiξx
∫ +∞

x

(

σ2

2
u2(y)− R(y)−∆(y)

)

W ′(y − x)dy dx = iξF(u−∆)(ξ).
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It now remains to integrate by parts the left-hand side, and then inverse the Fourier transform
to obtain :

∫ +∞

x

∫ +∞

r

(

σ2

2
u2(z)− R(z)−∆(z)

)

W ′(z − r)dzdr = u(x)−∆(x). (3.7)

Finally, we deduce from Remark 8 and the bounds on R and ∆ that for x large enough,
there exists a constant K > 0 such that

σ2

2
u2(x)−R(x)−∆(x) ≥ σ2

2
u2(x)

(

1−Ku(x)−Ke−(Φ(1)−δ)x
)

≥ 0 (3.8)

which proves that the integrand on the right-hand side of (3.7) is positive for x large enough.
As a consequence, applying the Fubini-Tonelli theorem, we finally obtain

u(x)−∆(x) =

∫ +∞

x

(

σ2

2
u2(z)−R(z)−∆(z)

)

W (z − x)dz

=

∫ +∞

0

(

σ2

2
u2(z + x)− R(z + x)−∆(z + x)

)

W (z)dz

which is the announced equation. �

3.3. Study of the limit. The last part of the proof now consists in studying the asymptotics
of u, using the new equation :

u(x)−∆(x) = x

∫ +∞

0

(

σ2

2
u2(x(z + 1))− R(x(z + 1))−∆(x(z + 1))

)

W (xz)dz. (3.9)

Going back to Theorem 3, Point (2) is equivalent to showing that

0 < lim inf
x→+∞

γ(x) ≤ lim sup
x→+∞

γ(x) < +∞ (3.10)

where we have set, to simplify the notation :

γ(x) = xW (x)u(x).

3.3.1. Computation of the upper bound. We first prove that the limit superior of γ is finite.
As in Equation (3.8), let us take A large enough such that for any x ≥ A, the quantity
σ2

2
u2(x)−R(x)−∆(x) is positive. We then decompose :

u(x) ≥ x

∫ 2

1

W (xz)

(

σ2

2
u2(x(z + 1))−R(x(z + 1))−∆(x(z + 1))

)

dz

≥ σ2

2
xW (x)u2(3x)− xW (x)E[p3]u3(2x)− xW (x)Ke−2Φ(1)x

for some constant K > 0 given by the bound (1.7) on ∆. Then, multiplying both sides by
xW (x) and taking the supremum on [A, n], we deduce that

sup
[A,n]

σ2

18

(

W (x)

W (3x)

)2

(γ(3x))2 ≤ sup
[A,n]

γ(x) +
E[p3]u(2A)

4
sup
[A,n]

(

W (x)

W (2x)

)2

(γ(2x))2 + C
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for some constant C > 0 independent of n. Furthermore, since W is positive, increasing and
concave, we have the bounds

1 ≥ W (x)

W (2x)
≥ W (x)

W (3x)
≥ 1

W (3x)

(
∫ x

0

W ′(3y)dy +W (0)

)

=
1

3
+

2

3

W (0)

W (3x)
≥ 1

3
.

Therefore
σ2

162
sup

[3A,3n]

(γ(x))2 ≤ sup
[A,3n]

γ(x) +
E[p3]

4
u(2A) sup

[A,3n]

(γ(x))2 + C

and dividing both sides
(

σ2

162
− E[p3]

4
u(2A)

)

sup
[3A,3n]

γ(x) ≤
(

1 +
sup[A,3A] γ(x) + C

sup[3A,3n] γ(x)

)

+
E[p3]

4
u(2A)

sup[A,3A] (γ(x))
2

sup[3A,3n] γ(x)
.

Finally, by taking A large enough for the left-hand side to be positive and letting n → +∞,
we conclude that

sup
x≥3A

γ(x) < +∞

which implies that the limit superior is finite.

3.3.2. Computation of the lower bound. We now turn our attention to the limit inferior of
γ. Let us fix δ > 0 small enough and start by writing the decomposition

u2(z) ≤ u1−δ(z)(u(z)−∆(z))1+δ

(

1 +
∆(z)

u(z)−∆(z)

)1+δ

.

Using the limit superior as well as (3.1), we deduce that there exists K > 0 and A > 0 such
that for every z ≥ A, one has

σ2

2
u2(z)−∆(z) ≤ K

(

1

zW (z)

)1−δ

(u(z)−∆(z))1+δ.

Furthermore, looking at Formula (3.7), we see that the function u−∆ is differentiable, and
decreasing for x large enough since W ′ is positive. This allows to obtain the bound :

(∆(x)− u(x))′ ≤ K(u(x)−∆(x))1+δ

∫ +∞

0

xW ′(xz)

(x(1 + z)W (x(1 + z))1−δ
dz

which implies, since x → xW (x) is increasing,

(∆(x)− u(x))′

(u(x)−∆(x))1+δ
≤ K

(

W (x)

(xW (x))1−δ
+ x

∫ +∞

1

W ′(xz)

(x(1 + z)W (x(1 + z))1−δ
dz

)

. (3.11)

Furthermore, since W is concave and z ≥ 1, we have the series of inequalities :

W ′(xz)

(x(1 + z)W (x(1 + z)))1−δ
≤ W (xz)

xz

1

(xzW (xz))1−δ
=

(W (xz))δ

(xz)2−δ
≤
(

W (x)

x

)δ
1

(xz)2−2δ
.
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As a consequence, we deduce that the integral in (3.11) is bounded by

x

∫ +∞

1

W ′(xz)

(x(1 + z)W (x(1 + z)))1−δ
dz ≤

(

W (x)

x

)δ ∫ +∞

x

1

z2−2δ
dz =

1

1− 2δ

(W (x))δ

x1−δ
.

Then, integrating (3.11) on [A, y], the last inequality implies that there exists a constant
C > 0 such that :

1

(u(y)−∆(y))δ
− 1

(u(A)−∆(A))δ
≤ δC

∫ y

A

(W (x))δ

x1−δ
dx ≤ C(yW (y))δ

i.e.

u(y)−∆(y) ≥
(

C(yW (y))δ +
1

(u(A)−∆(A))δ

)−1/δ

.

Finally, passing to the limit inferior, we conclude that

lim inf
y→+∞

γ(y) = lim inf
y→+∞

yW (y)u(y) ≥ C−1/δ > 0

which proves Point (2) of Theorem 3.

3.4. The case Ψ′(0+) > 0. We now prove Point (1) of Theorem 3. In this case, we may
improve the previous inequality using the fact that W converges towards some positive value
W (∞) = 1/Ψ′(0+). Indeed, let us first write Equation (3.9) under the form :

u(x) =
σ2

2

∫ +∞

0

u2(x+ z)W (x+ z)dz + I(x) =
σ2

2

∫ +∞

x

u2(z)W (z)dz + I(x) (3.12)

where the remainder I is given by :

I(x) = ∆(x)+
σ2

2

∫ +∞

0

u2(x+z)(W (z)−W (z+x))dz−σ2

2

∫ +∞

0

(R(z+x)+∆(z+x))W (z)dz.

Differentiating and solving Equation (3.12), we deduce that

u(x) =
1

1 + σ2

2

∫ x

0
W (z)dz +

∫ x

0
I′(z)
u2(z)

dz

=
1

1 + σ2

2

∫ x

0
W (z)dz + I(x)

u2(x)
− I(0)− 2

∫ x

0
I(z)u′(z)
u3(z)

dz
. (3.13)

Now, using (3.10) as well as the bounds on R and ∆, the function I is smaller than

|I(x)| ≤ K1

(

1

x2
+

1

x

∫ +∞

0

1

(1 + z)2
(W (x+ zx)−W (zx))dz

)

= K1

(

1

x2
+

ρ(x)

x

)

for some constant K1 > 0 and where ρ is a positive function converging towards 0. Next, for
x ≥ 1, since from the first part of the proof the function x → xu(x) is bounded away from
0, we obtain the bound

∫ x

1

∣

∣

∣

∣

I(z)u′(z)

u3(z)

∣

∣

∣

∣

dz ≤ K2

(

1 + | ln(u(x))|+
∫ x

1

ρ(z)

u2(z)
|u′(z)|dz

)
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for some constant K2 > 0. To deal with the last integral, fix ε > 0. There exists A > 0 such
that for x ≥ A, ρ(x) < ε. This allows to obtain the decomposition

∫ x

1

ρ(z)

u2(z)
|u′(z)|dz ≤

∫ A

1

ρ(z)

u2(z)
|u′(z)|dz + ε

(

1

u(x)
− 1

u(A)

)

.

As a consequence, multiplying Equation (3.13) by x and passing to the limits as x → +∞,
we deduce that

1
σ2

2
W (∞) + Cε

≤ lim inf
x→+∞

xu(x) ≤ lim sup
x→+∞

xu(x) ≤ 1
σ2

2
W (∞)− Cε

for some constant C > 0, and the result follows by letting ε ↓ 0 :

lim
x→+∞

xu(x) =
1

σ2

2
W (∞)

=
2

σ2
Ψ′(0+).

�

3.5. The regularly varying case. We now assume that Assumption (1.4) holds :

Ψ(λ) ∼
λ↓0

λαℓ

(

1

λ

)

where α ∈ (1, 2] and ℓ is a slowly varying function. Recalling that W is increasing, we deduce
from (1.2) and Karamata’s Tauberian theorem that W is regularly varying at +∞ :

W (x) ∼
x→+∞

xα−1

Γ(α)ℓ (x)
. (3.14)

Let us define for z ≥ 0 the function b(x) by

b(x)(z) =
W (x)W (xz)

((1 + z)W (x+ xz))2
.

From the asymptotics (3.14), this function converges a.s. :

b(x)(z) −−−−→
x→+∞

zα−1

(1 + z)2α
.

We now come back to Equation (3.9) which we rewrite :

γ(x) =
σ2

2

∫ +∞

0

γ2(x(1 + z))b(x)(z)dz + I(x) (3.15)

where the remainder I(x) is given by

I(x) = xW (x)∆(x)−
∫ +∞

0

(

x(1 + z)W (x(1 + z))
)2(

R(x(1 + z)) + ∆(x(1 + z))
)

b(x)(z)dz.

Since W is increasing, the inequality b(x)(z) ≤ 1/(1+z)2 together with the bounds on R and
∆ given in Lemma 6 allow to apply the dominated convergence theorem to obtain

lim
x→+∞

I(x) = 0.
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Now, applying Fatou’s lemma in Equation (3.15), we deduce that

lim inf
x→+∞

γ(x) ≥ lim inf
x→+∞

γ2(x)
σ2

2

∫ +∞

0

zα−1

(1 + z)2α
dz

i.e.

lim inf
x→+∞

γ(x) ≤ 2

σ2B(α, α)

where B denotes the Beta function. Similarly, applying the reverse Fatou lemma since γ is
bounded, we conclude that

2

σ2B(α, α)
≤ lim sup

x→+∞
γ(x).

Finally, the existence of a sequence (xn) such that

lim
n→+∞

γ(xn) = lim
x→+∞

xnW (xn)u(xn) =
2

σ2B(α, α)

is a consequence of the continuity of γ. Now, Corollary 4 follows from the asymptotics of W
given by (3.14) and the formula for the Beta function B(α, α) = Γ2(α)/Γ(2α). �

Remark 12. Notice that if we neglect the remainders, the equation

f(x) =
σ2

2

∫ +∞

0

f 2(x(1 + z))
zα−1

(1 + z)2α
dz

admits as solutions the functions

fc(x) =
xα

(

c+
(

σ2

2
B(α, α)

)1/α
x
)α

where c is any parameter in [0,+∞]. This expression is in agreement with the explicit
solution obtained in [6] for the Brownian case.

4. The critical case : proof of Theorem 3 when Ψ′(0+) < 0

In this case, the underlying Lévy process drifts a.s. to −∞, and we shall see that the
asymptotics of M is no longer polynomial but exponential. Consequently, the proof will be
similar to the subcritical case of Theorem 1. We start with the following a priori estimate :

Lemma 13. Assume that Ψ′(0+) < 0. Then, for any δ > 0, there exists a finite constant Cδ

such that

∀x ≥ 0, u(x) ≤ Cδ exp

(

−Φ(0)− δ

2
x

)

.
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Proof. Fix λ ∈ (0,Φ(0)) and notice that since Ψ is convex and Ψ′(0+) < 0, we have E
[

eλLe

]

≤
1. Let n ∈ N. Integrating Equation (1.5) against exp

(

λx− 1
n
eλx
)

, we obtain :
∫ +∞

0

E

[

eλ(x+Le) exp

(

−1

n
eλ(x+Le)

)](

σ2

2
u2(x)− E[p3]u3(x)

)

dx−
∫ +∞

0

eλx exp

(

−1

n
eλx
)

∆(x)dx

≤
∫ +∞

0

E

[

eλ(x+Le) exp

(

−1

n
eλ(x+Le)

)]

u(x)dx−
∫ +∞

0

eλx exp

(

−1

n
eλx
)

u(x)dx.

Integrating by parts and recalling that u is decreasing, the right-hand side is further equal
to

n

λ
E

[

e−
1

n
eλLe − 1

]

+

∫ +∞

0

E

[

e−
1

n
eλx − e−

1

n
eλx+λLe

]

|u′(x)|dx.

Observe finally that this last integral is negative, since, from Jensen inequality,

E

[

e−
1

n
eλx − e−

1

n
eλx+λLe

]

≤ e−
1

n
eλx − e−

1

n
eλxE[eλLe] ≤ 0.

As a consequence, we deduce that

lim sup
n→+∞

∫ +∞

0

E

[

eλ(x+Le) exp

(

−1

n
eλ(x+Le)

)](

σ2

2
u2(x)− E[p3]u3(x)

)

dx ≤
∫ +∞

0

eλx∆(x)dx.

Applying the monotone convergence theorem, this implies that
∫ +∞

0

eλxu2(x)dx < +∞.

Lemma 13 now follows from the fact that u is decreasing, using the same argument as in
(2.3). �

The remainder of the proof is now similar to the subcritical case of Section 2. Taking the
Laplace transform of (1.5) with λ ∈ (0,Φ(0)/2) , we obtain :

− 1

Ψ(λ)

∫

R

eλx
(

σ2

2
u2(x)− R(x)−∆(x)

)

dx =

∫

R

eλx (u(x)−∆(x)) dx. (4.1)

We now observe that since Ψ(λ) < 0, the function λ −→ −1/Ψ(λ) is the Laplace transform
of the 0-potential of L :

− 1

Ψ(λ)
=

∫ +∞

0

etΨ(λ)dt =

∫ +∞

0

E
[

eλLt

]

dt =

∫

R

eλz
∫ +∞

0

P(Lt ∈ dz)dt.

Therefore, passing to the limit as q ↓ 0 in (2.5)
∫ +∞

0

P(Lt ∈ dz)dt =
(

Φ′(0)e−Φ(0)z −W (−z)
)

dz

and plugging this last relation in (4.1), we obtain after inverting the Laplace transforms
∫

R

(

σ2

2
u2(z)− R(z)−∆(z)

)

(

Φ′(0)e−Φ(0)(x−z) −W (z − x)
)

dz = u(x)−∆(x).
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Finally, passing to the limit as x → +∞, we conclude that

lim
x→+∞

eΦ(0)xu(x) = Φ′(0)

∫

R

eΦ(0)z

(

σ2

2
u2(z)−R(z)−∆(z)

)

dz = κ.

�
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processes. Lévy Matters II, 97–186, Lecture Notes in Math., 2061, Lévy Matters, Springer, Heidelberg,
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tingale in a branching Lévy process. Arxiv : 2105.07919, 2021.
[15] C. Profeta. Extreme values of critical and subcritical branching stable processes with positive jumps.

Arxiv : 2109.04769, 2021. (To appear in ALEA).
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