# Multi-element polynomial chaos with automatic discontinuity detection for nonlinear systems

 $\underline{Juliette \, Dréau}^{1*}$  , Benoit Magnain $^2$  and Alain Batailly $^1$ 

<sup>1</sup>Laboratoire d'Analyse Vibratoire et Acoustique, École Polytechnique de Montréal, Montréal, Canada <sup>2</sup> LaMé, INSA CVL, Univ. Orléans, Univ. Tours, Bourges, France

31 July - 5 August 2022





INSTITUT NATIONAL DES SCIENCES APPLIQUÉES CENTRE VAL DE LOIRE



T Introduction

#### Context

Classical spe

Methodology

Parameter analysis

Conclusion



# Industrial context: turbomachine

## Challenges

- maximizing performance
- reducing environmental footprint

## Research investigations

 $\Rightarrow$  improvement of the design of bladed disks to reduce at most the operating clearances



T Introduction

#### Context

Classical spe

- Methodology
- Parameter analysis
- Conclusion

# Industrial context: turbomachine

# Challenges

- maximizing performance
- reducing environmental footprint

# Research investigations

 $\Rightarrow\,$  improvement of the design of bladed disks to reduce at most the operating clearances

#### Consequences

- favors nonlinear phenomena at certain interfaces
  - structural contacts at the blade-tip/casing interface



r Introduction

#### Context

Context

- Methodology
- Parameter analysis
- Conclusion

# Study context

# Model from previous publications <sup>1,2</sup>

- $\, \bullet \,$  a single blade of axial compressor NASA rotor 37  $^3$
- equation of motion  $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} + \mathbf{f}_{nl}(\mathbf{x}, \dot{\mathbf{x}}) = \mathbf{f}_{ext}(\omega, t)$
- solved by explicit central finite difference time integration scheme and Lagrange multipliers for contact

# Blade modeling

- 3D finite element model: 5745 nodes
- reduced-order model: Craig-Bampton model reduction <sup>4</sup> for a total of 34 dof
- modal damping
- blade clamped at its root and no centrifugal effects

# Contact modeling

- $\bullet\,$  rigid casing and no aerodynamic forcing  ${\bf f}_{ext}(\omega,t)=0$
- 8 boundary contact nodes along the blade-tip
- contact initiation: progressive distortion of the casing with 2 lobes



From Colaïtis et al., 2021.

<sup>&</sup>lt;sup>1</sup>E. Piollet et al. J. Sound Vib. (2019). doi: 10.1016/j.jsv.2019.114878. ISSN: 0022-460X

<sup>&</sup>lt;sup>2</sup>Y. Colaïtis et al. J. Eng. Gas Turbines Power (2021). doi: 10.1115/1.4051967. ISSN: 0742-4795

<sup>&</sup>lt;sup>3</sup>L. Reid et al. Technical report. NASA-TP-1337. NASA Lewis Research Center Cleveland, OH, United States, 1978

<sup>&</sup>lt;sup>4</sup>R. R. Craig et al. AIAA Journal (1968). doi: 10.2514/3.4741

Introduction

#### Context

- Methodology



# Study context

## Quantity of Interest

- studied reponse: maximal radial displacement at the leading edge of the blade
- two parameters: angular frequency  $\omega$  and operating clearance between the blade-tip and the casing c



frequency response curve for a given clearance

for several clearance values

Introduction

Context

#### Classical spec

Methodology

Parameter analysis

Conclusion



# Study context

## Quantity of Interest

- studied reponse: maximal radial displacement at the leading edge of the blade
- ullet two parameters: angular frequency  $\omega$  and operating clearance between the blade-tip and the casing c



frequency response curve for a given clearance

#### Objective

approximate the response surface at lower cost by spectral method major difficulty: discontinuity in the response surface

T Introduction

Contaxt

Classical spectral methods

Methodology

Parameter analysis

Conclusion

# Surface approximation: classical methods

generalized Polynomial Chaos Expansion (gPCE)  $\,^5$ 

- expansion of the system response into a series of orthogonal polynomials
- continuous response  $\implies$  inaccurate results



<sup>5</sup>D. Xiu et al. *SIAM J. Sci. Comput.* (2002). doi: 10.1137/S1064827501387826 <sup>6</sup>X. Wan et al. *J. Comput. Phys.* (2005). doi: 10.1016/j.jcp.2005.03.023. ISSN: 0021-9991

The second secon

Contoxt

Classical spectral methods

Methodology

Parameter analysis

Conclusion

# Surface approximation: classical methods

# generalized Polynomial Chaos Expansion (gPCE) $\,^5$

• expansion of the system response into a series of orthogonal polynomials

• continuous response  $\implies$  inaccurate results

# Multi-Element generalized Polynomial Chaos Expansion (ME-gPCE) <sup>6</sup>

- piecewise gPCE: decomposition of the domain into several elements on which gPCE is applied
- tensor structure with rectangular shape elements  $\implies$  inaccurate results if the discontinuity is located in the element



<sup>5</sup>D. Xiu et al. SIAM J. Sci. Comput. (2002). doi: 10.1137/S1064827501387826 <sup>6</sup>X. Wan et al. J. Comput. Phys. (2005). doi: 10.1016/j.jcp.2005.03.023. ISSN: 0021-9991

\* Introduction

Context

Classical spectral methods

Methodology

Parameter analysis

Conclusion

# Surface approximation: classical methods

generalized Polynomial Chaos Expansion (gPCE)  $\,^5$ 

- expansion of the system response into a series of orthogonal polynomials
- continuous response  $\implies$  inaccurate results

# Multi-Element generalized Polynomial Chaos Expansion (ME-gPCE) <sup>6</sup>

- piecewise gPCE: decomposition of the domain into several elements on which gPCE is applied
- tensor structure with rectangular shape elements ⇒ inaccurate results if the discontinuity is located in the element

#### Proposed methodology

domain decomposition according to the discontinuity of the studied response

<sup>&</sup>lt;sup>5</sup>D. Xiu et al. SIAM J. Sci. Comput. (2002). doi: 10.1137/S1064827501387826 <sup>6</sup>X. Wan et al. J. Comput. Phys. (2005). doi: 10.1016/j.jcp.2005.03.023. ISSN: 0021-9991

#### WCCM-APCOM 2022 - Yokohama ক Introduction

#### Methodology

Discontinuity detection Domain decomposition Response surface approximation

Parameter analysis

Conclusion

#### Introductio

Contents

Context Classical spectral methods

#### 2 Methodology

Discontinuity detection Domain decomposition Response surface approximation

#### 8 Parameter analysis

4 Conclusion

#### Introduction

#### Methodology

Discontinuity detection Domain decomposition Response surface approximation

#### Parameter analysis

Conclusion



# Proposed methodology

# Steps

- discontinuity detection
- ø domain decomposition based on the detected discontinuities
- s gPCE approximation on each subdomain

### Application to Rotor37



# Discontinuity detection

#### Jump function

- defined in 1 dimension:  $\delta f(x) = \lim_{\Delta \to 0} f(x + \Delta) \lim_{\Delta \to 0} f(x \Delta)$
- approximated by polynomial annihilation <sup>7</sup>

#### Initial mesh

- ${\scriptstyle \bullet }$  based on  $n_0$  -point regular grid (O) randomly shifted (
- ullet computed a Delaunay triangulation (—):  $\mathcal{T}^{(0)}$



Parameter analysis

Introduction

Methodology

Discontinuity detection

Conclusion



#### WCCM-APCOM 2022 - Yokohama & Introduction

#### Methodology

Discontinuity detect

#### Edge detection

Localized refinement Domain decomposition Response surface approximation

Parameter analysis

Conclusion



# Discontinuity detection

#### Iterative edge detection

() approximate the jump values by polynomial annihilation on current mesh  $\mathcal{T}^{(k)}$  () identify the new point to add to the current mesh

- ▶ identify the highest jump value triangle (□) and its two vertices (●)
- compute the new point (●) as the middle of two vertices
- verify a minimal distance
- otherwise select the second highest jump value triangle



# 

#### Edge detection Localized refinement Domain decomposition Response surface approximation

Parameter analysis

Conclusion



# Discontinuity detection

#### Iterative edge detection

 $oldsymbol{0}$  approximate the jump values by polynomial annihilation on current mesh  $\mathcal{T}^{(k)}$ 

- e identify the new point to add to the current mesh
- ${f \circ}$  point labeling (-1 ( ${f \circ}$ ) or +1 ( ${f \circ}$ )) and local remeshing of the Delaunay triangulation  ${\cal T}^{(k+1)}$



# Discontinuity detection

Introduction

Methodology

Edge detection

Parameter

#### Iterative edge detection

 $lacksymbol{0}$  approximate the jump values by polynomial annihilation on current mesh  $\mathcal{T}^{(k)}$ 

- e identify the new point to add to the current mesh
- $\bullet$  point labeling  $(-1 (\bullet) \text{ or } +1 (\bullet))$  and local remeshing of the Delaunay triangulation  $\mathcal{T}^{(k+1)}$
- O repeat steps until one of the stopping criteria is satisfied:
  - minimal jump value
  - Ø minimal distance between a new point and existing points
  - e maximal number of iteration

### Discontinuity areas (



# Discontinuity detection

# Localized refinement

Response surface approximation

Parameter analysis

Conclusion



# Discontinuity description with Support Vector Machine

- apply support vector classification  $^{8,9}$  from the training (•) (•) and test (O) (O) data
- obtain the decision boundary which is the discontinuity
- describe discontinuity by a B-spline <sup>10</sup>



<sup>8</sup>C. M. Bishop et al. Springer, 2006

<sup>9</sup> J. Novakovic et al. 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics. doi: 10.1109/SISY.2011.6034373. 2011
<sup>10</sup> L. Piegl et al. doi: 10.1007/978-3-642-59223-2. Springer Berlin Heidelberg, 1997

#### WCCM-APCOM 2022 - Yokohama trokohama tr

Domain decomposit Response surface approximation

Parameter analysis

Conclusion

# Discontinuity detection

## Localized refinement

- $\bullet$  identify the maximal distance between the nearest discontinuity points ( $\bullet$ ) ( $\bullet$ ) and spline (- $\bullet$ -)
- ${f extsf{@}}$  compute the new candidate point (() in the middle of the maximal distance:  ${f x}_{k+1}$
- ${f s}$  verify that  ${f x}_{k+1}$  is not too close to other points ( ${f \square}$ )
- (a) otherwise, change the new point by one in orthogonal direction ( ):  $\mathbf{x}^+$  or  $\mathbf{x}^-$
- opdate the spline







# 

Response surface approximation

Parameter analysis

Conclusion

# Discontinuity detection

## Localized refinement

- identify the maximal distance between the nearest discontinuity points (●) (●) and spline (-◆-)
- ${f @}$  compute the new candidate point ( ) in the middle of the maximal distance:  ${f x}_{k+1}$
- (a) verify that  $\mathbf{x}_{k+1}$  is not too close to other points (
- (a) otherwise, change the new point by one in orthogonal direction ( ):  $\mathbf{x}^+$  or  $\mathbf{x}^-$
- update the spline
- $\circlearrowright$  repeat steps until the two stopping criteria are satisfied:
  - $m{0}$  minimal distance between the nearest discontinuity points and the spline knots, based on previous publication  $^{11}$
  - Ø minimal score of the SVM classification

<sup>&</sup>lt;sup>11</sup>A. Gorodetsky et al. SIAM J. Sci. Comput. (2014). doi: 10.1137/140953137

# Discontinuity detection

#### Application to Rotor37

Discontinuity detection

Localized refinement Domain decomposition Response surface

Parameter analysis

Conclusion





| initial mesh (●) | edge detection ( $\bigcirc$ ) ( $\bigcirc$ ) ( $\bigcirc$ ) ( $\bigcirc$ ) | localized refinement ( $()$ | total |
|------------------|----------------------------------------------------------------------------|-----------------------------|-------|
| 36               | 47                                                                         | 11                          | 94    |

# Domain decomposition





Domain decomposition

 ${\cal N}$  non-overlapping subdomains such as:

$$\begin{split} & \Omega = \bigcup_{i=1}^N \Omega_i, \\ & \forall i, j \in \llbracket 1, N \rrbracket, i \neq j \Leftrightarrow \ \Omega_i \cap \Omega_j = \emptyset. \end{split}$$

(1)

# Domain decomposition

Domain decomposition

12.5  $-10^{-4}$  $\Omega_1$  $_{\odot}$  $2.5 \\ 1,370$ 1,500

 $\omega$ 

 ${\cal N}$  non-overlapping subdomains such as:

$$\begin{array}{l} & \Omega = \bigcup_{i=1}^{N} \Omega_{i}, \\ & \forall i, j \in \llbracket 1, N \rrbracket, i \neq j \Leftrightarrow \ \Omega_{i} \cap \Omega_{j} = \emptyset. \end{array}$$

(1)

# Domain decomposition

Domain decomposition

 $\cdot 10^{-4}$ 12.5  $\mathbf{s}^{n}(\eta)$  $s^w(\mu)$  $\Omega_1$ se(H)  $_{\circ}$  $s^{s}(\eta)$  $2.5 \\ 1,370$ 1,500

ω

N non-overlapping subdomains such as:

$$\begin{array}{l} \Omega = \bigcup_{i=1}^{N} \Omega_{i}, \\ \forall i, j \in \llbracket 1, N \rrbracket, i \neq j \Leftrightarrow \ \Omega_{i} \cap \Omega_{j} = \emptyset \end{array}$$

(1)

Parameter analysis

Conclusion



# Response surface approximation

gPCE on each subdomain  $\Omega_i$  with rectangular shape subdomain <sup>12</sup> • transformation into a reduced centered variable  $\xi$  as <sup>13</sup>:

$$\begin{split} T\colon [-1,1]^2 &\to \Omega_i, \\ &\pmb{\xi} \mapsto \mathbf{x} = T(\pmb{\xi}), \quad \text{where } \mathbf{x} = [\omega,c] \end{split}$$

- linear transformation
- e response surface approximation defined as:

$$D(\boldsymbol{\xi}) \approx \sum_{j=0}^{p} \beta_{j} \Psi_{j}(\boldsymbol{\xi}),$$

- ${f s}$  construction of the polynomial basis  $\Psi_j$ 
  - $\blacktriangleright$  polynomials of degree lower or equal to q
  - Legendre polynomials
- (a) computation of the coefficients  $\beta_j$ 
  - regression method <sup>14</sup>
  - system evaluations on a Design of Experiments (DoE)

(2)

 <sup>12</sup> X. Wan et al. J. Comput. Phys. (2005). doi: 10.1016/j.jcp.2005.03.023. ISN: 0021-9991
13 D. Xiu et al. SIAM J. Sci. Comput. (2002). doi: 10.1137/S1064827501387826
14 M. Berveiller et al. Eur. J. Comp. Mech. (2006). doi: 10.3166/remn.15.81-92

Parameter analysis

Conclusion



# Response surface approximation

gPCE on each subdomain  $\Omega_i$  with proposed methodology

• transformation into a reduced centered variable  $\boldsymbol{\xi}$  as <sup>13</sup>:

- $$\begin{split} T\colon [-1,1]^2 &\to \Omega_i, \\ &\pmb{\xi} \mapsto \mathbf{x} = T(\pmb{\xi}), \quad \text{where} \, \mathbf{x} = [\omega,c] \end{split}$$
- ► transfinite transformation <sup>15</sup> defined by the subdomain boundaries response surface approximation defined as:

$$D(\boldsymbol{\xi}) \approx \sum_{j=0}^{p} \beta_{j} \Psi_{j}(\boldsymbol{\xi}),$$

- ${f s}$  construction of the polynomial basis  $\Psi_j$ 
  - $\blacktriangleright$  polynomials of degree lower or equal to q
  - Legendre polynomials
- (a) computation of the coefficients  $\beta_j$ 
  - regression method <sup>14</sup>
  - system evaluations on a Design of Experiments (DoE)

13D. Xiu et al. SIAM J. Sci. Comput. (2002). doi: 10.1137/S1064827501387826
15 W. J. Gordon et al. Numer. Math. (1973). doi: 10.1007/BF01436298
14 M. Berveiller et al. Eur. J. Comp. Mech. (2006). doi: 10.3166/remn.15.81-92

(2)

WCCM-APCO 2022 - Yokohar t Introduction Methodology Discontinuity detec

# Response surface

Parameter analysis

Conclusion



# Response surface approximation

# Transfinite transformation on $\Omega_i$

- smooth mapping from a boundary to another
- example from a points grid:



Introduction

#### Methodology

Response surface approximation



Response surface approximation

## **Design of Experiments**

points from discontinuity detection step

 $\mathbf{s}^n$ 

sw (4

- inverse transformation  $T^{-1}$  for each point ( $\bigcirc$ )
  - solve by Newton-Raphson procedure <sup>16</sup>
  - reduce numerical cost by a minimum spanning tree  $^{17}$  (---) and a nearest neighbor search  $^{18}$

 $\mathbf{s}^{e}(\mu)$ 

 $s^{s}(\eta)$ 

starting point () at the center of the domain

 $x_2$ 





(b) inverse transfinite transformation of DoE points

<sup>16</sup>R. Burden et al. Cengage Learning, 2010. ISBN: 9781133169338

<sup>17</sup>M. Held et al. Operations Research (1970). doi: 10.1287/opre.18.6.1138. ISSN: 0030364X, 15265463

 $x_1$ 

18<sub>M. Bellmore et al. Oper. Res. (1968)</sub>

Introduction

Methodology

Discontinuity detection

Domain decomposition

Response surface approximation

Parameter analysis

Conclusion



# Response surface approximation

# Application to Rotor37

- ${\, \bullet \, }$  design of experiments:  $94 \ {\rm points}$  in  $\Omega$ 
  - > separate the points between the two subdomains: 51 points (O) in  $\Omega_1$  and 43 points ( ) in  $\Omega_2$
  - > verify that the points are on the right side of the discontinuity thanks to their labels



Introduction

Methodology

- Discontinuity detection
- Response surface approximation

Parameter analysis

Conclusion



# Response surface approximation

# Application to Rotor37

- ${\, \bullet \, }$  design of experiments:  $94 \ {\rm points}$  in  $\Omega$ 
  - $\blacktriangleright$  separate the points between the two subdomains: 51 points (O) in  $\Omega_1$  and 43 points (ullet) in  $\Omega_2$
  - > verify that the points are on the right side of the discontinuity thanks to their labels
- results with degree  $q = 4 \implies$  accurate results



(a) approximated response surface with the proposed methodology



(b) scatter plot

- Introduction
- Methodology
- Parameter analysis
- Conclusion

#### Introduction

Contents

Context Classical spectral methods

#### Methodology

Discontinuity detection Domain decomposition Response surface approximation

## 3 Parameter analysis

4 Conclusion

r Introduction

Methodology

Parameter analysis

Conclusion

# Parameter analysis

#### Variation of two parameters

() stopping criterion on the minimal jump value of the edge detection

ightarrow decrease minimal jump value  $\Longrightarrow$  increase edge detection iteration and computational cost

 increase minimal jump value => increase localized refinement iteration and obtain an aberrant shaped discontinuity



Introduction

Methodology

# Parameter analysis

#### Variation of two parameters

- stopping criterion on the minimal jump value of the edge detection

  - increase minimal jump value  $\implies$  increase localized refinement iteration and obtain an aberrant shaped discontinuity
- stopping criterion on the minimal distance of the localized refinement
  - decrease minimal distance  $\implies$  increase refinement iteration and computational cost
  - similar approximation errors



- Introduction
- Methodology
- Parameter analysis
- Conclusion

#### Introduction

Contents

Context Classical spectral methods

#### Methodology

Discontinuity detection Domain decomposition Response surface approximation

#### 8 Parameter analysis

4 Conclusion

# Conclusion

Introduction

#### Methodology

Parameter analysis

Conclusion

# Proposed methodology

- automated detection of discontinuities relying on a two-step approach:
  - iterative edge detection
  - Ø localized refinement to accurately represent the discontinuities by means of B-spline curves
- approximation of the response surface using a domain decomposition for an optimal application of ME-gPCE

#### Application of the proposed methodology

- complex system of the Rotor37 blade with accurate results
- other academic systems with accurate results



<sup>19</sup>J. D. Jakeman et al. J. Comput. Phys. (2013). doi: 10.1016/j.jcp.2013.02.035. ISSN: 0021-9991

Thank you for your attention





INSTITUT NATIONAL DES SCIENCES APPLIQUÉES **CENTRE VAL DE LOIRE** 

