Reduced Order Modeling of Cyclically Symmetric Bladed Disks with Geometric and Contact Nonlinearities

E. Delhez, F. Nyssen, J.-C. Golinval, A. Batailly

15th World Congress on Computational Mechanics

August 2022

Context Single blad Full bladed

Conclusion

1 Context

Outline

- 2 Single blade
- 3 Full bladed disk
- 4 Conclusion

Context Single blac

Conclusion

By 2050...

- \blacktriangleright 75% reduction in CO₂
- ▶ 90% reduction in NO×
- ▶ 65% reduction of noise

Context Full bladed d

Consequences on bladed disks design

- Designing lighter and more flexible blades
- Geometric nonlinearities

- Reducing clearances between the rotating blades and the casing
- Contact nonlinearities

Bladed disks dynamics fundamentally nonlinear

wccм 2022

Context Single blade Full bladed d

Conclusion

Numerical modeling

Full order model

 $\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{nl}(\mathbf{u}) = \mathbf{f}_{e}(t) + \mathbf{f}_{c}(\mathbf{u}, \dot{\mathbf{u}})$

Context Single blade Full bladed di

Numerical modeling

Full order model

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{nl}(\mathbf{u}) = \mathbf{f}_e(t) + \mathbf{f}_c(\mathbf{u},\dot{\mathbf{u}}) \qquad - \mathbf{M}_e^{-1} \mathbf{u}_e^{-1} \mathbf{u}_e$$

 $u = \Phi a$

Reduced order model

$$ilde{\mathsf{M}}\ddot{\mathsf{q}}+ ilde{\mathsf{C}}\dot{\mathsf{q}}+ ilde{\mathsf{K}}\mathsf{q}+ ilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q})= ilde{\mathsf{f}}_{e}(t)+ ilde{\mathsf{f}}_{c}(\mathsf{q},\dot{\mathsf{q}})$$

- Projection basis \$\$\phi\$?
- Reduced nonlinear internal forces g̃_{nl}?
- Treatment of contact in the reduced space $\tilde{f}_c(q, \dot{q})$?

Context

Single blade Full bladed dis

Objectives

Previous work¹

- Development of a methodology to study the contact interactions of a single rotating blade with geometric nonlinearities
- Validation on an industrial compressor blade model

 $^{1}\mathsf{E}.$ Delhez et al. Journal of Sound and Vibration (2021). doi: 10.1016/j.jsv.2021.116037.

Context

Single blade Full bladed dis

Objectives

Previous work¹

- Development of a methodology to study the contact interactions of a single rotating blade with geometric nonlinearities
- Validation on an industrial compressor blade model

This presentation

- In-depth contact analyses to characterize the influence of geometric nonlinearities
- Generalization of the methodology to full bladed disks

¹E. Delhez et al. Journal of Sound and Vibration (2021). doi: 10.1016/j.jsv.2021.116037.

Single blade Methodology Contact simulatio Full bladed dis

1 Context

Outline

2 Single blade

3 Full bladed disk

4 Conclusion

Context Single blade Methodology Contact simulation Full bladed disk Conclusion

Methodology

Full order model

 $\begin{aligned} \mathsf{M}\ddot{\mathsf{u}} + \mathsf{C}\dot{\mathsf{u}} + \mathsf{K}\mathsf{u} + \mathsf{g}_{\mathsf{nl}}(\mathsf{u}) &= \mathsf{f}_{e}(t) + \mathsf{f}_{c}(\mathsf{u}, \dot{\mathsf{u}}) \\ \end{aligned}$ $\begin{aligned} \mathsf{Reduced order model} \\ \tilde{\mathsf{M}}\ddot{\mathsf{q}} + \tilde{\mathsf{C}}\dot{\mathsf{q}} + \tilde{\mathsf{K}}\mathsf{q} + \tilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q}) &= \tilde{\mathsf{f}}_{e}(t) + \tilde{\mathsf{f}}_{c}(\mathsf{q}, \dot{\mathsf{q}}) \end{aligned}$

- ▶ Projection basis: Craig-Bampton modes and a selection of their modal derivatives²
- ▶ Reduced nonlinear internal forces: evaluation with the stiffness evaluation procedure (STEP)³
- Contact: explicit central finite difference time integration scheme with Lagrange multipliers⁴

²L. Wu et al. Proceedings of the 27th International Conference on Noise and Vibration Engineering. Leuven (Belgium), 2016.
 ³A. Muravyov et al. Computers & Structures (2003). doi: 10.1016/s0045-7949(03)00145-7.

⁴N. J. Carpenter et al. International Journal for Numerical Methods in Engineering (1991). doi: 10.1002/nme.1620320107.

.....

Test case

Context

Single blade

- Contact simulations
- Full bladed disk

Conclusion

- NASA rotor 37 blade (transonic compressor blade) clamped at its root⁵
- Open and industrial test case
- ▶ 8 boundary nodes distributed between *LE* and *TE* (contact interface)
- Reduction basis: 189 modes = 24 static modes + 15 fixed interface linear normal modes + 150 modal derivatives

Context Single blade

Contact simulations

Full bladed disk

Conclusion

Contact scenario

- Blade rotating at a constant speed Ω around e_z
- Direct contact with rigid casing sliding friction
- Contact initiated by deformation of the casing with two lobes
- No aerodynamic loading, no gyroscopic or centrifugal effects, no thermal effects

Context Single blade Methodology Contact simulations

run biadeu dis

Conclusion

Interaction maps of the radial displacement at LE

Interaction between the first bending mode (1B) and the fourth engine order (e_{o4})

▶ Interaction maps, predicted linear (●) and nonlinear (▲) resonances.

.....

Single blade

Contact simulations

Nonlinear frequency response curve

NFRC without (- -) and with (---) geometric nonlinearities. ► predicted linear (\bullet) and nonlinear (\blacktriangle) resonances.

- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions
 - Additional contact stiffening

Context Single blade

Methodology

Contact simulations

Full bladed dis

Conclusion

Nonlinear frequency response curve

▶ NFRC without (--) and with (---) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions?
 - Additional contact stiffening

Context

Single blade

Contact simulations

Full bladed disk

Conclusion

Clearance consumption

Definition

Evolution of the clearance between the blade and the casing when the blade vibrates along 1 mode

$$\Delta(\delta) = c_0 - c(\delta)$$

Possible key parameter for the design of blades subjected to contact interactions⁶

⁶A. Batailly et al. Proceedings of the ASME Turbo Expo (2016). doi: 10.1115/gt2016-56721.

Context Single blade

Contact simulations

- Full bladed disk
- Conclusion

Clearance consumption

- Reduced clearance consumption with geometric nonlinearities
- Justify that the blade with geometric nonlinearities features lower vibration response to contact
- ▶ Linear model valid for $\delta \in [-0.25, 0.2]$

▶ Clearance consumption at *LE* without (- -) and with (---) geometric nonlinearities.

Context Single blade

Contact simulations

Full bladed dis

Conclusion

Nonlinear frequency response curve

▶ NFRC without (--) and with (---) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions
 - Additional contact stiffening?

Context Single blade Methodology Contact simulations

Full bladed disk

Conclusion

Nonlinear frequency response curve with continuation

▶ NFRC without (- -/---) and with continuation (+/ O), without geometric nonlinearities (above) and with geometric nonlinearities (below).

Numerical procedure

- NFRC built with a sequential continuation procedure
- Upward (+) and downward (O) angular speed sweeps

- Without continuation, nonlinear resonance (
 not correctly captured
- Contact stiffening similar with and without geometric nonlinearities

wcсм 2022

Context Single blade

Full bladed disk

Methodology Verification without contact Contact simulations C**onclusion**

Context

Outline

2 Single blade

3 Full bladed disk

4 Conclusion

Context Single blade

Full bladed disk

Verification with

contact

Conclusion

Generalization of the methodology with CMS techniques

Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary

Context Single blade

Full bladed disk

Verification witho

Contact simulat

Conclusion

Generalization of the methodology with CMS techniques

- Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary
- ▶ Reduced nonlinear internal forces: STEP, assumption of linear coupling between the sectors

Context Single blade

Full bladed disk

Verification without contact

~ . .

Generalization of the methodology with CMS techniques

- Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary
- ▶ Reduced nonlinear internal forces: STEP, assumption of linear coupling between the sectors
- ► Contact: explicit central finite difference time integration scheme with Lagrange multipliers

Test case

.**.**.

Context

Single blad

Full bladed disk

Methodology

Verification without contact

Contact simulation

Conclusion

- NASA rotor 37 bladed disk with 36 sectors
- ▶ 133,605 degrees-of-freedom per sector
- Sectors clamped at disk lower surface

Verification without contact

- Context
- Single blade
- Full bladed disk
- Methodology Verification without
- contact
- Conclusion

Blade excited by a harmonic excitation of amplitude A = 400 N and pulsation $\omega = 4,500$ rad/s in the \mathbf{e}_z direction

▶ Reference linear (- -) and nonlinear (---) solutions, reduced order model nonlinear solution (- -).

WCCM 2022, h, Context Single bladed Full bladed disk Methodology Vonfractow Vonfractow Contact simulations Conclusion

▶ Interaction maps, predicted linear (●) and nonlinear (▲) resonances.

Context Single blade Full bladed disk Methodology Verification without contact Contact simulations

Conclusion

Nonlinear frequency response curve

▶ NFRC without (- -) and with (---) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions (see clearance consumption analysis)
 - 'Additional contact stiffening' (continuation procedure required for accurate quantification)

wccм 202: .**...**

Single blade Full bladed disk

contact

Contact simulations

Conclusion

Von Mises stress fields

(a) Without geometric nonlin- (b) With geometric nonlineariearities.

▶ Von Mises stress fields at the resonance.

Comparison

 $\geq \sigma_Y$

0

- Zones of maximal stresses not at the same locations
- Non-negligible stresses in the disk for the case without geometric nonlinearities
- Smaller stresses predicted with geometric nonlinearities (in line with predicted displacements)

Context Single blade Full bladed dis

Outline

1 Context

- 2 Single blade
- 3 Full bladed disk

4 Conclusion

Context Single blade Full bladed disk Conclusion

Conclusion

- Methodology to study the rubbing interactions of full bladed disks with geometric nonlinearities
 - Projection basis: Craig-Bampton reduction basis and selection of their modal derivatives + second reduction of cyclic boundary
 - Geometric nonlinearities: STEP
 - Contact nonlinearities: Lagrange multipliers
- Reduced order models are an efficient alternative to full order models
- Influence of geometric nonlinearities not negligible
- > Parametric reduced order models can be built to account for gyroscopic and centrifugal effects
- Methodology also compatible with the introduction of mistuning

Context Single blade Full bladed disk Conclusion

Conclusion

- Methodology to study the rubbing interactions of full bladed disks with geometric nonlinearities
 - Projection basis: Craig-Bampton reduction basis and selection of their modal derivatives + second reduction of cyclic boundary
 - Geometric nonlinearities: STEP
 - Contact nonlinearities: Lagrange multipliers
- Reduced order models are an efficient alternative to full order models
- Influence of geometric nonlinearities not negligible
- Parametric reduced order models can be built to account for gyroscopic and centrifugal effects
- Methodology also compatible with the introduction of mistuning

Thank you for your attention