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Abstract. Recently, deglaciated landscapes are ideal natural arenas to investigate ecological
succession processes. However, ground data acquisition remains complicated as glacier fore-
fields are often difficult to access and fieldwork possibilities remain limited. Remote sensing
offers an opportunity to bypass this issue and increase spatial and temporal coverage of eco-
logical parameters. The Landsat satellites (5 to 8) provide reflectance data for the past 40 years,
which align with recent phenomena of glacier retreat and related ecological and geomorphologi-
cal dynamics in glacier forefields. Difficulties remain as information retrieved from 30-m
Landsat pixels are the result of a mixture of objects influencing reflectance signals. Here,
we used a submeter multispectral unmanned aerial vehicle (UAV) image of the Glacier noir
foreland, France, to assess the sensitivity of Landsat normalized difference vegetation index
(NDVI) to subpixel vegetation and topographic components. We found a twofold linear relation-
ship (a ¼ 0.456) and high sensitivity between fractional vegetation cover (FVC) and Landsat
NDVI with detection of low vegetation changes (FVC > 5%) at low NDVI values (<0.1)
(F-score ¼ 0.75). We also showed that vegetation height and subpixel topographic hetero-
geneity leads to misestimation of vegetation cover as quantified by Landsat NDVI. Overall, our
comparative analysis using very-high resolution UAV imagery provides support for the use of
widely available Landsat imagery for investigating vegetation dynamics in glacier forefields.
© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.15.044508]
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1 Introduction

Since the end of the Little Ice Age in the Alps1,2 (∼AD 1850), glaciers have decreased in size and
volume3 and their fronts have retreated providing new open surfaces for primary vegetation
succession to occur. The extent of glaciers in the French Alps, for example, has decreased
by roughly 50% since the mid-19th century, with a pronounced acceleration in glacier retreat
since the 1980s due to the global climate warming of roughly 0.5°C per decade.4,5 Recently,
deglaciated areas (glacier forefields, hereafter) are characterized by strong interactions between
vegetation dynamics and geomorphological processes and landforms.6–10 Vegetation tends to
colonize the new open areas and may enhance landform stabilization, but at the same time
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in these fresh open areas, geomorphological processes (e.g., debris flow, gullying, interrill ero-
sion, frost creep, and solifluction) can rapidly change in quality and intensity, impacting land-
form stability and vegetation succession trajectories.11 In this context, glacier forefields are ideal
models for investigating reciprocal interactions between vegetation succession and geomorpho-
logical processes in a dynamic and changing environment subjected to global warming.12

Vegetation succession stage depends on autogenic processes that are a function of time since
deglaciation.13,14 However, glacier forefields are constantly impacted by geomorphological dis-
turbances that enhance the formation of a dynamic and heterogeneous mosaic of habitats and
vegetation units. Recent studies indicate that successional trajectories and their rate and turnover
within glacier forefield are also controlled by allogenic geomorphological processes (mixture of
hillslope, torrential, and periglacial processes).15–21 Wojcik et al. suggested that the complex
interplay between autogenic and allogenic components varies over time, with an initial stochastic
phase followed by a more deterministic phase defined by environmental factors and biogeomor-
phological feedbacks. In addition, variability in plant succession rates has been linked to eleva-
tion gradients with, e.g., warmer low-elevation glacier forefields that tend to evolve faster from
pioneer vegetation to taller birch woodland than colder high-alpine glacier forefields.22

In situ investigation of vegetation succession in mountainous areas requires considerable
human effort and cost, given that data must be collected from contrasting glaciological, geo-
morphological, and vegetation contexts within the glacier forefield. Fieldwork campaigns in
poorly accessible sites are often “one-shot” studies, and analyses of vegetation succession thus
remain limited to a space-for-time approach.23 Furthermore, traditional ecological field cam-
paigns in the Alps often tend to focus on stable vegetated surfaces and ignore disturbed and
unstable zones where vegetation is absent or has a low cover.22,24 However, the consideration
of these unstable areas with low or patchy pioneer vegetation cover is necessary for a better
understanding of the initial conditions that control vegetation establishment and subsequent
successional trajectories.

Remote sensing data provide great potential for analyzing Earth’s surface dynamics at vari-
ous spatiotemporal scales, particularly in areas that are challenging to access.25 More specifi-
cally, the repeat survey capabilities (i.e., 16-day) and the spatial resolution of the Landsat
satellites (i.e., 30 m) allow for observation of vegetation colonization dynamics in the wake
of glacier retreat using a near real-time approach.11,19,26 Acquisition of normalized satellite
images began in 1984 with Landsat 5 TM and has continued with the Landsat 7 ETM+ and
Landsat 8 OLI sensors, both of which are still operating. With almost 40 years of data acquis-
ition, the historical depth of monitoring is consistent with the rapid glacier retreat that has
occurred since the 1980s all around the world in mountainous ranges.27 Historical archives
of optical satellite imagery provide a unique opportunity to simultaneously observe deglaciation
dynamics28 and related primary vegetation succession using appropriate vegetation indices, such
as the normalized difference vegetation index (NDVI). NDVI can be defined as a nonphysical
unidimensional quantity sensitive to certain physical properties of the vegetation canopy, notably
biomass, and photosynthetic activity.29 However, in the context of glacier forefields, Landsat
pixels with a resolution of 30 m are expected to be composed of a mixture of diverse ground
features (e.g., type of rock, soil, and vegetation; slope and roughness) with unique moisture and
reflectance properties with unquantified consequences for NDVI values.

A mixed pixel (mixel) is a picture element representing an area occupied by more than one
entity of interest or by one single entity of interest but with difference in bidirectional reflectance
distribution function, e.g., a homogeneous grassland visible on both sides of a crest or a flat
grassland with sparse trees.30 Glacier forefields are unstable, and extremely heterogeneous envi-
ronments composed exclusively of mixels at Landsat scale. Therefore, ability to interpret obser-
vations of changes in vegetation following deglaciation using Landsat imagery first and foremost
requires identifying the dependency between NDVI and reflectance-contributive features.

Here, we assess the relationship between Landsat NDVI and ground vegetation in a glacier
forefield by deriving submeter variables from unmanned aerial vehicle (UAV) imagery. Due to
bidirectional acquisition and very-high resolution, UAV-based approach allows to extract an
ensemble of variables that informs us on the topographic and vegetation structure that are unap-
proachable through coarse resolution sensors. Using subpixel information on orientation, slope,
fractional vegetation cover (FVC), and vegetation height, we address the following questions:

Bayle et al.: Sensitivity of Landsat NDVI to subpixel vegetation and topographic components. . .

Journal of Applied Remote Sensing 044508-2 Oct–Dec 2021 • Vol. 15(4)



(i) what vegetation changes can we expect on the ground for a given variation in Landsat NDVI;
(ii) at which value of NDVI can we consider a Landsat pixel as vegetated; and (iii) what veg-
etation and topographic components impact the relation between Landsat NDVI and vegetation
on the ground? Addressing these methodological questions is crucial prior to applying the entire
Landsat archive toward assessment of vegetation dynamics following deglaciation, and more
specifically tackling the questions of lag between deglaciation and vegetation colonization, and
spatiotemporal variability of successional trajectories.

2 Material and Methods

2.1 Glacier Noir Foreland

The Glacier Noir is located in the Haute Vallée de St. Pierre in the Ecrins National Park in the
French Alps (Fig. 1). It is a 4.5-km long debris-covered glacier with an elevation range from
2200 to 3600 m. Its tongue is oriented east, pouring out in the Pré de Madame Carle field. The
Glacier Noir forefield consists of a complex assemblage of hummocky moraines and fluviogla-
cial landscape units resulting from debris cover and changes in glacier extent and thickness since
the LIA. Indeed, the thick supraglacial debris over the Glacier Noir induces longer response
time to climate fluctuations, and changes in its front position are not always synchronous with
those of its neighbor, the Glacier Blanc.31,32 Two contrasting proglacial landscapes can be dis-
tinguished: (i) the downstream part of the glacier forefield, from the LIA moraines to the 1950s
moraines,33 which is covered by shrubs and trees, and (ii) the upstream part, situated between the
1950s moraines and the current glacier front, which is sparsely vegetated by narrow and isolated
patches of alpine herbs.

2.2 Data Acquisition

2.2.1 UAV imagery

On the morning of September 15, 2020, we used a quadcopter UAV (microdrones® md4-1000)
to fly over the glacier forefield of the Glacier Noir. The UAV carried a multispectral camera
(Micasense Rededge) and over the course of four collected images composed of five spectral
bands (i.e., blue, green, red, red-edge, and near-infrared) of the complete glacier forefield area
(Table 1). Previously, a set of 16 photogrammetry targets were placed over the entire proglacial
area and georeferenced in Lambert 93 using a trimble R10 DGPS. Images were then orthorec-
tified using the common Agisoft metashape workflow,34,35 allowing us to generate an RGB

Fig. 1 (b) Glacier Noir foreland located in the Parc National des Ecrins, France, observed by
(a) RGB image from UAV acquisition. Landsat mixels considered in this study are shown as a
red grid. (a) Directions of Glacier Noir and Glacier Blanc are indicated with arrows. Point of view
for (c) is located in (a).
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orthomosaic, NDVI layer, digital surface model (DSM), and digital elevation model (DEM) at
a resolution of 12 cm with an RMS error of 1.4 cm in XY and 2.2 cm in Z. The DEM raster
was produced using the dense cloud filtering and classification methods available in Agisoft
Metashape Professional (1.7.3).

2.2.2 Landsat reflectance and NDVI

Landsat 8 OLI standard terrain-corrected orthorectified images from collection 2 from
September 3, 2020, and September 28, 2020, were downloaded from the Landsat Earth
Explorer data portal at surface reflectance level of correction. These scenes were chosen as they
are cloud-free overGlacier Noir forefields, and their mean reflectance are expected to be close to
the UAV reflectance. The scene from September 12, 2020, could not be used due to cloud cover.
Topographic-related effects were not corrected using available methods36 as we subsequently
measured the impact of these effects through geomorphological variables on NDVI Landsat
mixel values.

NDVI was computed for the two scenes using the red and near-infrared bands according to
the following equation, where NIR and Red corresponds to the reflectance measures in bands 5
(0.85 to 0.88 nm) and 4 (0.64 to 0.67 nm) of Landsat 8 OLI sensor (Table 1), respectively:

EQ-TARGET;temp:intralink-;e001;116;403NDVI ¼ ðNIR − RedÞ
ðNIRþ RedÞ : (1)

The NDVI mean of the two scenes was computed and used as the explanatory variable for
further analysis, hereafter referred as NDVI Landsat mixel.

2.3 Preparation of Vegetation and Topographic Data

2.3.1 Shadow masking

Shadows in remote-sensing images decrease the quality of spectral information and hamper
processes, such as feature extraction and classification.37,38 In mountainous contexts, illumina-
tion conditions depend mostly on slope orientation and angle and large obstructing topographic
features. Here, we intend to mask shadows that completely obstruct illumination, given that we
are interested in the effects of topographic heterogeneity within a mixel. Many methods have
been proposed ranging from simple property-based methods relying on combining spectral
bands and thresholding to geometry and physics-based methods accounting for surrounding
topography and atmospheric conditions. Because our study case is relatively simple due to the
surface considered and the very high resolution, we generated a mask by applying a threshold to
the NIR band. Histogram thresholding is the simplest shadow detection tool as it assumes that
there is a clear separation between shadow and sunlit histogram levels. A common limitation is
the confusion between water bodies and shadows, but as we solely focused on vegetation, this
issue was not relevant. Since the NIR band is more sensitive to shadows, it was chosen over RGB
channels for histogram thresholding [Fig. 2(a)]. We manually selected a threshold of 0.07 lead-
ing to the removal of 38 % of the image [example in Figs. 2(b) and 2(c)].

Table 1 Band wavelengths and spatial resolution of the Red and NIR bands
from the UAV and OLI sensors.

Sensor Red band NIR band Resolution

UAV 668� 14 nm 842� 57 nm 12 cm

OLI 655� 25 nm 865� 20 nm 30 m
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2.3.2 Vegetation cover

We derived a binary mask of vegetated versus unvegetated pixels from UAV images by photo-
interpreting ground truth samples of vegetation and bare surfaces for binary classification based
on NDVI. First, we masked pixels identified as shadows. Then, we photointerpreted 820 and 894
samples of vegetation and bare soil from the 12-cm RGB image, respectively. Based on these
samples, we derived NDVI distribution for both classes and computed the confusion matrix
based on a moving threshold. We computed F-score, which is the harmonic mean of recall (frac-
tion of correctly classified pixels with regard to validation samples) and precision (fraction of
correctly classified pixels with regard to all pixels classified as such in the image), for all thresh-
olds using the following equation:

EQ-TARGET;temp:intralink-;e002;116;139F-score ¼ 2 � Precision � Recall
Precisionþ Recall

; (2)

EQ-TARGET;temp:intralink-;e003;116;84Precision ¼ TP

TPþ FP
; (3)

Fig. 2 (a) Bimodal histogram of the NIR band derived from the UAV acquisition with the threshold
of 0.07 in red dashed line to distinguish shadowed pixels from nonshadowed pixels. (b), (c) An
example of shadows masking results.
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EQ-TARGET;temp:intralink-;e004;116;375Recall ¼ TP

TPþ FN
; (4)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false
negative. We selected the NDVI value that maximized the F-score. The value scoring an F-score
of 0.99 gives an NDVI threshold of 0.17 [Fig. 3(a)]. We obtained very high F-score (>0.95) for
NDVI ranging from 0.08 to 0.28 [Fig. 3(a)], which is justified by the very high resolution of the
UAV image and our pixel-based approach. NDVI variation between 0.08 and 0.28 corresponds to
pixels transitioning from vegetation patches to bare soil, thus leading to large range to discrimi-
nate both classes [Figs. 3(b)–3(e)].

2.3.3 Vegetation height and topographic variables

The vegetation height model was computed as the subtraction of the DEM from the DSM pre-
viously produced using UAV images. Slope and aspect were obtained from the DEM using
SAGA GIS 7.339 at the coarser scale of 1-m pixel resolution. We transformed the circular aspect
to the linear topographic solar radiation aspect index (TRASP) using the following equation:

EQ-TARGET;temp:intralink-;e005;116;173TRASP ¼

�
1 − cos

�
π∕180
a−30

��

2
; (5)

where a is the aspect in degrees that gives a value of 1 on the hotter, dryer, south–south–westerly
slopes and 0 to land oriented in a north–northeast direction.40 Finally, a statistical summary
(mean and standard deviation) of vegetation height, slope, and TRASP were computed for each
landsat mixel/pixel using the zonal statistics tools available within ArcGIS 10.5 (Fig. 4).

Fig. 3 (a) F -score distribution along a UAV NDVI gradient used as threshold to distinguish veg-
etation from bare soil based on the photointerpreted samples. (b) Distribution of UAV pixels for
bare soil (gray) and vegetation (green) along a UAV NDVI gradient. (a), (b) The retained threshold
is shown by the red vertical dashed line. Example of (a) an RGB images, (d) NDVI, and (e) the
classification as vegetation or bare soil using an NDVI threshold of 0.17.

Bayle et al.: Sensitivity of Landsat NDVI to subpixel vegetation and topographic components. . .

Journal of Applied Remote Sensing 044508-6 Oct–Dec 2021 • Vol. 15(4)



2.4 Statistical Analysis

To assess the relationship between Landsat NDVI and ground vegetation, we computed a linear
model between Landsat NDVI and FVC estimated using NDVI UAV pixels. The adjusted-R2

was calculated to measure the quality of the prediction. From this relationship, we carried out
two independent analyses presented in Fig. 4.

First, we considered mixels as nonvegetated if the percentage of vegetation cover were
inferior to 5%, which would mean 1.5 m2 of vegetation within a 30-m2 pixel. We then computed
confusion matrices based on a moving threshold of Landsat NDVI to best split vegetated and
nonvegetated mixels. The NDVI threshold achieving the maximum F-score was considered as
the best value to statistically consider a pixel as containing vegetation or not. Optimal threshold
is presented by showing the distribution of recall and true negative rate (TNR) along Landsat
NDVI. TNR was computed as follows:

EQ-TARGET;temp:intralink-;e006;116;268TNR ¼ TN

TNþ FP
: (6)

Second, we implemented a random forest classification analysis to assess relationships
between the linear model residuals and predictors.41 We classified the residuals into three cat-
egories: negative residuals (Res < −0.025), null residuals (−0.025 < Res < 0.025), and positive
residuals (Res > 0.025). The threshold of 0.025 was chosen to equalize the number of pixels in
each class, resulting in 89, 83, and 74 samples for negative, null, and positive residuals. Only 74
samples were conserved for each class. Predictor variables included mean vegetation height,
mean TRASP, mean slope, TRASP standard deviation, and slope standard deviation. These var-
iables were chosen to first represent the vegetation structure (mean vegetation height) and second
to represent the topographic context (mean TRASP and slope) and the within-mixel topographic
variability (standard-deviation of TRASP and slope). We screened collinear variables by running
a multicollinearity test (a ¼ 0.05). No variables were discarded due to multicollinearity. Next,
we randomly partitioned the data set into sets for model training (two-third) and evaluation (one-
third), and then repeatedly fit random forest models to optimize out-of-bag classification

Fig. 4 Methodological workflow of the analysis.
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accuracy. We reassessed the classification accuracy using the data withheld for model evaluation.
Lastly, we computed predictor importance using the mean decrease in accuracy metric. Predictor
importance was based on a permutation-based importance measure where one measures the
effect of reshuffling each predictor on model accuracy. Finally, we generated partial dependence
plots to assess how class-specific classification probabilities varied across the range of each pre-
dictor while holding all other predictors at their average value. The distribution of predictors
values distribution is shown on each plot, given that partial dependencies plots tend to over-
interpret regions even with almost no data. Thus, curves should be interpreted only in regions
covered by initial data. We used the randomForest, caret, and pdp R packages to implement
random forest models and evaluate their performance.42,43

3 Results

3.1 Relation between Landsat NDVI and Vegetation Cover

The relation between NDVI derived from Landsat and FVC derived from UAV imagery is linear
with an increase of 10% in surface covered by vegetation approximately leading to an increase in
NDVI of 0.05 (Fig. 5). The model showed an adjusted-R2 of 0.7 and a p-value < 0.001. Starting
from ∼80% of FCV, residuals tended to be mostly positive and vegetation height higher sug-
gesting the beginning of an asymptotic phase in which NDVI increases quickly with increasing
FCV.

3.2 Sensitivity of Landsat NDVI to Presence of Vegetation

Mixels were considered as vegetated when the percentage of surface covered by vegetation was
above 5%. Considering this threshold, 41 and 205 mixels were assigned as not vegetated and

Fig. 5 Relationship between Landsat NDVI and percentage of surface covered by vegetation
derived from UAV NDVI. The linear model is shown by a red dashed line and colored points re-
present residuals from the linear model with red and blue showing positive and negative residuals,
respectively. Cross size indicates the mean vegetation height of the mixel.
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vegetated, respectively. The confusion matrix was computed for NDVI Landsat from 0.01 to 0.2
to find the NDVI threshold resulting in the highest F-score. The best model achieved an F-score
of 0.75 resulting in an NDVI threshold of 0.071. Recall and TNR were 0.67 and 0.96, respec-
tively, meaning that we tend to consider 33% of the vegetated mixels as unvegetated. This
procedure was repeated for FVC ranging from 0 to 20, which showed the higher F-score for
an FVC superior to 15% [Fig. 6(a)].

3.3 Within-Pixel Vegetation Structure and Topographic Context

The random forest model achieved an overall accuracy of 62%, which translated a good capacity
of the five predictors to classify residuals as positive, null, or negative. Decrease in accuracy was
used to order the five predictors according to their importance for overall classification accuracy
and relative to classification accuracy for each class (Fig. 7).

The TRASP, slope, and vegetation height mean were overall the most important predictors of
the random forest [0.04, 0.021, and 0.027, respectively; Fig. 7(a)] and for the negative and
positive residuals classes [Figs. 7(b) and 7(c)] while slope mean was the most important pre-
dictor for null residuals [Fig. 7(d)]. Null residuals seem to occur more often on homogeneous
(TRASP SD < 0.17) steep slopes (>32 deg) and in lower vegetation height (mean height
< 0.15 cm). Positive residuals seem to occur more often in south-oriented (TRASP > 0.6) flat
slope (<17 deg) and with higher vegetation (mean height > 50 cm), whereas negative residuals
seem to occur more often in north-oriented (TRASP < 0.3) moderate slope (17 deg < slope <
32 deg) and less likely with higher vegetation (mean height > 50 cm) (Fig. 8).

4 Discussion

While most deglaciation datasets are based on remote sensing observations,4 the analysis of
vegetation succession still relies mostly on fieldwork in a space-for-time framework and without
the precious addition of historical remote sensing methods, with exceptions.8,11,19,26 Nonetheless,
challenges remain in the search for an optimal and reliable relationship between remotely
detected changes in vegetation indices, such as NDVI, and actual vegetation changes on ground.

The correspondence between NDVI and certain biophysical properties of the vegetation can-
opy, such as leaf area index (LAI), FVC, vegetation condition, and biomass, has been widely
studied.44–48 Overall, it has been shown that NDVI increases near-linearly with FVC (horizontal
density) until values reach between 80% and 90%, at which point it tends to saturate and increase
very slowly with increasing LAI (vertical density).49–53 Using a combination of 30 × 30 m2

Landsat NDVI data and 12 × 12 cm2 UAV NDVI to derive horizontal and vertical vegetation

Fig. 6 (a) Distribution of best F -score and corresponding Landsat NDVI values obtained to
discriminate between more and less than X% of FVC. (b) Distribution of recall and TNR along
the Landsat NDVI threshold gradient used to discriminate between mixels with more and less
than 5% of FVC. The vertical dashed line corresponds to the NDVI threshold chosen to maximize
the F -score.
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density, we found similar results with a twofold linear relationship between FVC and NDVI,
which tends to deteriorate at higher FVC due to vegetation height (Fig. 5). In the specific case of
recently deglaciated areas colonized by vegetation, if we know the year of deglaciation, we are
certain of the absence of vegetation at initial stage. Thus, our ability to detect the turning point
when productivity rises and vegetation succession begins is key for understanding the complex
biogeomorphological feedbacks in glacier forefields.

We found that an NDVI value of ∼0.07 was optimal to distinguish Landsat pixels with more
or less than 5% FVC (Fig. 6). The confidence in discrimination efficacity tends to increase from
0% of FVC to 15% [Fig. 6(a)], where it shows the best F-score for low vegetated Landsat pixels.
Considering an NDVI value of 0.071, we still miss 33% of pixels with FVC superior to 5%.
Sensitivity of Landsat imagery to absence/presence of vegetation is mostly analyzed in post-
disturbance contexts, e.g., following fire54 or landslides.55 Nonetheless, most of these systems
are not applicable to glacier forefields as they are not defined as primary succession. On average,
Landsat 8 NDVI values of 0.3 and 0.2 are observed post-fire and landslide, respectively55 Recent
work in the Antarctic provides a more comparable context to that of alpine glacier forefields,
with a gradient from bare soil to very sparse vegetation. In agreement with our results, Fretwell
et al (2011)56 found that, using Landsat ETM one the Antarctic Peninsula, NDVI values between
0.05 and 0.1 mostly corresponded to vegetated areas (∼70%), whereas only ∼20% of pixels with
NDVI values under 0.05 were vegetated. In a similar context, Sotille et al.57 found that higher
NDVI values around 0.1 are required to effectively discriminate vegetation using Landsat 8 using
UAV data as validation. Overall, our results, supported by other studies, showed that Landsat is
sensitive to very sparse vegetation considering that we found consistent results for around 5% of
FVC, which corresponds to 1.5 m2 of vegetation within a 30-m2 pixel (F-score ¼ 0.75).

Variability in NDVI responses to FVC may come from various sources and with nonlinear
influence along the FVC gradient. The lower the FVC is, the more we are accounting for soil
reflectance properties in red and NIR bands.58 Whereas at high FVC, the relationship will be

Fig. 7 Variable importance as decrease in accuracy from (a) the random forest model considering
the three classes, (b) the negative residuals only, (c) the positive residuals only, and (d) the null
residuals only.
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Fig. 8 Partial dependency plots illustrating how each predictor variable affects class probability
while accounting for the mean effect of other predictors in the model. Error bands depict the stan-
dard deviation from the 10 run of random forest with randomization in the samples used for training
and evaluation. Histogram shows the data distribution to avoid interpretation of values range with
few or no data.
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mostly affected by vegetation structure.51 Through the investigation of vegetation structure
(height) and topographic context (TRASP and slope) influence on NDVI ∼ FVC model resid-
uals, we showed that Landsat NDVI values tend to be higher than expected for a given value of
FVC in the case of south-facing slopes and higher vegetation height, whereas values tend to be
lower in the context of north-facing slopes and lower vegetation height (Figs. 5 and 8). As
expected, the relationship is neutral in the case of homogeneous slope angle and orientation
with low vegetation height (Figs. 7 and 8). Accordingly, we showed that the variability of NDVI
values along a gradient of vegetation cover is dependent on vegetation structure and topography
in the context of the Glacier Noir forefield. That means that topographic heterogeneity reduces
the sensitivity of Landsat NDVI to sparse vegetation. We did not account for factors such as soil
moisture and texture, despite the well-known effects on soil reflectance,58 as ground measures
are complex and expensive to acquire in the context of glacier forefields.

Further studies could benefit from methods such as global navigation satellite systems reflec-
tometry to improve our understanding of in situ soil moisture influence on NDVI response to
FVC.59,60 In addition, while we account for vegetation structure through height, we did not
account for vegetation type, which has been shown to be determinant in the NDVI signal.56

For example, spectral response of Antarctic vegetation species in the NIR region is known to
vary between vascular plants and lichens.61,62 Vegetation composition could also affect NDVI
values in glacier forefields due to the presence of contrasting plant functional groups and high
diversity.63

While deriving vegetation maps from very-high resolution UAV data does not correspond to
exhaustive ground-truth mapping of vegetation, it offers an efficient solution for generating spa-
tially continuous maps of FVC for sites where fieldwork would be extremely time-consuming
and potentially dangerous. We considered that the extremely high spatial resolution offered by
UAV-acquired imagery provided a “ground truth” quality layer with respect to Landsat imagery.
Nonetheless, true fieldwork data, coupled with hyperspectral imagery,64 would still be needed to
further investigate the effects of soil properties and vegetation type on Landsat NDVI values.

Despite the lack of consideration of certain factors discussed above, we are confident that our
work is a step forward toward understanding how remote sensing methods can improve the
quantification of primary succession dynamics following deglaciation. In contrast to the classical
approach, which relies on the key assumption that all sites within a glacier forefield only differ
with respect to time since deglaciation, a biogeomorphological approach takes into account feed-
backs between ecological and geomorphological processes in the analysis of vegetation dynam-
ics and trajectories of succession in glacier forefields.65,66 Biogeomorphological studies have
shown that landscape dynamics within glacier forefields depend on the balance between stabi-
lizing and destructive forces.66 Substrate stabilization occurs where vegetation reaches their
window of opportunity and feedback window. Destruction is controlled by geomorphological
disturbances that are defined as the geomorphological events that causes a modification in the
structure of the ecosystem and drives changes in the physical environment.65,67,68 Thus, biogeo-
morphological studies in the glacier forefield context require accurate and spatially continuous
determination of (1) the time between the onset of ice-free conditions and the beginning of
surface colonization by plants to assess time-lag and (2) the time-series of vegetation growth
and potential disturbance following establishment. Observed vegetation dynamics could thus be
overlaid with geomorphological layers to assess spatial and temporal covariation between plant
succession and biogeomorphic processes. Comparative analysis between glacier forefields
underscores the need to test the transposability of our method to other glacier forefields with
various topographic and ecological conditions.

As similar results in terms of Landsat sensitivity to vegetation cover were found in other
contexts,56 we are confident that our analysis is relevant for other glacier forefields. Indeed, the
common features observed in these cryoecosystems are the abundance of large granules69 and
oligotrophic soils,70,71 which are both crucial elements driving pixel-scale soil reflectance.
Furthermore, we showed that, while there is a topographic effect in terms of slope angle and
orientation on NDVI response to vegetation cover, it is minor and significant impacts can be
expected only for large latitudinal gradients or with opposite slopes within the same forefield.
In both cases, several methods are available to correct for these effects in the case of Landsat
images and have been applied with good results in other contexts.36,72
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5 Conclusion

Primary succession patterns occurring in glacier forefields following deglaciation are complex
processes occurring in highly heterogeneous environments. In situ and comprehensive investi-
gation of this heterogeneity/spatial variability remains difficult due to often dangerous access
and the high human effort and cost required. Furthermore, initial conditions and plant commu-
nity responses following deglaciation are often unknown at the time of fieldwork, which con-
stitutes an inherent shortcoming of the space-for-time approach. Remote sensing data, and more
specifically Landsat, provide reflectance measurements at relatively fine spatial resolution and
with decadal-scale historical depth, which could allow for investigation of within glacier fore-
field heterogeneity of vegetation dynamics over the past 35 years. However, issues remain in the
understanding of Landsat NDVI sensitivity to low changes in vegetation structure (horizontal
and vertical density) and the impact of topography and substrate on these relationships. Here, we
took a step forward to investigate these concerns. We demonstrated that incremental changes in
NDVI at low values efficiently track small changes in FVC at low values, which typically cor-
respond to pioneer vegetation in glacier forefields. We also showed that vegetation height and
topography affect the relationship between fractional plant cover and NDVI, and thus should be
considered when interpreting ecological succession patterns using Landsat NDVI. Overall,
our results provide support for the use of the Landsat time series to assess the timing and rate
of plant colonization following deglaciation.
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