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Fermat’s Last Theorem: an Introduction

Rodney Coleman, Laurent Zwald

June 7, 2021

Abstract

The aim of this note is to present the famous last theorem of Pierre Fermat with some
elementary results. Our object is not to give a complete proof of this result, but rather to
give the proof of certain special cases. These in themselves require considerable work and
should give an idea of why the general result took so long to prove.

Fermat’s Last Theorem considers the existence of non-trivial solutions in the integers of the
equation

Xn + Y n = Zn.

For n = 2 there are solutions, in fact an infinite number, but for n > 2 there are no solutions.

The case n = 2: X2 + Y 2 = Z2.

We consider solutions (x, y, z) ∈ Z3, where x, y, z are coprime, because any solution is a
multiple of a solution with all three elements coprime. This implies that x, y, z are pairwise
coprime: if p divides two of the elements, then p divides the third, which is not possible, because
the three elements are coprime. As gcd(x, y) = 1, x or y must be odd; without loss of generality,
suppose that x is odd. This implies that y is even. (If y is odd, then x2 + y2 ≡ 2 (mod 4), which
is impossible, because 2 is not a square modulo 4.) Now

x2 + y2 = z2 =⇒ (z + x)(z − x) = y2 =⇒ z + x

y
· z − x

y
= 1 =⇒ z + x

y
=

y

z − x
.

There exist integers m and n such that gcd(m,n) = 1 and z+x
y = m

n . Then
y

z−x = n
m and we

have
z

y
+
x

y
=
m

n
and

z

y
− x

y
=

n

m
,

from which we obtain

z

y
=

1

2

(m
n

+
n

m

)
=
m2 + n2

2mn
and

x

y
=

1

2

(m
n
− n

m

)
=
m2 − n2

2mn
.

As gcd(m,n) = 1, m and n cannot both be even. If they are both odd, thenm2−n2 ≡ 0 (mod 4),
which implies that 4|m2 − n2 and 2mn ≡ 2 (mod 4), implying that 2mn is not a multiple of 4.
However, 2mnx = y(m2 − n2), which is not possible, because 8 divides the right-hand side of
the expression, which is not the case for the left-hand side. Hence m and n are not both odd. It
follows that m and n have different parities and so m2 + n2 and m2 − n2 are odd.

We claim that gcd(m2 ± n2, 2mn) = 1. As m2 ± n2 is odd, 2 does not divide m2 ± n2. If p
is an odd prime and p divides both m2 ± n2 and 2mn, then p divides m or n. Without loss of
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generality let us suppose that p divides m. Then p divides m2 which implies that p divides n2
and so n, which is not possible, because m and n are coprime. This proves our claim. It follows
that m2+n2

2mn and m2−n2

2mn are both fully reduced. Thus up to sign we can write

x = m2 − n2 y = 2mn z = m2 + n2.

We have thus found the form of possible solutions. Now let us suppose that m,n are integers
of different parities and coprime. Setting

x = m2 − n2 y = 2mn z = m2 + n2,

we obtain
x2 + y2 = (m2 − n2)2 + 4m2n2 = (m2 + n2)2 = z2,

so (x, y, z) is a solution. In addition x, y and z are coprime: Let p be prime dividing the three
elements. As x is odd, p 6= 2, so p must be odd. If p divides y, then p divides m or n, but not
both, because m and n are coprime. Without loss of generality, suppose that p divides m. If
p divides x, then p divides m2 − n2, which implies that p divides n2 and hence p divides n, a
contradiction, so p does not divide x. We deduce that x, y and z are coprime. To sum up, we
have

Theorem 1 The solutions (x, y, z) of the equation X2 + Y 2 = Z2, with x, y and z coprime,
have the form

x = m2 − n2 y = 2mn z = m2 + n2,

or
y = m2 − n2 x = 2mn z = m2 + n2,

where m,n are coprime and of different parities.

Examples (3, 4, 5), with m = 2, n = 1; (5, 12, 13), with m = 3, n = 2. More generally, any pair
of nonzero adjacent integers {2b, 2b+ 1} or {2b− 1, 2b} "generate" a solution.

The case n = 4: X4 + Y 4 = Z4.

We aim to show that in this case there are no nontrivial solutions. Suppose that (x, y, z) is
a nontrivial solution of the equation. We may suppose that x, y and z are coprime, from which
we deduce that x, y and z are pairwise coprime. Then x4 + y4 = (z2)2, so the equation

X4 + Y 4 = Z2

has a solution. It is sufficient to show that this equation has no nontrivial solution. Suppose
that (x, y, z) is a nontrivial solution of this equation, with x, y and z coprime. We may suppose
that z is positive and minimal. As in the the case n = 2, we may assume that x and z are odd
and y even. Reasoning as above we may find m and n coprime and of differnt parities such that

x2 = m2 − n2 y2 = 2mn z = m2 + n2,

from which we deduce
x2 + n2 = m2.

If x and n are both odd, then x2 + n2 ≡ 2 (mod 4), which is impossible, because m2 cannot
be congruent to 2 modulo 4. Thus x and n cannot both be odd. As x is odd, n must be even.
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In addition, x, m and n are coprime: It is sufficient to show that x and m are coprime. If p is
a prime dividing x and m, then p divides m2 − n2 and m, which implies that p divides n2 and
hence n, which is not possible, because m and n are coprime. Hence x and m are coprime.

We now may use the argument of the case n = 2 to deduce the existence of coprime integers
a and b, with different parities, such that

x = a2 − b2 n = 2ab m = a2 + b2,

from which we obtain
y2 = 4ab(a2 + b2).

The numbers a, b and a2 + b2 are pairwise coprime. As Z is a UFD, we may write a = α2, b = β2

and a2 + b2 = γ2, with α, β, γ ∈ N∗. Then

γ2 = a2 + b2 = α4 + β4,

and
0 < γ ≤ γ2 = a2 + b2 = m < m2 + n2 = z

Thus (α, β, γ) is a solution of the equation X4 + Y 4 = Z2, with γ < z, contradicting the
minimality of z. Thus we have proved the following result:

Theorem 2 The equation X4 + Y 4 = Z4 has no nontrivial solution.

Corollary 1 If n is a multiple of 4, then the equation Xn+Y n = Zn has no nontrivial solution.

The case n = 3: X3 + Y 3 = Z3.

Our aim here is to show, as in the previous case, that there is no nontrivial solution, i.e.,
(x, y, z) with xyz 6= 0. We need a preliminary result. We recall that, if ω = e

2πi
3 = −1+

√
−3

2 ,
then the ring Z[ω], referred to as the ring of Eisenstein integers, is Euclidean. It is not difficult
to see that Z[

√
−3] ⊂ Z[ω].

FERMATlem1 Lemma 1 If x ∈ Z[ω], the ring of Eisenstein integers, then there exists ε ∈ Z[ω]× such that
xε ∈ Z[

√
−3]

proof Let x ∈ Z[ω]. There exist a, b ∈ Z such that x = a+bω = (2a−b)+ib
√
3

2 . We set u = 2a−b.
We notice that u and b have the same parity, hence u + b is even. We recall that the units in
Z[ω] are ±1,±ω,±ω2. If u and b are both even, then there is nothing to prove, so let us suppose
that this not the case.

Case 1: u ≡ 1 (mod 4), b ≡ −1 (mod 4):

u+ ib
√

3

2
(ω2) =

u+ ib
√

3

2
· −1− i

√
3

2
=

1

4

(
(−u+ 3b)− i

√
3(u+ b)

)
∈ Z[
√
−3].

Case 2: u ≡ −1 (mod 4), b ≡ 1 (mod 4):

u+ ib
√

3

2
(−ω2) =

1

4

(
(3b− u) + i

√
3(u+ b)

)
∈ Z[
√
−3].

Case 3: u ≡ −1 (mod 4), b ≡ −1 (mod 4):

u+ ib
√

3

2
(ω) =

u+ ib
√

3

2
· −1 + i

√
3

2
=

1

4

(
(−u− 3b) + i

√
3(u− b)

)
∈ Z[
√
−3].
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Case 4: u ≡ 1 (mod 4), b ≡ 1 (mod 4):

u+ ib
√

3

2
(−ω) = −u+ ib

√
3

2
· 1− i

√
3

2
=

1

4

(
(u+ 3b) + i

√
3(b− u)

)
∈ Z[
√
−3].

This ends the proof. 2

We turn now to the proof of the main result. There is a nontrivial solution of the equation,
if and only if there is a nontrivial soltion of the equation X3 +Y 3 +Z3 = 0. Let (x, y, z) be such
a solution:

x3 + y3 + z3 = 0,

with xyz 6= 0. We may assume that x, y and z are coprime and then deduce that they are
pairwise coprime. There is one and only one element even. Clearly, one element must be even.
Two of the elements cannot be even, because this would imply that the third is even. Without
loss of generality we suppose that y is even and x and z odd. We also suppose that |y| is minimal.
We set a = x+z

2 and b = x−z
2 , which implies that x = a+ b and z = a− b, so we obtain

(a+ b)3 + y3 + (a− b)3 = 0 =⇒ 2a(a2 + 3b2) = −y3.

As x and z are coprime, so are a and b. Also, a and b have different parities, because x is odd,
hence a2 + 3b2 is odd. Since y is even, 8 divides 2a and so a is even and b odd. If p is a prime
divisor of 2a and a2 + 3b2, then p is odd and so divides a and hence 3b2. Because a and b are
coprime, p does not divide b and it follows that p divides 3. Hence p = 1 or p = 3 and it follows
that gcd(2a, a2 + 3b2) = 1 or gcd(2a, a2 + 3b2) = 3. From hereon we will work in Z[ω], the ring
of Eisenstein integers. Since Z[ω] is a Euclidean domain, it is a UFD; in addition its norm is
defined as follows: for z = u+vω, we have N(z) = zz̄ = u2−uv+v2. The units are ±1,±ω,±ω2,
which are all sixth roots of unity.

Case 1: gcd(2a, a2 + 3b2) = 1.

Considering the factorization into primes of 2a, a2 + 3b2 and −y3, we deduce that there are
integers r and s such that 2a = r3 and a2+3b2 = s3, with r even and s odd. Since Z[

√
−3] ⊂ Z[ω],

(a+ ib
√

3)(a− ib
√

3) = a2 + 3b2 = s3

is a factorization in the UFD Z[ω]. Our first task is to show that a+ ib
√

3) is a cube in Z[ω]. We
claim that a+ ib

√
3 and a− ib

√
3 are coprime in Z[ω]. If q is a prime element in Z[ω] dividing

both terms, then q divides their sum and their difference, namely 2a and 2bi
√

3. Taking norms
we obtain N(q)|4a2 and N(q)|12b2 in Z. However, N(q) divides N(a+ ib

√
3) = a2 + 3b2, and so

is odd. Hence N(q)|a2 and N(q)|a2 + 3b2. As a and a2 + 3b2 are coprime, we have N(q) = 1,
which is not possible, because q is not a unit. Hence our claim is correct. We deduce that there
is t ∈ Z[ω] such that t3 = a+ ib

√
3.

From Lemma
FERMATlem1
1 there exists ε ∈ Z[ω]× such that tε ∈ Z[i

√
3]. As ε is a sixth root of unity,

we have ε−3 = ±1. Then a + ib
√

3 = ε−3(εt)3 = (±εt)3 and so there exist u, v ∈ Z such that
a+ ib

√
3 = (u+ iv

√
3)3. Developping (u+ iv

√
3)3, we obtain

a = u(u+ 3v)(u− 3v) and b = 3v(u− v)(u+ v).

Our next task is to show that 2u, u+ 3v and u− 3v are pairwise coprime. As b is odd, u and
v have different parities; v must be odd and therefore u even. If p is a prime dividing 2u and
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3v, then p must be odd and divides u. This means that p divides a and b, which are coprime. It
follows that 2u and 3v are coprime. If p is a prime dividing 2u and u+ 3v, then p must be odd,
because u+ 3v is odd. It follows that p divides u, which implies that p divides 3v, so 2u and 3v
are not coprime, a contradiction. Hence 2u and u + 3v are coprime. In the same way, 2u and
u − 3v are coprime. If p is a prime dividing u + 3v and u − 3v, then p divides the sum 2u and
the difference 6v. As u + 3v is odd, p must be odd. Given that 6v = 2 · 3v, p divides 3v, so 2u
and 3v are not coprime, a contradiction. It follows that u+ 3v and u− 3v are coprime. We have
shown that 2u, u+ 3v and u− 3v are pairwise coprime.

Given that 2a = r3, we have

r3 = 2u(u+ 3v)(u− 3v) =⇒ 2u = l3, u+ 3v = m3, u− 3v = n3,

with l,m, n ∈ Z. Summing and setting k = −l we obtain

m3 + k3 + n3 = 0,

where k is even, m,n odd and k,m, n pairwise coprime. In addition,

|y3| = |2a(a2 + 3b2)| = |l3(u2 − 9v2)(a2 + 3b2)| > |(3l)3| = |(3k)3|.

Thus |y| > |3k| > |k| and we have a contradiction to the minimality of |y|.

Case 2: gcd(2a, a2 + 3b2) = 3.

Since 3 divides 2a and does not divide 2, necessarily 3 divides a and so we may write a = 3c.
Then we obtain

2a(a2 + 3b2) = 6c(9c2 + 3b2) = 18c(3c2 + b2) = −y3,

We claim that 18c and 3c2 + b2 are coprime. If not, then there is a prime p dividing both terms,
which must be odd, because 3c2 + b2 is odd. Thus p divides 9c. If p = 3, then p divides a and
b, which is impossible, because a and b are coprime. Thus p 6= 3, which implies that p divides c
and it follows that p divides a and b, which is not possible. This establishes the claim.

Taking into account the factorization in Z, we see that there are integers r and s such that
r3 = 18c and s3 = 3c2 + b2, with r even and s odd. As in Case 1, we factorize b2 + 3c2 in Z[ω]:

(b+ ic
√

3)(b− ic
√

3) = b2 + 3c2 = s3

and show that the two factors are coprime and hence cubes, from which we deduce that there
are integers u and v such that b+ ic

√
3 = (u+ iv

√
3)3. Developping this expression we obtain

b = u(u+ 3v)(u− 3v) and c = 3v(u− v)(u+ v),

with u odd and v even, because b is odd and c even. In addition, u and v are coprime. (If p is
a prime dividing u and v, then p divides b and c, which implies that p divides 18c and 3c2 + b2,
which we know to be coprime.)

Since 18c = r3, we have

r3 = 54v(u− v)(u+ v) =⇒ r′3 = 2v(u− v)(u+ v),
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where r = 3r′. It is not difficult to see that the three terms 2v, u − v and u + v are pairwise
coprime, hence there exist integers l,m, n such that 2v = l3, u− v = m3 and u+ v = n3. Setting
k = −l we obtain m3 + k3 + n3 = 0, with k even. Finally,

|y3| = |18c(3c2 + b2)| = |27(2v)(u2 − v2)(3c2 + b2)| > |(3l)3| > |k3|,

thus |y| > |k|, contradicting the minimality of |y|.

To sum up we have proved the following result:

Theorem 3 The equation X3 + Y 3 = Z3 has no nontrivial solution.

Corollary 2 If n is a multiple of 3, then the equation Xn+Y n = Zn has no nontrivial solution.

Sophie Germain’s Theorem

The theorem of Sophie Germain was a great step forward in the treatment of Fermat’s last
theorem. Although it does not give a complete solution of the problem it shows that for certain
odd prime numbers p, if there is a nontrivial solution of the equation Xp + Y p +Zp = 0, then it
must have a certain form. Thus, if we want to show that there are no solutions, we can concen-
trate on certain possibilities.

A prime p is a Sophie Germain prime if p is odd and q = 2p+ 1 is prime. For example 3, 5,
11 and 23 are Sophie Germain primes, but 7, 13, 17 and 19 are not.

Theorem 4 If p is a Sophie Gerain prime, then there is no nontrivial solution (x, y, z) in the
integers of the equation

Xp + Y p + Zp = 0,

such that p 6 |xyz. In other words, if a nontrivial solution (x, y, z) exists, then p must divide one
of the elements x, y, z.

proof Suppose that (x, y, z) is a nontrivial solution such that p 6 |xyz. We may suppose that
the elements x, y, z are coprime and hence pairwise coprime. As p is odd, we have

zp + yp = (z + y)(zp−1 − zp−2y + zp−3y2 − · · ·+ yp−1),

which we can write

(y + z)

p−1∑
k=0

(−z)p−1−kyk = −xp = (−x)p.

Claim 1 y + z and
∑p−1
k=0(−z)p−1−kyk are coprime and hence there are integers α and a such

that

y + z = ap and
p−1∑
k=0

(−z)p−1−kyk = αp.

proof Suppose that r is a prime dividing both y+z and
∑p−1
k=0(−z)p−1−kyk. Then r2|xp =⇒ r|x.

As y ≡ −z (mod r), we have

p−1∑
k=0

(−z)p−1−kyk ≡
p−1∑
k=0

yp−1 ≡ pyp−1 (mod r).
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By hypothesis, the first term is congruent to 0 modulo r, so r divides pyp−1, and so r divides
p or yp−1. In the first case, we obtain r = p, so p divides x. However, the hypothesis p 6 |xyz
implies that p 6 |x, so we are left with the second alternative, which implies that r divides y,
which implies that r|z, which is impossible, because gcd(y, z) = 1. It follows that y + z and∑p−1
k=0(−z)p−1−kyk are coprime.

For the second part of the claim, we notice that the RHS of the expression

(y + z)

p−1∑
k=0

(−z)p−1−kyk = (−x)p.

is a product of pth powers of primes, each of which figures in one and only one of the factors
y + z and

∑p−1
k=0(−z)p−1−kyk on the LHS. 2

Remark In an analogous manner, we may show that there are integers b, β, c and γ such that

z + x = bp and
p−1∑
k=0

(−x)p−1−kzk = βp

and

x+ y = cp and
p−1∑
k=0

(−y)p−1−kxk = γp

Since the elements x, y, z are pairwise coprime, only one of them can be divisible by q. We
aim to show that there is in fact one such element.

Claim 2 If m is an integer and q does not divide m, then mp ≡ ±1 (mod q).

proof From Fermat’s little theorem

(mp)2 = m2p = mq−1 ≡ 1 (mod q)

and it follows that mp ≡ ±1 (mod q). 2

Now we show that one of the elements x, y, z is divisible by q. If this not the case, then
xp + yp + zp = 0. However, from Claim 2 this sum is congruent to 3, 1, -1 or -3 modulo q,
which is not possible, because q ≥ 7, Hence q divides x, y or z. Without loss of generality, let
us suppose that q divides x, which implies that q does not divide y or z, because of the pairwise
coprimality. Then

bp + cp − ap = (x+ z) + (x+ y)− (y + z) = 2x ≡ 0 (mod q).

As q 6 |y, from Claim 2 we have y ≡ ±1 (mod q). Also, q 6 |z, so z ≡ ±1 (mod q). We
deduce that ap = y + z is congruent to 2, 0 or -2 modulo q. However, with the first and last
alternatives we have a contradiction, because q 6 |ap implies that ap ≡ ±1 (mod q). It follows
that y + z ≡ 0 (mod q).

We now may conclude the proof. Using the fact that −z ≡ y (mod q), we obtain

αp =

p−1∑
k=0

(−z)p−1−kyk ≡ pyp−1 (mod q).
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Since y ≡ ±1 (mod q) and p − 1 is even, we see that αp ≡ p (mod q). However, from Claim 2,
we have αp congruent to 1, 0 or -1, a contradiction. Therefore (x, y, z) is not a solution. This
ends the proof. 2

The case n = 5: X5 + Y 5 = Z5

As for the case n = 3, we will show that there is no nontrivial solution, i.e., a solution (x, y, z),
with xyz 6= 0. To do so will use Sophie Germain’s theorem. Let ω = e

2πi
5 and K = Q(ω). We

recall that OK , the subring of integers of K, is Z[ω]. We need a preliminary result, which will
provide us with a sufficient condition for a unit in Z[ω] to be a fifth power. We extend the
notation x ≡ y (mod z) to Z[ω], i.e., for x, y, z ∈ Z[ω], x ≡ y (mod z) if and only if z|x− y.

FERMATlem2 Lemma 2 Let ε be a unit in Z[ω]. If there exists a ∈ Z such that ε ≡ a (mod 5) in Z[ω], then
there exists a unit η in Z[ω] such that ε = η5.

proof Let ε ∈ Z[ω]×. We know that ε = ±ωnuk, where n ∈ {1, . . . , 5}, k ∈ Z and u = 1+
√
5

2 .
Then the conjugate ε̄ = ±ω̄nuk. By hypothesis there there exists d ∈ Z[ω] such that ε = a+ 5d,
which implies that ε̄ = a+ 5d̄. As d ∈ Z[ω], so does d̄ and thus ε̄ ≡ a (mod 5). We have

εε̄ = (a+ 5d)(a+ 5d̄) = a2 + 5(ad+ ad̄+ 5dd̄) ≡ a2 (mod 5),

which implies that u2k ≡ a2 (mod 5). We claim that k is a multiple of 5, i.e., k = 5h, with h ∈ Z.

Now (
1 +
√

5

2

)2k

≡ a2 (mod 5) =⇒ (1 +
√

5)2k ≡ c (mod 5), c ∈ Z

and
(1 +

√
5)2k = 1 + 2k

√
5 +

(
2k

2

)
5 + · · ·+ 5k = 1 + 2k

√
5 + 5b,

where b ∈ Z[
√

5]5. However, Z[
√

5] ⊂ Z[−1+
√
5

2 ] ⊂ Z[ω], because Q(ω + ω−1) = Q(
√

5) implies
that the ring of integers of Q(

√
5) is contained in the ring of integers of K, i.e., Z[−1+

√
5

2 ] ⊂ Z[ω].
Hence 1 + 2k

√
5 ≡ c (mod 5).

We may write b = b1 + b2, where b1 is the sum of the elements in b which are integers and b2
the sum of the others. Setting c′ = 1 + b1 ∈ Z, we obtain 1 + 2k

√
5 ≡ c′ (mod 5).

We now consider

(1−
√

5)2k = 1− 2k
√

5 +

(
2k

2

)
5− · · ·+ 5k = 1− 2k

√
5 + 5b′,

where b′ ∈ Z[
√

5]5 ⊂ Z[ω]. We write b′ = b′1 + b′2, where b′1 is the sum of the elements in b′ which
are integers and b′2 the sum of the others. Then b′1 = b1 and so we obtain 1−2k

√
5 ≡ c′ (mod 5).

From the expressions 1 + 2k
√

5 ≡ c′ (mod 5) and 1 − 2k
√

5 ≡ c′ (mod 5), we obtain
4k
√

5 ≡ 0 (mod 5), which implies that 4k
√

5 = 5q, with q ∈ Z[ω]. As q is real, q belongs to the
maximal real subfield of Q(ω), namely Q(

√
5). Taking norms in Q(

√
5), we obtain

16k25 = 25N(q) =⇒ 16k2 = 5N(q) =⇒ 5|k,
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as claimed. Hence we may write k = 5h, with h ∈ Z, and then ε = ±ωnu5h.

Our next step is to show that n = 5. We notice that u = 1 + v, where v = −1+
√
5

2 . Then

u5 = (1 + v)5 = 1 + 5v +

(
5

2

)
v2 + · · ·+

(
5

4

)
v4 + v5.

Since v ∈ Z[ω], we have u5 ≡ 1 + v5 (mod 5). Moreover,

v5 =
1

32
(−1 +

√
5)5 = − 1

32
(1−

√
5)5 = − 1

32

(
1 + 5(−

√
5) +

(
5

2

)
(−
√

5)2 − · · ·+ (−
√

5)5
)

= − 1

32
(176− 80

√
5) = −11− 5

√
5

2

= −3 + 5
−1 +

√
5

2
= −3 + 5v,

hence v5 ≡ −3 (mod 5), from which we deduce that u5 ≡ −2 (mod 5).

Now
ε = ±ωnuk = ±ωnu5h ≡ ±ωn(−2)h (mod 5),

thus ωn(−2)h ≡ ±a (mod 5). Taking conjugates we find ω̄n(−2)h ≡ ±a and so

(−2)h cos

(
2nπ

5

)
≡ ±2a (mod 5).

If n 6= 5, then cos( 2nπ
5 ) = −1±

√
5

4 . Setting s = (−2)h, in the first case we obtain

s

(
−1 +

√
5

4

)
≡ ±a (mod 5) =⇒ s+ s

√
5 ≡ ±8a (mod 5),

which implies that 5 divides (s∓ 8a) + s
√

5, i.e., there exists w ∈ Z[ω] such that 5w = (s∓ 8a) +

s
√

5. Given that 5 and (s ∓ 8a) + s
√

5 are real, w must be real. We claim that w ∈ Z[−1+
√
5

2 ],
the number ring of the number field Q(

√
5): We have

w = a0 + a1ω + a2ω
2 + a3ω

3 + a4ω
4,

with ai ∈ Z. Then

ᾱ = a0 + a1ω̄ + a2ω̄
2 + a3ω̄

3 + a4ω̄
4

= a0 + a1ω
4 + a2ω

3 + a3ω
2 + a4ω.

As w = w̄, we have a1 = a4 and a2 = a3, hence

w = a0 + a1(ω + ω̄) + a2(ω2 + ω̄2)

= a0 + a1(
−1 +

√
5

2
) + a2(

−1−
√

5

2
) ∈ Z[

−1 +
√

5

2
],

as claimed.
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We now take norms in Q(
√

5). We find that 25N(w) = (s∓ 8a)2 − 5s2. As w is an algebraic
integer, N(w) is an integer and so 25 divides (s∓ 8a)2 − 5s2 in Z. Thus 5 divides (s∓ 8a)2 and
hence s∓ 8a. From this we deduce that we may write (s∓ 8a)2− 5s2 = 25v2− 5s2 and, dividing
by 5, we obtain that s2 is a multiple of 5, which is not possible, because s is a power of 2. We
are left with the conclusion that n = 5, as claimed. To conclude, we have ε = ±ω5u5h = (±uh)5.
2

We now consider the equation
X5 + Y 5 = Z5. (1) FERMATeqn1

(In the following we will use the notation AN to refer to results in the book Algebraic Number
Theory ... by RC and LZ.) Suppose that there is a nontrivial solution (x, y, z), i.e.,

x5 + y5 = z5. (2) FERMATeqn2

In the light of Sopnie Germain’s theorem, one of the three number x, y and z is divisible by 5; for
example z = 5z′, with z′ ∈ Z. We may assume that x, y and z are coprime, and hence pairwise
coprime. We set λ = 1− ω. Then NK/Q(λ) = 5 (see the proof of Proposition 11.10 in AN) and
λ divides NK/Q(λ) (see Proposition 10.2 in AN). Thus there exists λ′ such that λλ′ = 5, so we
can write

x5 + y5 = (5z′)5 = λ5(λ′z′)5.

We notice that λ′ ∈ Z[ω]×, because N(λ) = 5 implies that N(λ′) = 1. (To simplify the notation,
from hereon we will write N for NK/Q.)

We now consider the equation

X5 + Y 5 = ελ5kZ5, (3) FERMATeqn3

where ε ∈ Z[ω]× and k ∈ N∗. If this equation has no nontrivial solution (x, y, z) with the ele-
ments pairwise coprime, then the equation (

FERMATeqn1
1) also has no such solution with z a multiple of 5,

Let us suppose that (x, y, z) is a solution of the equation (
FERMATeqn3
3), with k minimal.

We claim that

x5 + y5 = (x+ y)(x+ ωy)(x+ ω2y)(x+ ω3y)(x+ ω4y) = ελ5kz5. (4) FERMATeqn1a

The roots of the polynomial X5 + y5 are −y,−ωy, . . . ,−ω4y, so

X5 + y5 = (X + y)(X + ωy)(X + ω2y)(X + ω3y)(X + ω4y) = ελ5kz5.

Setting X = x, we obtain the required expression.

The rest of the proof is long, so we will divide it into parts. In the first part we will examine
the expression (

FERMATeqn1a
4). In particular, we will show that λ divides each of the factors x + ωiy and

that λ2 divides just one of them.

Part 1:

Our first step is to show that λ divides each of the components of the decomposition. Since
N(λ) is prime, λ is irreducible. We have shown elsewhere that Z[ω] is Euclidean, hence a PID and
so a UFD, and it follows that λ is a prime element in Z[ω]. This being the case, λ divides x+ωiy,
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for some i ∈ {0, 1, . . . , 4}. Moreover, if j > i, then (x+ ωjy)− (x+ ωiy) = ωiy(1− ωj−i) and λ
divides 1−ωj−i, so λ divides x+ωjy. A similar argument shows that λ divides x+ωjy, for j < i.

We claim that the numbers x+ωiy
λ are pairwise coprime. Suppose that d is a prime divisor of

x+ωiy
λ and x+ωjy

λ , where i < j. Then d divides x + ωiy and x + ωjy. It follows that d divides
y(ωj − ωi), their difference. Since d is prime, d divides y or d divides ωj − ωi. In the first
case, d divides x and y, which is impossible, because x and y are coprime. Therefore d divides
ωj − ωi = ωi(ωj−i − 1). Now

ωj−i − 1 = (ω − 1)(ωi−j−1 + ωi−j−2 + · · ·+ 1).

The index i− j − 1 may take the values 0, 1, 2, 3, so we have

1, ω + 1, ω2 + ω + 1 and ω3 + ω2 + ω + 1

for possible values of ωi−j−1+ωi−j−2+ · · ·+1. 1 is clearly a unit and, as (ω+1)(ω4+ω2+1) = 1,
ω+1 is also a unit. In addition, ω2 +ω+1 = −ω3−ω4 = −ω3(1+ω) and ω3 +ω2 +ω+1 = −ω4,
which are both units. Therefore, in all four cases, ωj−i− 1 is the product of λ and a unit ε. This
means that there exists u ∈ Z[ω] such that du = ελ. If λ divides u, then we have a contradiction
to the unique factorization in Z[ω]; it follows that λ divides d and there exists a unit η such that
d = ηλ.

If d is a prime and d2 divides x+ ωiy and x+ ωjy, then d2 divides ωj−i − 1 and so d divides
ωi−j−1 + ωi−j−2 + · · · + 1, which is impossible, because ωi−j−1 + ωi−j−2 + · · · + 1 is a unit.
Therefore we may write x+ωiy = da and x+ωjy = db, where d does not divide both a and b. If
a and b are not coprime, then the exists a prime element δ dividing both a and b. Then dδ divides
ωj−i − 1. If δ divides ω − 1, then we have a contradiction to the unique factorization of ω − 1
and so δ divides ωi−j−1 +ωi−j−2 + · · ·+ 1, which is impossible, because this expression is a unit.
It follows that a and b are coprime and we deduce that x+ωiy

λ and x+ωjy
λ are coprime., because

d = ηλ, with η a unit. We have shown that that the numbers x+ωiy
λ are pairwise coprime, as

claimed.

We have found that λ divides all the factors x+ ωiy. Our next step is to show that there is
just one factor divisible by λ2. If λ2 divides x+ωiy and x+ωjy, with i 6= j, then λ divides both
x+ωiy
λ and x+ωjy

λ , which implies that these expressions are not coprime, a contradiction. Thus
there can be at most one x+ ωiy divisible by λ2, so we only need to show that such an element
exists. First we observe that the set {1, λ, λ2, λ3} is an integral basis of Z[ω]. To see this we
notice that

ω = 1− λ, ω2 = 1− 2λ+ λ2 and ω3 = 1− 3λ+ 3λ2 − λ3.

Thus all elements of Z[ω] can be expressed as linear combinations of 1, λ, λ2 and λ3 and there
is no difficulty in showing that 1, λ, λ2 and λ3 are independant. Therefore we may write

x = a0 + a1λ+ a2λ
2 + a3λ

3 and y = b0 + b1λ+ b2λ
2 + b3λ

3,

with ai, bj ∈ Z, for 0 ≤ i, j ≤ 3. Thus x ≡ a0 + a1λ (mod λ2) and y ≡ b0 + b1λ (mod λ2). In
addition, ωi ≡ 1− iλ (mod λ2), for i = 0, . . . , 3. From this we deduce

x+ ωiy ≡ a0 + a1λ+ (1− iλ)(b0 + b1λ) (mod λ2)

≡ a0 + b0 + (a1 + b1 − ib0)λ (mod λ2).
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We have shown above that λ divides x + ωiy, for i = 0, . . . , 3, so λ divides a0 + b0. In fact, λ2
divides a0 + b0, as we will now see. Taking norms we find that N(λ) divides (a0 + b0)2, i.e., 5
divides (a0 + b0)2, which implies that 5 divides a0 + b0, because 5 is a prime number. However,

N(λ) = (1− ω)((1− ω2)(1− ω3)((1− ω4),

because the Galois group Gal(Q(ω)/Q) is composed of the homomorphisms σ1, . . . , σ4, where
σi(ω) = ωi. It follows that (1− ω)(1− ω4) divides a0 + b0. However,

(1− ω)(1− ω4) = −ω4(1− ω)2 =⇒ −ω4(1− ω)2|(a0 + b0) =⇒ λ2|(a0 + b0).

We deduce that

x+ ωiy

λ
≡ a1 + b1 − ib0 ( mod λ). (5)

We claim that 5 does not divide b0 in Z. If this is the case, then λ divides both x and y,
because λ divides N(λ) = 5. As x and y are coprime in Z, they are also coprime in Z[ω], so
λ cannot divide both x and y. It follows that 5 does not divide b0 in Z. We now consider the
congruence

a1 − b1 − ib0 ≡ 0 (mod 5) or a1 − b1 ≡ ib0 (mod 5).

As 5 does not divide b0, the element b0 is invertible modulo 5, i.e., there exists c 6≡ 0 (mod 5) such
that b0c ≡ 1 (mod 5). If we take i ≡ c(a1 − b1) (mod 5), then i is a solution of the congruence.
As a1 − b1 − ib0 ≡ 0 (mod 5), we have a1 − b1 − ib0 ≡ 0 (mod λ), because λ divides 5. From
equation (

FERMATeqn4
5), we deduce that

x+ ωiy

λ
≡ 0 ( mod λ),

which implies that λ2 divides x+ ωiy.

Part 2:

We know that λ2 divides one of the expressions x + ωiy. Without loss of generality, let us
suppose that this is x+ y. Since λ divides x+ ωiy, for i ∈ {1, . . . , 4}, from the equation (

FERMATeqn1a
4) we

deduce that x5 + y5 6= ελ5kz5, if k = 1. Therefore we may suppose that k ≥ 2. We also notice
that x+y

λ5k−4 belongs to Z[ω]: We have

(x+ y)
x+ ωy

λ
· · · x+ ω4y

λ
= ελ5k−4z5

As λ is prime and does not divide x+ωy
λ , · · · , x+ω

4y
λ , necessarily λ5k−4 divides x+y, and it follows

that x+y
λ5k−4 belongs to Z[ω]. In addition, x+y

λ5k−4 is coprime to x+ωiy
λ , for i = 1, . . . , 4. (This follows

from the fact that x+y
λ is coprime to x+ωiy

λ , for i = 1, . . . , 4.) Therefore we may write

x+ y

λ5k−4
x+ ωy

λ
· · · x+ ω4y

λ
= εz5,

where the factors on the LHS are pairwise coprime. Let z = pn1
1 · · · pnss be a prime factorization

of z. Then any factor on the LHS is a product of associates of the pi. As the factors are pairwise
coprime, no two factors can be productets of associates of the same prime pi. It follows that a
factor can be written as a product of 5th powers of primes pi multiplied by a unit, hence we have

x+ y

λ5k−4
= e0α

5 =⇒ x+ y = λ5k−4e0α
5
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and, for i = 1, . . . , 4,
x+ ωiy

λ
= eiβ

5
i =⇒ x+ ωiy = eiλβ

5
i ,

where the ei are units. Clearly, α, β1, . . . , β4 are pairwise coprime.

Part 3:

To simplify the notation we replace β1 by β and β2 by γ. From the equations

x+ ωy = e1λβ
5 and x+ ω2y = e2λγ

5,

we obtain
x = −e1ωβ5 + e2γ

5 and y = e1ω
4β5 − e2ω4γ5.

Substituting the expressions for x and y in the expression for x+ y, we obtain

(−ω + ω4)e1β
5 + (1− ω4)e2γ

5 = ε1λ
5k−4α5.

Moreover,
−ω + ω4 = −ω + ω−1 = ω−1(−ω2 + 1) = ω−1(1− ω)(1 + ω)

and
1− ω4 = (1− ω)(1 + ω + ω2 + ω3) = (1− ω)(−ω4) = (1− ω)(−ω−1),

from which we obtain

(1 + ω)e1β
5 − e2γ5 = ε1λ

5(k−1)ωα5 =⇒ β5 − uγ5 = uε1ωλ
5(k−1)α5,

where u = (1 + ω)−1e−11 . Setting v = uε1ω, we obtain

β5 − uγ5 = vλ5(k−1)α5, (6) FERMATeqn5

where u and v are units in Z[ω].

Part 4:

We now show that u is a 5th power, which will enable us to conclude the proof. If θ =
a0 + a1ω + a2ω

2 + a3ω
3 ∈ Z[ω], then by the multinomial theorem we obtain

θ5 =
∑

i0+...+i3=5

5!

i0! · · · i3!
ai00 (a1ω)i1(a2ω

2)i2(a3ω
3)i3 ,

and so θ5 is congruent to an integer modulo 5; in particular, λ5 is congruent to an integer modulo
5. Using equation (

FERMATeqn5
6), we may write

A− uB ≡ 0 (mod 5),

where A and B are integers. If B ≡ 0 (mod 5), then A ≡ 0 (mod 5). In this case, 5 divides β
and γ, which is not possible, because β and γ are coprime. Therefore B 6≡ 0 (mod 5) and we
deduce that there is an integer C such that BC ≡ 1 (mod 5). Then

AC − uBC ≡ 0 (mod 5) =⇒ u ≡ AC (mod 5).
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We now use Lemma
FERMATlem2
2 to conclude that there exists η ∈ Z[ω] such that u = η5. We may now

rewrite the equation (
FERMATeqn5
6) in the form

β5 + (−ηγ)5 = vλ5(k−1)α5,

a contradiction to the minimality of k.

Thus we have the following result:

Theorem 5 The equation X5 + Y 5 = Z5 has no nontrivial solution.

Corollary 3 If n is a multiple of 5, then the equation Xn+Y n = Zn has no nontrivial solution.

Remark If the equation Xs + Y s = Zs has no nontrivial solution in the integers and n is a
multiple of s, then Xn + Y n = Zn has no nontrivial solution in the integers. Therefore, if we
can show that Xp+Y p = Zp has no nontrivial solution in the integers for any odd prime p, then
Xn + Y n = Zn has no nontrivial solution in the integers, for any number n > 2, because in this
case either 4 or an odd prime divides n. Having proved the result for s = 4, 3, 5, to establish the
general result we only need to consider primes greater than 5, by no means an easy task.
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