Rodney Coleman 
  
Laurent Zwald 
  
Fermat's Last Theorem: an Introduction

come    

Fermat's Last Theorem considers the existence of non-trivial solutions in the integers of the equation

X n + Y n = Z n .
For n = 2 there are solutions, in fact an infinite number, but for n > 2 there are no solutions.

The case n = 2:

X 2 + Y 2 = Z 2 .
We consider solutions (x, y, z) ∈ Z 3 , where x, y, z are coprime, because any solution is a multiple of a solution with all three elements coprime. This implies that x, y, z are pairwise coprime: if p divides two of the elements, then p divides the third, which is not possible, because the three elements are coprime. As gcd(x, y) = 1, x or y must be odd; without loss of generality, suppose that x is odd. This implies that y is even. (If y is odd, then x 2 + y 2 ≡ 2 (mod 4), which is impossible, because 2 is not a square modulo 4.) Now

x 2 + y 2 = z 2 =⇒ (z + x)(z -x) = y 2 =⇒ z + x y • z -x y = 1 =⇒ z + x y = y z -x .
There exist integers m and n such that gcd(m, n) = 1 and z+x y = m n . Then 

m n + n m = m 2 + n 2 2mn and x y = 1 2 m n - n m = m 2 -n 2 2mn .
As gcd(m, n) = 1, m and n cannot both be even. If they are both odd, then m 2 -n 2 ≡ 0 (mod 4), which implies that 4|m 2 -n 2 and 2mn ≡ 2 (mod 4), implying that 2mn is not a multiple of 4. However, 2mnx = y(m 2 -n 2 ), which is not possible, because 8 divides the right-hand side of the expression, which is not the case for the left-hand side. Hence m and n are not both odd. It follows that m and n have different parities and so m 2 + n 2 and m 2 -n 2 are odd.

We claim that gcd(m 2 ± n 2 , 2mn) = 1. As m 2 ± n 2 is odd, 2 does not divide m 2 ± n 2 . If p is an odd prime and p divides both m 2 ± n 2 and 2mn, then p divides m or n. Without loss of generality let us suppose that p divides m. Then p divides m 2 which implies that p divides n 2 and so n, which is not possible, because m and n are coprime. This proves our claim. It follows that m 2 +n 2 2mn and m 2 -n 2 2mn are both fully reduced. Thus up to sign we can write

x = m 2 -n 2 y = 2mn z = m 2 + n 2 .
We have thus found the form of possible solutions. Now let us suppose that m, n are integers of different parities and coprime. Setting

x = m 2 -n 2 y = 2mn z = m 2 + n 2 ,
we obtain

x 2 + y 2 = (m 2 -n 2 ) 2 + 4m 2 n 2 = (m 2 + n 2 ) 2 = z 2 ,
so (x, y, z) is a solution. In addition x, y and z are coprime: Let p be prime dividing the three elements. As x is odd, p = 2, so p must be odd. If p divides y, then p divides m or n, but not both, because m and n are coprime. Without loss of generality, suppose that p divides m. If p divides x, then p divides m 2 -n 2 , which implies that p divides n 2 and hence p divides n, a contradiction, so p does not divide x. We deduce that x, y and z are coprime. To sum up, we have

Theorem 1 The solutions (x, y, z) of the equation X 2 + Y 2 = Z 2 , with x, y and z coprime, have the form

x = m 2 -n 2 y = 2mn z = m 2 + n 2 , or y = m 2 -n 2 x = 2mn z = m 2 + n 2 ,
where m, n are coprime and of different parities. (3,4,5), with m = 2, n = 1; (5,12,13), with m = 3, n = 2. More generally, any pair of nonzero adjacent integers {2b, 2b + 1} or {2b -1, 2b} "generate" a solution.

Examples

The case n = 4:

X 4 + Y 4 = Z 4 .
We aim to show that in this case there are no nontrivial solutions. Suppose that (x, y, z) is a nontrivial solution of the equation. We may suppose that x, y and z are coprime, from which we deduce that x, y and z are pairwise coprime. Then x 4 + y 4 = (z 2 ) 2 , so the equation

X 4 + Y 4 = Z 2
has a solution. It is sufficient to show that this equation has no nontrivial solution. Suppose that (x, y, z) is a nontrivial solution of this equation, with x, y and z coprime. We may suppose that z is positive and minimal. As in the the case n = 2, we may assume that x and z are odd and y even. Reasoning as above we may find m and n coprime and of differnt parities such that

x 2 = m 2 -n 2 y 2 = 2mn z = m 2 + n 2 , from which we deduce x 2 + n 2 = m 2 .
If x and n are both odd, then x 2 + n 2 ≡ 2 (mod 4), which is impossible, because m 2 cannot be congruent to 2 modulo 4. Thus x and n cannot both be odd. As x is odd, n must be even.

In addition, x, m and n are coprime: It is sufficient to show that x and m are coprime. If p is a prime dividing x and m, then p divides m 2 -n 2 and m, which implies that p divides n 2 and hence n, which is not possible, because m and n are coprime. Hence x and m are coprime. We now may use the argument of the case n = 2 to deduce the existence of coprime integers a and b, with different parities, such that

x = a 2 -b 2 n = 2ab m = a 2 + b 2 ,
from which we obtain

y 2 = 4ab(a 2 + b 2 ).
The numbers a, b and a 2 + b 2 are pairwise coprime. As Z is a UFD, we may write

a = α 2 , b = β 2 and a 2 + b 2 = γ 2 , with α, β, γ ∈ N * .
Then

γ 2 = a 2 + b 2 = α 4 + β 4 , and 0 < γ ≤ γ 2 = a 2 + b 2 = m < m 2 + n 2 = z Thus (α, β, γ) is a solution of the equation X 4 + Y 4 = Z 2
, with γ < z, contradicting the minimality of z. Thus we have proved the following result:

Theorem 2 The equation X 4 + Y 4 = Z 4 has no nontrivial solution.
Corollary 1 If n is a multiple of 4, then the equation X n + Y n = Z n has no nontrivial solution.

The case n = 3:

X 3 + Y 3 = Z 3 .
Our aim here is to show, as in the previous case, that there is no nontrivial solution, i.e., (x, y, z) with xyz = 0. We need a preliminary result. We recall that, if ω = e 

FERMATlem1

Lemma 1 If x ∈ Z[ω], the ring of Eisenstein integers, then there exists

∈ Z[ω] × such that x ∈ Z[ √ -3] proof Let x ∈ Z[ω]. There exist a, b ∈ Z such that x = a + bω = (2a-b)+ib √ 3 2
. We set u = 2a -b. We notice that u and b have the same parity, hence u + b is even. We recall that the units in Z[ω] are ±1, ±ω, ±ω 2 . If u and b are both even, then there is nothing to prove, so let us suppose that this not the case.

Case 1: u ≡ 1 (mod 4), b ≡ -1 (mod 4):

u + ib √ 3 2 (ω 2 ) = u + ib √ 3 2 • -1 -i √ 3 2 = 1 4 (-u + 3b) -i √ 3(u + b) ∈ Z[ √ -3].
Case 2: u ≡ -1 (mod 4), b ≡ 1 (mod 4):

u + ib √ 3 2 (-ω 2 ) = 1 4 (3b -u) + i √ 3(u + b) ∈ Z[ √ -3].
Case 3: u ≡ -1 (mod 4), b ≡ -1 (mod 4):

u + ib √ 3 2 (ω) = u + ib √ 3 2 • -1 + i √ 3 2 = 1 4 (-u -3b) + i √ 3(u -b) ∈ Z[ √ -3].
Case 4: u ≡ 1 (mod 4), b ≡ 1 (mod 4):

u + ib √ 3 2 (-ω) = - u + ib √ 3 2 • 1 -i √ 3 2 = 1 4 (u + 3b) + i √ 3(b -u) ∈ Z[ √ -3].
This ends the proof. 2

We turn now to the proof of the main result. There is a nontrivial solution of the equation, if and only if there is a nontrivial soltion of the equation X 3 + Y 3 + Z 3 = 0. Let (x, y, z) be such a solution:

x 3 + y 3 + z 3 = 0, with xyz = 0. We may assume that x, y and z are coprime and then deduce that they are pairwise coprime. There is one and only one element even. Clearly, one element must be even. Two of the elements cannot be even, because this would imply that the third is even. Without loss of generality we suppose that y is even and x and z odd. We also suppose that |y| is minimal.

We set a = x+z 2 and b = x-z 2 , which implies that x = a + b and z = a -b, so we obtain

(a + b) 3 + y 3 + (a -b) 3 = 0 =⇒ 2a(a 2 + 3b 2 ) = -y 3 .
As x and z are coprime, so are a and b. Also, a and b have different parities, because x is odd, hence a 2 + 3b 2 is odd. Since y is even, 8 divides 2a and so a is even and b odd. If p is a prime divisor of 2a and a 2 + 3b 2 , then p is odd and so divides a and hence 3b 2 . Because a and b are coprime, p does not divide b and it follows that p divides 3. Hence p = 1 or p = 3 and it follows that gcd(2a, a 2 + 3b 2 ) = 1 or gcd(2a, a 2 + 3b 2 ) = 3. From hereon we will work in Z[ω], the ring of Eisenstein integers. Since Z[ω] is a Euclidean domain, it is a UFD; in addition its norm is defined as follows: for z = u+vω, we have N (z) = z z = u 2 -uv +v 2 . The units are ±1, ±ω, ±ω 2 , which are all sixth roots of unity.

Case 1: gcd(2a, a 2 + 3b 2 ) = 1.

Considering the factorization into primes of 2a, a 2 + 3b 2 and -y 3 , we deduce that there are integers r and s such that 2a = r 3 and a 2 +3b 2 = s 3 , with r even and s odd. Since Z

[ √ -3] ⊂ Z[ω], (a + ib √ 3)(a -ib √ 3) = a 2 + 3b 2 = s 3 is a factorization in the UFD Z[ω]. Our first task is to show that a + ib √ 3) is a cube in Z[ω]. We claim that a + ib √ 3 and a -ib √ 3 are coprime in Z[ω].
If q is a prime element in Z[ω] dividing both terms, then q divides their sum and their difference, namely 2a and 2bi √ 3. Taking norms we obtain N (q)|4a 2 and N (q)|12b 2 in Z. However, N (q) divides N (a + ib √ 3) = a 2 + 3b 2 , and so is odd. Hence N (q)|a 2 and N (q)|a 2 + 3b 2 . As a and a 2 + 3b 2 are coprime, we have N (q) = 1, which is not possible, because q is not a unit. Hence our claim is correct. We deduce that there is

t ∈ Z[ω] such that t 3 = a + ib √ 3. From Lemma FERMATlem1 1 there exists ∈ Z[ω] × such that t ∈ Z[i √ 3]. As is a sixth root of unity, we have -3 = ±1. Then a + ib √ 3 = -3 ( t) 3 = (± t) 3 and so there exist u, v ∈ Z such that a + ib √ 3 = (u + iv √ 3) 3 . Developping (u + iv √ 3) 3 , we obtain a = u(u + 3v)(u -3v) and b = 3v(u -v)(u + v).
Our next task is to show that 2u, u + 3v and u -3v are pairwise coprime. As b is odd, u and v have different parities; v must be odd and therefore u even. If p is a prime dividing 2u and 3v, then p must be odd and divides u. This means that p divides a and b, which are coprime. It follows that 2u and 3v are coprime. If p is a prime dividing 2u and u + 3v, then p must be odd, because u + 3v is odd. It follows that p divides u, which implies that p divides 3v, so 2u and 3v are not coprime, a contradiction. Hence 2u and u + 3v are coprime. In the same way, 2u and u -3v are coprime. If p is a prime dividing u + 3v and u -3v, then p divides the sum 2u and the difference 6v. As u + 3v is odd, p must be odd. Given that 6v = 2 • 3v, p divides 3v, so 2u and 3v are not coprime, a contradiction. It follows that u + 3v and u -3v are coprime. We have shown that 2u, u + 3v and u -3v are pairwise coprime.

Given that 2a = r 3 , we have

r 3 = 2u(u + 3v)(u -3v) =⇒ 2u = l 3 , u + 3v = m 3 , u -3v = n 3 ,
with l, m, n ∈ Z. Summing and setting k = -l we obtain

m 3 + k 3 + n 3 = 0,
where k is even, m, n odd and k, m, n pairwise coprime. In addition,

|y 3 | = |2a(a 2 + 3b 2 )| = |l 3 (u 2 -9v 2 )(a 2 + 3b 2 )| > |(3l) 3 | = |(3k) 3 |.
Thus |y| > |3k| > |k| and we have a contradiction to the minimality of |y|.

Case 2: gcd(2a, a 2 + 3b 2 ) = 3.

Since 3 divides 2a and does not divide 2, necessarily 3 divides a and so we may write a = 3c.

Then we obtain 2a(a 2 + 3b 2 ) = 6c(9c 2 + 3b 2 ) = 18c(3c 2 + b 2 ) = -y 3 ,
We claim that 18c and 3c 2 + b 2 are coprime. If not, then there is a prime p dividing both terms, which must be odd, because 3c 2 + b 2 is odd. Thus p divides 9c. If p = 3, then p divides a and b, which is impossible, because a and b are coprime. Thus p = 3, which implies that p divides c and it follows that p divides a and b, which is not possible. This establishes the claim.

Taking into account the factorization in Z, we see that there are integers r and s such that r 3 = 18c and s 3 = 3c 2 + b 2 , with r even and s odd. As in Case 1, we factorize b 2 + 3c 2 in Z[ω]:

(b + ic √ 3)(b -ic √ 3) = b 2 + 3c 2 = s 3
and show that the two factors are coprime and hence cubes, from which we deduce that there are integers u and v such that b

+ ic √ 3 = (u + iv √ 3) 3 . Developping this expression we obtain b = u(u + 3v)(u -3v) and c = 3v(u -v)(u + v),
with u odd and v even, because b is odd and c even. In addition, u and v are coprime. (If p is a prime dividing u and v, then p divides b and c, which implies that p divides 18c and 3c 2 + b 2 , which we know to be coprime.)

Since 18c = r 3 , we have

r 3 = 54v(u -v)(u + v) =⇒ r 3 = 2v(u -v)(u + v),
where r = 3r . It is not difficult to see that the three terms 2v, u -v and u + v are pairwise coprime, hence there exist integers l, m, n such that 2v = l 3 , u -v = m 3 and u + v = n 3 . Setting k = -l we obtain m 3 + k 3 + n 3 = 0, with k even. Finally,

|y 3 | = |18c(3c 2 + b 2 )| = |27(2v)(u 2 -v 2 )(3c 2 + b 2 )| > |(3l) 3 | > |k 3 |,
thus |y| > |k|, contradicting the minimality of |y|.

To sum up we have proved the following result:

Theorem 3 The equation X 3 + Y 3 = Z 3 has no nontrivial solution.
Corollary 2 If n is a multiple of 3, then the equation X n + Y n = Z n has no nontrivial solution.

Sophie Germain's Theorem

The theorem of Sophie Germain was a great step forward in the treatment of Fermat's last theorem. Although it does not give a complete solution of the problem it shows that for certain odd prime numbers p, if there is a nontrivial solution of the equation X p + Y p + Z p = 0, then it must have a certain form. Thus, if we want to show that there are no solutions, we can concentrate on certain possibilities.

A prime p is a Sophie Germain prime if p is odd and q = 2p + 1 is prime. For example 3, 5, 11 and 23 are Sophie Germain primes, but 7, 13, 17 and 19 are not.

Theorem 4 If p is a Sophie Gerain prime, then there is no nontrivial solution (x, y, z) in the integers of the equation

X p + Y p + Z p = 0,
such that p |xyz. In other words, if a nontrivial solution (x, y, z) exists, then p must divide one of the elements x, y, z.

proof Suppose that (x, y, z) is a nontrivial solution such that p |xyz. We may suppose that the elements x, y, z are coprime and hence pairwise coprime. As p is odd, we have

z p + y p = (z + y)(z p-1 -z p-2 y + z p-3 y 2 -• • • + y p-1 ),
which we can write

(y + z) p-1 k=0 (-z) p-1-k y k = -x p = (-x) p .
Claim 1 y + z and p-1 k=0 (-z) p-1-k y k are coprime and hence there are integers α and a such that

y + z = a p and p-1 k=0 (-z) p-1-k y k = α p .
proof Suppose that r is a prime dividing both y+z and

p-1 k=0 (-z) p-1-k y k . Then r 2 |x p =⇒ r|x. As y ≡ -z (mod r), we have p-1 k=0 (-z) p-1-k y k ≡ p-1 k=0 y p-1 ≡ py p-1 (mod r).
By hypothesis, the first term is congruent to 0 modulo r, so r divides py p-1 , and so r divides p or y p-1 . In the first case, we obtain r = p, so p divides x. However, the hypothesis p |xyz implies that p |x, so we are left with the second alternative, which implies that r divides y, which implies that r|z, which is impossible, because gcd(y, z) = 1. It follows that y + z and p-1 k=0 (-z) p-1-k y k are coprime.

For the second part of the claim, we notice that the RHS of the expression

(y + z) p-1 k=0 (-z) p-1-k y k = (-x) p .
is a product of pth powers of primes, each of which figures in one and only one of the factors y + z and p-1 k=0 (-z) p-1-k y k on the LHS.

2

Remark In an analogous manner, we may show that there are integers b, β, c and γ such that

z + x = b p and p-1 k=0 (-x) p-1-k z k = β p and x + y = c p and p-1 k=0 (-y) p-1-k x k = γ p
Since the elements x, y, z are pairwise coprime, only one of them can be divisible by q. We aim to show that there is in fact one such element.

Claim 2 If m is an integer and q does not divide m, then m p ≡ ±1 (mod q). proof From Fermat's little theorem

(m p ) 2 = m 2p = m q-1 ≡ 1 (mod q)
and it follows that m p ≡ ±1 (mod q). 2

Now we show that one of the elements x, y, z is divisible by q. If this not the case, then x p + y p + z p = 0. However, from Claim 2 this sum is congruent to 3, 1, -1 or -3 modulo q, which is not possible, because q ≥ 7, Hence q divides x, y or z. Without loss of generality, let us suppose that q divides x, which implies that q does not divide y or z, because of the pairwise coprimality. Then

b p + c p -a p = (x + z) + (x + y) -(y + z) = 2x ≡ 0 (mod q).
As q |y, from Claim 2 we have y ≡ ±1 (mod q). Also, q |z, so z ≡ ±1 (mod q). We deduce that a p = y + z is congruent to 2, 0 or -2 modulo q. However, with the first and last alternatives we have a contradiction, because q |a p implies that a p ≡ ±1 (mod q). It follows that y + z ≡ 0 (mod q). We now may conclude the proof. Using the fact that -z ≡ y (mod q), we obtain

α p = p-1 k=0 (-z) p-1-k y k ≡ py p-1 (mod q).
Since y ≡ ±1 (mod q) and p -1 is even, we see that α p ≡ p (mod q). However, from Claim 2, we have α p congruent to 1, 0 or -1, a contradiction. Therefore (x, y, z) is not a solution. This ends the proof.

2

The case n = 5: X 5 + Y 5 = Z 5

As for the case n = 3, we will show that there is no nontrivial solution, i.e., a solution (x, y, z), with xyz = 0. To do so will use Sophie Germain's theorem. Let ω = e 2πi 5

and K = Q(ω). We recall that O K , the subring of integers of K, is Z[ω]. We need a preliminary result, which will provide us with a sufficient condition for a unit in Z[ω] to be a fifth power. We extend the notation x ≡ y (mod z) to Z[ω], i.e., for x, y, z ∈ Z[ω], x ≡ y (mod z) if and only if z|x -y.

FERMATlem2

Lemma 2 Let be a unit in Z[ω]. If there exists a ∈ Z such that ≡ a (mod 5) in Z[ω], then there exists a unit η in Z[ω] such that = η 5 .

proof Let ∈ Z[ω] × . We know that = ±ω n u k , where n ∈ {1, . . . , 5}, k ∈ Z and u = 1+ √ 5

2 . Then the conjugate ¯ = ±ω n u k . By hypothesis there there exists d ∈ Z[ω] such that = a + 5d, which implies that ¯ = a + 5 d. As d ∈ Z[ω], so does d and thus ¯ ≡ a (mod 5). We have ¯ = (a + 5d)(a + 5 d) = a 2 + 5(ad + a d + 5d d) ≡ a 2 (mod 5), which implies that u 2k ≡ a 2 (mod 5). We claim that k is a multiple of 5, i.e., k = 5h, with h ∈ Z. We now consider From the expressions 1 + 2k √ 5 ≡ c (mod 5) and 1 -2k √ 5 ≡ c (mod 5), we obtain 4k √ 5 ≡ 0 (mod 5), which implies that 4k √ 5 = 5q, with q ∈ Z[ω]. As q is real, q belongs to the maximal real subfield of Q(ω), namely Q( √ 5). Taking norms in Q( √ 5), we obtain

Now 1 + √ 5 2 2k ≡ a 2 (mod 5) =⇒ (1 + √ 5) 2k ≡ c (mod 5), c ∈ Z and (1 + √ 5) 2k = 1 + 2k √ 5 + 2k 2 5 + • • • + 5 k = 1 + 2k √ 5 + 5b, where b ∈ Z[ √ 5]5. However, Z[ √ 5] ⊂ Z[ -1+ √ 5 2 ] ⊂ Z[ω], because Q(ω + ω -1 ) = Q( √ 5 
(1 - √ 5) 2k = 1 -2k √ 5 + 2k 2 5 -• • • + 5 k = 1 -2k √ 5 + 5b , where b ∈ Z[ √ 5]5 ⊂ Z[ω]. We write b = b 1 + b 2 ,
16k 2 5 = 25N (q) =⇒ 16k 2 = 5N (q) =⇒ 5|k,
as claimed. Hence we may write k = 5h, with h ∈ Z, and then = ±ω n u 5h .

Our next step is to show that n = 5. We notice that u = 1 + v, where v = -1+ √ 5 2

. Then

u 5 = (1 + v) 5 = 1 + 5v + 5 2 v 2 + • • • + 5 4 v 4 + v 5 . Since v ∈ Z[ω],
we have u 5 ≡ 1 + v 5 (mod 5). Moreover,

v 5 = 1 32 (-1 + √ 5) 5 = - 1 32 (1 - √ 5) 5 = - 1 32 1 + 5(- √ 5) + 5 2 (- √ 5) 2 -• • • + (- √ 5) 5 = - 1 32 (176 -80 √ 5) = - 11 -5 √ 5 2 = -3 + 5 -1 + √ 5 2 = -3 + 5v,
hence v 5 ≡ -3 (mod 5), from which we deduce that u 5 ≡ -2 (mod 5).

Now = ±ω n u k = ±ω n u 5h ≡ ±ω n (-2) h (mod 5),
thus ω n (-2) h ≡ ±a (mod 5). Taking conjugates we find ωn (-2) h ≡ ±a and so (-2) h cos 2nπ 5 ≡ ±2a (mod 5).

If n = 5, then cos( 2nπ 5 ) = -1± √ 5 4
. Setting s = (-2) h , in the first case we obtain

s -1 + √ 5 4
≡ ±a (mod 5) =⇒ s + s √ 5 ≡ ±8a (mod 5), which implies that 5 divides (s ∓ 8a) + s √ 5, i.e., there exists w ∈ Z[ω] such that 5w = (s ∓ 8a) + s √ 5. Given that 5 and (s ∓ 8a) + s √ 5 are real, w must be real. We claim that w

∈ Z[ -1+ √ 5 2 ],
the number ring of the number field Q( √ 5): We have

w = a 0 + a 1 ω + a 2 ω 2 + a 3 ω 3 + a 4 ω 4 , with a i ∈ Z. Then ᾱ = a 0 + a 1 ω + a 2 ω2 + a 3 ω3 + a 4 ω4 = a 0 + a 1 ω 4 + a 2 ω 3 + a 3 ω 2 + a 4 ω.
As w = w, we have a 1 = a 4 and a 2 = a 3 , hence

w = a 0 + a 1 (ω + ω) + a 2 (ω 2 + ω2 ) = a 0 + a 1 ( -1 + √ 5 2 ) + a 2 ( -1 - √ 5 2 ) ∈ Z[ -1 + √ 5 2 ],
as claimed.

We now take norms in Q( √ 5). We find that 25N (w) = (s ∓ 8a) 2 -5s 2 . As w is an algebraic integer, N (w) is an integer and so 25 divides (s ∓ 8a) 2 -5s 2 in Z. Thus 5 divides (s ∓ 8a) 2 and hence s ∓ 8a. From this we deduce that we may write (s ∓ 8a) 2 -5s 2 = 25v 2 -5s 2 and, dividing by 5, we obtain that s 2 is a multiple of 5, which is not possible, because s is a power of 2. We are left with the conclusion that n = 5, as claimed. To conclude, we have = ±ω 5 u 5h = (±u h ) 5 . 2

We now consider the equation X 5 + Y 5 = Z 5 .

(1) FERMATeqn1 (In the following we will use the notation AN to refer to results in the book Algebraic Number Theory ... by RC and LZ.) Suppose that there is a nontrivial solution (x, y, z), i.e.,

x 5 + y 5 = z 5 .

(2) FERMATeqn2

In the light of Sopnie Germain's theorem, one of the three number x, y and z is divisible by 5; for example z = 5z , with z ∈ Z. We may assume that x, y and z are coprime, and hence pairwise coprime. We set λ = 1 -ω. Then N K/Q (λ) = 5 (see the proof of Proposition 11.10 in AN) and λ divides N K/Q (λ) (see Proposition 10.2 in AN). Thus there exists λ such that λλ = 5, so we can write x 5 + y 5 = (5z ) 5 = λ 5 (λ z ) 5 .

We notice that λ ∈ Z[ω] × , because N (λ) = 5 implies that N (λ ) = 1. (To simplify the notation, from hereon we will write N for N K/Q .)

We now consider the equation

X 5 + Y 5 = λ 5k Z 5 , (3) FERMATeqn3 
where ∈ Z[ω] × and k ∈ N * . If this equation has no nontrivial solution (x, y, z) with the elements pairwise coprime, then the equation ( FERMATeqn1 1) also has no such solution with z a multiple of 5, Let us suppose that (x, y, z) is a solution of the equation ( FERMATeqn33), with k minimal.

We claim that

x 5 + y 5 = (x + y)(x + ωy)(x + ω 2 y)(x + ω 3 y)(x + ω 4 y) = λ 5k z 5 .
(4) FERMATeqn1a

The roots of the polynomial X 5 + y 5 are -y, -ωy, . . . , -ω 4 y, so

X 5 + y 5 = (X + y)(X + ωy)(X + ω 2 y)(X + ω 3 y)(X + ω 4 y) = λ 5k z 5 .
Setting X = x, we obtain the required expression.

The rest of the proof is long, so we will divide it into parts. In the first part we will examine the expression ( FERMATeqn1a 4). In particular, we will show that λ divides each of the factors x + ω i y and that λ 2 divides just one of them.

Part 1:

Our first step is to show that λ divides each of the components of the decomposition. Since N (λ) is prime, λ is irreducible. We have shown elsewhere that Z[ω] is Euclidean, hence a PID and so a UFD, and it follows that λ is a prime element in Z[ω]. This being the case, λ divides x+ω i y, for some i ∈ {0, 1, . . . , 4}. Moreover, if j > i, then (x + ω j y) -(x + ω i y) = ω i y(1 -ω j-i ) and λ divides 1-ω j-i , so λ divides x+ω j y. A similar argument shows that λ divides x+ω j y, for j < i.

We claim that the numbers x+ω i y λ are pairwise coprime. Suppose that d is a prime divisor of , where i < j. Then d divides x + ω i y and x + ω j y. It follows that d divides y(ω j -ω i ), their difference. Since d is prime, d divides y or d divides ω j -ω i . In the first case, d divides x and y, which is impossible, because x and y are coprime. Therefore d divides ω j -ω i = ω i (ω j-i -1). Now

ω j-i -1 = (ω -1)(ω i-j-1 + ω i-j-2 + • • • + 1).
The index i -j -1 may take the values 0, 1, 2, 3, so we have 1, ω + 1, ω 2 + ω + 1 and ω 3 + ω 2 + ω + 1 for possible values of ω i-j-1 +ω i-j-2 +• • •+1. 1 is clearly a unit and, as (ω +1)(ω 4 +ω 2 +1) = 1, ω + 1 is also a unit. In addition, ω 2 + ω + 1 = -ω 3 -ω 4 = -ω 3 (1 + ω) and ω 3 + ω 2 + ω + 1 = -ω 4 , which are both units. Therefore, in all four cases, ω j-i -1 is the product of λ and a unit . This means that there exists u ∈ Z[ω] such that du = λ. If λ divides u, then we have a contradiction to the unique factorization in Z[ω]; it follows that λ divides d and there exists a unit η such that d = ηλ.

If d is a prime and d 2 divides x + ω i y and x + ω j y, then d 2 divides ω j-i -1 and so d divides

ω i-j-1 + ω i-j-2 + • • • + 1, which is impossible, because ω i-j-1 + ω i-j-2 + • • • + 1 is a unit.
Therefore we may write x + ω i y = da and x + ω j y = db, where d does not divide both a and b. If a and b are not coprime, then the exists a prime element δ dividing both a and b. Then dδ divides ω j-i -1. If δ divides ω -1, then we have a contradiction to the unique factorization of ω -1 and so δ divides ω i-j-1 + ω i-j-2 + • • • + 1, which is impossible, because this expression is a unit. It follows that a and b are coprime and we deduce that x+ω i y λ and x+ω j y λ are coprime., because d = ηλ, with η a unit. We have shown that that the numbers x+ω i y λ are pairwise coprime, as claimed.

We have found that λ divides all the factors x + ω i y. Our next step is to show that there is just one factor divisible by λ 2 . If λ 2 divides x + ω i y and x + ω j y, with i = j, then λ divides both x+ω i y λ and x+ω j y λ , which implies that these expressions are not coprime, a contradiction. Thus there can be at most one x + ω i y divisible by λ 2 , so we only need to show that such an element exists. First we observe that the set {1, λ, λ 2 , λ 3 } is an integral basis of Z[ω]. To see this we notice that ω = 1 -λ, ω 2 = 1 -2λ + λ 2 and ω 3 = 1 -3λ + 3λ 2 -λ 3 .

Thus all elements of Z[ω] can be expressed as linear combinations of 1, λ, λ 2 and λ 3 and there is no difficulty in showing that 1, λ, λ 2 and λ 3 are independant. Therefore we may write

x = a 0 + a 1 λ + a 2 λ 2 + a 3 λ 3 and y = b 0 + b 1 λ + b 2 λ 2 + b 3 λ 3 , with a i , b j ∈ Z, for 0 ≤ i, j ≤ 3. Thus x ≡ a 0 + a 1 λ (mod λ 2 ) and y ≡ b 0 + b 1 λ (mod λ 2 ).
In addition, ω i ≡ 1 -iλ (mod λ 2 ), for i = 0, . . . , 3. From this we deduce

x + ω i y ≡ a 0 + a 1 λ + (1 -iλ)(b 0 + b 1 λ) (mod λ 2 ) ≡ a 0 + b 0 + (a 1 + b 1 -ib 0 )λ (mod λ 2 ).
We have shown above that λ divides x + ω i y, for i = 0, . . . , 3, so λ divides a 0 + b 0 . In fact, λ 2 divides a 0 + b 0 , as we will now see. Taking norms we find that N (λ) divides (a 0 + b 0 ) 2 , i.e., 5 divides (a 0 + b 0 ) 2 , which implies that 5 divides a 0 + b 0 , because 5 is a prime number. However,

N (λ) = (1 -ω)((1 -ω 2 )(1 -ω 3 )((1 -ω 4 ),
because the Galois group Gal(Q(ω)/Q) is composed of the homomorphisms σ 1 , . . . , σ 4 , where

σ i (ω) = ω i . It follows that (1 -ω)(1 -ω 4 ) divides a 0 + b 0 . However, (1 -ω)(1 -ω 4 ) = -ω 4 (1 -ω) 2 =⇒ -ω 4 (1 -ω) 2 |(a 0 + b 0 ) =⇒ λ 2 |(a 0 + b 0 ).
We deduce that

x + ω i y λ ≡ a 1 + b 1 -ib 0 ( mod λ). (5) 
We claim that 5 does not divide b 0 in Z. If this is the case, then λ divides both x and y, because λ divides N (λ) = 5. As x and y are coprime in Z, they are also coprime in Z[ω], so λ cannot divide both x and y. It follows that 5 does not divide b 0 in Z. We now consider the congruence a 1 -b 1 -ib 0 ≡ 0 (mod 5) or a 1 -b 1 ≡ ib 0 (mod 5).

As 5 does not divide b 0 , the element b 0 is invertible modulo 5, i.e., there exists c ≡ 0 (mod 5) such that b 0 c ≡ 1 (mod 5). If we take i ≡ c(a 1 -b 1 ) (mod 5), then i is a solution of the congruence.

As a 1 -b 1 -ib 0 ≡ 0 (mod 5), we have a 1 -b 1 -ib 0 ≡ 0 (mod λ), because λ divides 5. From equation ( FERMATeqn4 5), we deduce that x + ω i y λ ≡ 0 ( mod λ), which implies that λ 2 divides x + ω i y.

Part 2:

We know that λ 2 divides one of the expressions x + ω i y. Without loss of generality, let us suppose that this is x + y. Since λ divides x + ω i y, for i ∈ {1, . . . , 4}, from the equation ( FERMATeqn1a 4) we deduce that x 5 + y 5 = λ 5k z 5 , if k = 1. Therefore we may suppose that k ≥ 2. We also notice that x+y λ 5k-4 belongs to Z[ω]: We have

(x + y) x + ωy λ • • • x + ω 4 y λ = λ 5k-4 z 5
As λ is prime and does not divide , for i = 1, . . . , 4.) Therefore we may write

x + y λ 5k-4

x + ωy λ

• • • x + ω 4 y λ = z 5 ,
where the factors on the LHS are pairwise coprime. Let z = p n1 1 • • • p ns s be a prime factorization of z. Then any factor on the LHS is a product of associates of the p i . As the factors are pairwise coprime, no two factors can be productets of associates of the same prime p i . It follows that a factor can be written as a product of 5th powers of primes p i multiplied by a unit, hence we have x + y λ 5k-4 = e 0 α 5 =⇒ x + y = λ 5k-4 e 0 α 5 and, for i = 1, . . . , 4,

x + ω i y λ = e i β 5 i =⇒ x + ω i y = e i λβ 5 i ,

where the e i are units. Clearly, α, β 1 , . . . , β 4 are pairwise coprime.

Part 3:

To simplify the notation we replace β 1 by β and β 2 by γ. From the equations

x + ωy = e 1 λβ 5 and x + ω 2 y = e 2 λγ 5 , we obtain x = -e 1 ωβ 5 + e 2 γ 5 and y = e 1 ω 4 β 5 -e 2 ω 4 γ 5 .

Substituting the expressions for x and y in the expression for x + y, we obtain (-ω + ω 4 )e 1 β 5 + (1 -ω 4 )e 2 γ 5 = 1 λ 5k-4 α 5 .

Moreover, -ω + ω 4 = -ω + ω -1 = ω -1 (-ω 2 + 1) = ω -1 (1 -ω)(1 + ω) and 1 -ω 4 = (1 -ω)(1 + ω + ω 2 + ω 3 ) = (1 -ω)(-ω 4 ) = (1 -ω)(-ω -1 ), from which we obtain

(1 + ω)e 1 β 5 -e 2 γ 5 = 1 λ 5(k-1) ωα 5 =⇒ β 5 -uγ 5 = u 1 ωλ 5(k-1) α 5 , where u = (1 + ω) -1 e -1 1 . Setting v = u 1 ω, we obtain β 5 -uγ 5 = vλ 5(k-1) α 5 , (6) FERMATeqn5

where u and v are units in Z[ω].

Part 4:

We now show that u is a 5th power, which will enable us to conclude the proof. If θ = a 0 + a 1 ω + a 2 ω 2 + a 3 ω 3 ∈ Z[ω], then by the multinomial theorem we obtain

θ 5 = i0+...+i3=5 5! i 0 ! • • • i 3 ! a i0 0 (a 1 ω) i1 (a 2 ω 2 ) i2 (a 3 ω 3 ) i3 ,
and so θ 5 is congruent to an integer modulo 5; in particular, λ 5 is congruent to an integer modulo 5. Using equation ( where A and B are integers. If B ≡ 0 (mod 5), then A ≡ 0 (mod 5). In this case, 5 divides β and γ, which is not possible, because β and γ are coprime. Therefore B ≡ 0 (mod 5) and we deduce that there is an integer C such that BC ≡ 1 (mod 5). Then AC -uBC ≡ 0 (mod 5) =⇒ u ≡ AC (mod 5).

  Z[ω], referred to as the ring of Eisenstein integers, is Euclidean. It is not difficult to see that Z[ √ -3] ⊂ Z[ω].

  ) implies that the ring of integers of Q( √ 5) is contained in the ring of integers of K, i.e., Z[ c (mod 5). We may write b = b 1 + b 2 , where b 1 is the sum of the elements in b which are integers and b 2 the sum of the others. Setting c = 1 + b 1 ∈ Z, we obtain 1 + 2k √ 5 ≡ c (mod 5).

  where b 1 is the sum of the elements in b which are integers and b 2 the sum of the others. Then b 1 = b 1 and so we obtain 1 -2k √ 5 ≡ c (mod 5).
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 6 , we may write A -uB ≡ 0 (mod 5),

  x+ωy λ , • • • , x+ω 4 y λ , necessarily λ 5k-4 divides x+y, and it follows that x+y λ 5k-4 belongs to Z[ω]. In addition, x+y λ 5k-4 is coprime to x+ω i y λ , for i = 1, . . . , 4. (This follows from the fact that x+y λ is coprime to x+ω i y λ

We now use Lemma FERMATlem2 2 to conclude that there exists η ∈ Z [ω] such that u = η 5 . We may now rewrite the equation ( FERMATeqn5 6) in the form β 5 + (-ηγ) 5 = vλ 5(k-1) α 5 , a contradiction to the minimality of k.

Thus we have the following result:

Theorem 5 The equation X 5 + Y 5 = Z 5 has no nontrivial solution.

Corollary 3 If n is a multiple of 5, then the equation X n + Y n = Z n has no nontrivial solution.

Remark If the equation X s + Y s = Z s has no nontrivial solution in the integers and n is a multiple of s, then X n + Y n = Z n has no nontrivial solution in the integers. Therefore, if we can show that X p + Y p = Z p has no nontrivial solution in the integers for any odd prime p, then X n + Y n = Z n has no nontrivial solution in the integers, for any number n > 2, because in this case either 4 or an odd prime divides n. Having proved the result for s = 4, 3, 5, to establish the general result we only need to consider primes greater than 5, by no means an easy task.