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Abstract

The nonlinear Schrödinger and the Schrödinger–Newton equations model many phenomena in
various fields. Here, we perform an extensive numerical comparison between splitting methods
(often employed to numerically solve these equations) and the integrating factor technique,
also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear
Schrödinger equation, but has not been thoroughly investigated for the Schrödinger–Newton
equation. Comparisons are made in one and two spatial dimensions, exploring different
boundary conditions and parameters values. We show that for the short range potential
of the nonlinear Schrödinger equation, the integrating factor technique performs better than
splitting algorithms, while, for the long range potential of the Schrödinger–Newton equation,
it depends on the particular system considered.

1. Introduction

The nonlinear Schrödinger and the Schrödinger–Newton (also called Schrödinger–Poisson)
equations describe a large number of phenomena in different physical domains. These equa-
tions are nonlinear variants of the Schrödinger one, which, in non-dimensional units, reads

i∂tψ + 1
2 ∇

2ψ − V ψ = 0, (1)

where ψ is a function of space and time, ∇2 is the Laplace operator and V is a function of ψ,
space and time.

For the nonlinear Schrödinger equation (hereafter NLS), the local nonlinear potential is

V = g ∣ψ∣2, (2)

where g is a coupling constant. For g > 0 the interaction is repulsive, while it is attractive
for g < 0. The NLS equation describes various physical phenomena, such as Bose–Einstein
condensates [1], laser beams in some nonlinear optical media [2], water wave packets [3], etc.

In the case of the Schrödinger–Newton (SN) equation, the potential is given by the Poisson
equation

∇2 V = g ∣ψ∣2, (3)

where g is a coupling constant, the interaction being attractive if g > 0 and repulsive if g < 0.
It is therefore nonlinear and nonlocal, giving rise to collective phenomena [4], appearing
for instance in optics [5, 6, 7], Bose–Einstein condensates [8], astrophysics and cosmology
[9, 10, 11] and theories describing the quantum collapse of the wave function [12, 13]. It is
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also used as a numerical model to perform cosmological simulations in the semi-classical limit
[14].

The SN equation takes a slightly different form when applied in cosmology [15]. Here, due
to the expansion of the universe, the Poisson equation is modified [16] as

∇2 V = a−1 g (∣ψ∣2 − 1) , (4)

where a(t) is a scaling factor. The modification of the Poisson equation (4) ensures that the
potential is finite in an infinite universe.

These NLS and SN equations are special cases of the Gross–Pitaevskii–Poisson (GPP)
equation

i∂tψ + 1
2 ∇

2ψ − V1ψ − V2ψ = 0, ∇2V1 = g1 ∣ψ ∣2 , V2 = g2 ∣ψ ∣2 . (5)

This equation appears in many fields, such as optics [17, 18], Bose-Einstein condensates [19]
and cosmology (to simulate scalar field dark matter) [20, 21, 22].

In order to solve the above equations, except for very special cases, numerical methods
must be used. Two families of temporal numerical schemes are commonly used to solve the
Schrödinger equation with a nonlinear potential: the integrating factor technique (generally
attached with a Runge–Kutta scheme) and the Split-Step method. In this paper, we present
an extensive comparison between integrating factor methods and splitting algorithms, con-
sidering both accuracy and computational speed. Comparisons are made exploring different
types of boundary conditions, in one and two spatial dimensions, with parameters ranging in
values close to many regimes of physical interest. The main reason for choosing these methods
is that, in the literature, Split-Step solvers are commonly used to integrate both the SN and
the NLS equations, while the integrating factor has been applied to integrate the NLS with
very performing results [23, 24]. A natural question, which is also the main motivation of
this work, is how the integrating factor technique performs when considering the long range
interactions of the SN system instead of short range ones of the NLS. We show that the
integrating factor performs better than splitting algorithms for local interactions (such as
the NLS). When a long range interaction (such as the one appearing in the SN equation) is
considered, the relative performance between the integrating factor and splitting algorithms
depends on the system.

The paper is organized as follows. In section 2, the methods of numerical time integration
are described. Section 3 concerns detailed comparisons between Split-Step integrators (order
2, 4 and 6 with fixed time-step and order 4 with adaptive time-step) and standard algorithms
with adaptive time-step belonging to the Runge–Kutta family [25, 26, 27] together with the
integrating factor technique. Conclusions are drawn in section 4.

2. Numerical algorithms

In this section, we describe the different numerical methods used for the temporal res-
olution of the equations considered in the paper. First, we outline the integrating factor
technique attached with an adaptive embedded scheme of arbitrary order. Then, we describe
the Split-Step algorithm, with both fixed and adaptive time-step.

Spatial resolution are performed with pseudo-spectral methods. In particular, we rely on
methods based on fast Fourier transform (FFT) due to their efficiency and accuracy [28].
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2.1. Integrating Factor

The integrating factor method can be applied to any differential equation of the form

i∂tψ = F (r, t, ψ) , ψ = ψ(r, t) , (6)

where the right-hand side can be split into linear and nonlinear parts. This results in

i∂tψ + Lψ = N(r, t, ψ) , (7)

where L is an easily computable (generally autonomous) linear operator and N def= F + Lψ is
the remaining (usually) nonlinear part. At the n-th time-step, with t ∈ [tn, tn+1], the change
of dependent variable

ϕ
def= exp[ (t − tn)L ]ψ Ô⇒ i∂tψ = exp[ (tn − t)L ] ( i∂t ϕ − Lϕ ) , (8)

yields the equation

i∂t ϕ = exp[ (t − tn)L ]N . (9)

Note that this change of variable is such that ϕ = ψ at t = tn. If the operator L is well chosen,
the stiffness of (7) is considerably reduced and, for t ∈ [tn; tn+1], the equation (9) can usually
be well approximated by algebraic polynomials. Thus, standard time-stepping methods can
efficiently solve (9). Here, we focus on adaptive Runge–Kutta methods [27, 29].

As explained in [30], it is possible to further improve and optimize the integrating factor
method. The details of this improved version of the integrating factor technique are illustrated
in Appendix A. We perform our numerical tests using this optimized version of the integrating
factor technique, which hereafter is denoted as IFC.

2.1.1. Application to the Schrödinger equation

It is straightforward to apply these methods to the Schrödinger equation (1). Specifically,
for the SN and NLS equations, the Laplacian term is a linear operator while the potential V
is a nonlinear operator. Switching to Fourier space in position, the equation becomes

i∂t ψ̂ − 1
2 k

2 ψ̂ − V̂ ψ = 0, (10)

where “hats” denote Fourier transforms of the underneath quantity and k
def= ∣k∣ is the

wavenumber. Therefore, the system is now in a form where the application of the integrating
factor technique is straightforward. With the change of variable ϕ(k, t) = ψ̂(k, t) eik2(t−t0)/2,
one obtains

∂t ϕ = −i eik
2(t−t0)/2 V̂ ψ . (11)

In order to perform our numerical tests, we use the Dormand and Prince 5(4) [25] and
Tsitouras 5(4) [26] integrators. Both schemes are Runge–Kutta pairs of order 5(4). However,
we observe a speed difference between these solvers of maximum 10%, depending on the
simulated system. For this reason, we choose for each case the fastest of the two: specifically
for NLS and the periodical SN equations we use the Dormand and Prince scheme, while in
all the other cases we rely on Tsitouras’ one. The higher-order Fehlberg 7(8) integrator [27]
is also used as reference solutions for accuracy comparisons (see section 3.1).
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2.2. Split-Step methods

The Split-Step method [31] performs the temporal resolution of the Schrödinger equation
separating the linear terms from the nonlinear ones, in a different manner compared with the
integrating factor. Writing the equation as

i∂tψ = H ψ, (12)

H = 1
2∇

2 + V being the Hamiltonian operator, the formal solution is

ψ(r, t) = exp(−i∫
t

tn
H dt)ψ(r, tn), t ∈ [tn; tn+1]. (13)

Except for very few cases, the result of the operator exp(−iH(t − tn)) applied to ψ(r, tn) is
unknown. Nevertheless, for t ∈ [tn; tn+1], it is possible to approximate exp(−iH(t − tn)) as a
product of exponentials, each one involving either the potential or the Laplacian term, with
appropriate coefficients. For example, the approximation corresponding to the Split-Step
method of order 2 is

e−∫
t
tn

iH dt = e−iK(t−tn)/2 e−∫
t
tn

iV dt e−iK(t−tn)/2 + O ((t − tn)2) , (14)

where K = 1
2∇

2.

At higher orders, the approximation of the operator exp(−iH(t − tn)) is known as Suzuki-
Trotter expansion [32]. It is generally more complicated than (14) and not unique, which can
be determined with the Baker–Campbell–Hausdorff formula [33]. For our numerical tests, we
consider the Split-Step of orders 2, 4 and 6, whose pseudo-codes are listed in Appendix B.

It is possible to design an adaptive time-step scheme with Split-Step methods. Here, we
consider an adaptive embedded splitting pair [34] of order 4(3). This algorithm is charac-
terized by a fourth-order splitting solver derived by Blanes and Moan [35] embedded with
third order scheme constructed by Thalhammer and Abhau [34, 36]. The pseudo-code for
this algorithm, hereafter denoted “SSa”, is described in Appendix B.

3. Numerical comparison of the different time-integrators

In this section, we compare the efficiencies of the methods previously described. The
comparisons focus on speed and accuracy of each algorithm, simulating systems with dif-
ferent potentials, boundary conditions and physical regimes. First, we outline the different
estimators employed to determine the accuracy of each numerical integrator. Then, we list
and summarize the results for every equations considered, in one and two spatial dimensions.
We start with the NLS equation which is used as benchmark, since an analytical solution
is known in the one dimensional case. Then we switch to the SN equation with both open
and periodic boundary conditions. Finally, we present the results for the two dimensional
Gross–Pitaevskii–Poisson equation, which can be considered as a hybrid version of the SN
and NLS systems.

3.1. Estimators of the accuracy of the time-integration algorithms

The accuracy of each time-integration algorithm is estimated looking at three different
indicators:
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1. The energy conservation. The energy E is a constant of motion for the Schrödinger
equation. For the NLS and SN equations, it is defined as

E = 1

2
∫ drψ∗ (−∇2 + V )ψ. (15)

Using the initial energy as reference, the error on the energy conservation is

∆Ei = ∣
E(ti)
E(t0)

− 1∣ , (16)

where t0 is the initial time and ti denotes the i-th time-step of the numerical integration.
This error being (in general) time-dependent, we consider the error

∆E =max
i
[∆Ei] , (17)

the latter being the maximal difference with respect to the initial value, during the
whole simulation.

2. Another constant of motion for the considered equation, is the mass,

M = ∫ dr ∣ψ∣2. (18)

This quantity is automatically conserved with machine precision when using splitting
algorithms, while it is not in general the case with the integrating factor. For this
reason, when the latter technique is employed, we impose mass conservation at each
time-step, multiplying the solution ψ by M0/ ∫ dr ∣ψ∣2, where M0 is the initial mass.

3. The error on the solution performing time reversion tests. This quantity is obtained
running a simulation up to a given time tfin, then reversing the time and evolving back to
the initial instant. The error is monitored using the L∞-norm of the difference between
the solution at the initial time, at beginning of the simulation and at the end of it.
Denoting the “backward” solution by ∆ψrev, one has

∆ψrev =max
i
( ∣ψ(xi, t0) − ψbackward(xi, t0) ∣ ) . (19)

4. The two estimators above favorize a priori time-splitting algorithms because they are
symplectic and reversible, whereas the integrating factor is not. For this reason, we
also compare the result of the simulations with a “reference one”, very accurate, using
an adaptive Fehlberg integrator of order 7 embedded within an order 8 scheme, with a
very small tolerance, tol = 10−14. Defining this estimator as ∆ψref , one has

∆ψref =max
i
( ∣ψ(xi, tf) − ψF7(8)(xi, tfin) ∣ ) , (20)

where ψ is the numerical solution provided by the particular method considered and
ψF7(8) is the one outputted by the Fehlberg 7(8) integrator.

3.2. 1D nonlinear Schrödinger equation

We first consider the case of the one dimensional NLS

i
∂ψ

∂t
+ 1

2

∂2ψ

∂x2
+ ∣ψ∣2 ψ = 0, (21)
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Method ∆t ∆E ∆ψrev ∆ψref T (s)

SS2 10−3 7.5 ⋅ 10−13 6.3 ⋅ 10−10 1.1 ⋅ 10−4 86.7

SS4 5 ⋅ 10−3 10−15 8.2 ⋅ 10−10 5.8 ⋅ 10−7 38.1

SS6 2 ⋅10−2 10−15 2.0 ⋅ 10−10 3.7 ⋅ 10−9 29.3

SSa, tol = 10−6 2.1 ⋅ 10−2 1.6 ⋅ 10−12 3.5 ⋅ 10−10 6.5 ⋅ 10−10 34.0

IFC, tol = 10−9 2.1 ⋅ 10−2 10−15 1.2 ⋅ 10−9 7.8 ⋅ 10−10 14.5

Table 1: Comparison for the 1D NLS equation between the IFC method and the Split-Step solvers. T is
the total time required to run each simulation, measured in seconds. The ∆t for adaptive algorithms is the
averaged one.

which admits a simple analytical solution

ψ(x, t) =
√
2 sech (

√
2x) exp(i t). (22)

We present a set of simulations in order to compare the Split-Step integrators with the IFC,
looking at the energy conservation error, the error on the solution and the total time needed
to run each simulation. In these simulations, the space is discretized with N = 2048 points,
in a domain of length L = 80 and the analytical solution at t = 0 is used as initial condition.
The results are summarized in table (1). We observe that the IFC solver is the fastest one by
at least a factor 2, presenting at the same time the best results to all the indicators: it uses
a larger time-step, presents equal or better energy conservation, returns only a slightly worse
∆ψrev and it is one of the best comparing to the reference simulation.

3.3. 1D Schrödinger–Newton equation

We now focus on the SN system, starting from the case of a single spatial dimension,

i
∂ ψ

∂t
+ 1

2

∂2ψ

∂x2
− V ψ = 0,

∂2 V

∂x2
= g ∣ψ∣2 . (23)

The solutions of (23) depend on the initial condition and on the single parameter g. The
chosen initial condition is ψ(x, t = 0) = exp(−x2/2)/ 4

√
π. The potential V is calculated using

Hockney’s method [37]. We perform a set of tests with different values of the parameter g,
corresponding to different physical regimes. The case g = 10 corresponds to a system in the
quantum regime, i.e., with an associated De Broglie wavelength of the order of the size of
the system, while g = 500 corresponds to a system closer to the semi-classical regime, with
an associated De Broglie wavelength about 20 times smaller than the size of the system. The
typical evolution of this system is characterized by the initial condition which oscillates, ex-
hibiting a complex dynamics. This is particularly visible in the semi-classical regime, in which
high frequency oscillations appear in the wavefunction, as shown in Fig. 1. The simulation is
run in a domain of length L = 80, discretized into N = 2048 points in the g = 10 case, while
for g = 500 we set L = 20 and N = 2048. The characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2. In table (2), we compare the Split-Step integrators with the IFC, looking at
the energy conservation error, the error on the solution and the total time needed to run each
simulation. Here, splitting methods proved to be faster than the integrating factor. In addi-
tion, the SS4 and SS6 performed better than the adaptive integrators. This is due the fact
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Figure 1: Snapshots of the modulus of the solution of the 1D SN equation ∣ψ∣. The left plot is the initial
condition, center plot and right plot correspond to the solution at the end of the simulation for g = 10 and
g = 500 respectively.
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Figure 2: Comparison for the 1D SN equation between the time-step and the error on the energy conservation
for the IFC method and the Split-Step solvers for both the cases g = 10 (upper plots) and g = 500 (lower plots).
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g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

10

SS2 3.1 ⋅ 10−4 5.5 ⋅ 10−10 4.5 ⋅ 10−11 4.5 ⋅ 10−9 123.3

SS4 6.3 ⋅ 10−3 2.9 ⋅ 10−12 2.5 ⋅ 10−12 5.5 ⋅ 10−11 11.1

SS6 6.3 ⋅ 10−2 1.5 ⋅ 10−13 4.0 ⋅ 10−12 1.1 ⋅ 10−11 3.5

SSa 4.3 ⋅ 10−2 4.2 ⋅ 10−12 8.5 ⋅ 10−11 5.9 ⋅ 10−11 6.4

IFC 2.2 ⋅10−2 1.8 ⋅ 10−12 1.3 ⋅ 10−10 3.3 ⋅ 10−11 5.0

500

SS2 10−5 6.0 ⋅ 10−9 1.1 ⋅ 10−10 5.2 ⋅ 10−8 120.0

SS4 5 ⋅ 10−4 2.5 ⋅ 10−9 4.9 ⋅ 10−12 1.3 ⋅ 10−7 5.4

SS6 2 ⋅ 10−3 1.8 ⋅ 10−10 2.8 ⋅ 10−11 7.6 ⋅ 10−8 3.5

SSa 3.2 ⋅ 10−2 1.0 ⋅ 10−10 6.4 ⋅ 10−8 2.9 ⋅ 10−8 6.7

IFC 5.4 ⋅ 10−3 1.8 ⋅ 10−9 2.3 ⋅ 10−8 1.5 ⋅ 10−8 11.9

Table 2: Comparison for the 1D SN equation between the IFC method and the Split-Step solvers. The SSa
simulations and IFC have been performed with a tolerance tol = 10−7 and tol = 10−10 respectively for g = 10
and tol = 10−6 and tol = 10−10 respectively for g = 500. The ∆t for adaptive algorithms is the averaged one. T
is the total time required to run each simulation, measured in seconds.

that, for this particular system, the extra computational cost due to the implementation of
the adaptive-step is not fully compensated by the time-gain in terms of computational speed.
Indeed, splitting algorithms with fixed time-step require a smaller number of computational
operations to be implemented. For this reason, here, choosing a “proper” fixed time-step still
results in a slightly faster numerical integration compared to an adaptive scheme.

3.3.1. Periodical case

We now switch to another version of the SN system, which has important applications in
cosmology in order to simulate the formation of large-scale structures in the universe (4). We
take a = 1, which in cosmology corresponds to the case of a static universe [38]; we do not
expect modifications of our conclusions for different cosmological models. In one dimension
the equations read

i
∂ ψ

∂t
+ 1

2

∂2ψ

∂x2
− V ψ = 0, (24a)

∂2 V

∂x2
= g (∣ψ∣2 − 1), (24b)

where the wavefunction ∣ψ∣2 is normalized to unity. The potential V is obtained calculating
the inverse of the Laplacian in Fourier space and transforming back the result to real space.
We take “cold” initial conditions (see [39, 40]), namely,

ψ(x, t = 0) =
√
ρ0 + δρ(x) exp(iθ(x)), (25)

where θ is a function whose gradient is proportional to the initial velocity field (set to zero
for simplicity), ρ0 is the background constant density and δρ(x) is the density fluctuations,
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Figure 3: Snapshots of the modulus squared of the solution of the 1D SN equation (periodical case) ∣ψ∣2.

generated as

δρ(x) = F−1 [R(k)
√
P (k) ] , (26)

where R(k) is a Gaussian random field, with zero average and unity variance. The function
P (k) is called Power Spectrum, and it is defined as

P (k) = 1

Ld
∣ δ̂ρ(k) ∣2 , (27)

corresponding to the initial density fluctuations one wants to generate. The initial conditions
are numerically initialized applying an additional filter F (k) in Fourier space with the aim
of setting to zero all the modes corresponding to a space scale comparable (or smaller) than
the grid-step

F (k) = sech ((k/kF )10) , (28)

with kF = kN/8, where kN is the Nyquist wavelength, defined as kN = N
2L . Thus, the initial

condition is
ψ(x, t = 0) = F−1 [F (k)F [

√
ρ0 + δρ(x)] ] . (29)

In the simulations, space is discretized with N = 1024 points, in a domain of length L = 1
and a constant power spectrum is used as initial condition. We show the simulation results
in the semi-classical regime. The latter corresponds to large values of the parameter g, as one
has g ∝ h̵−2. Specifically, we take g = 106 (we do not observe differences in the performance
in the quantum regime, i.e., for smaller values of g) and ρ0 = 1.

In Fig. (3), the typical evolution of the system in the cosmological context is shown: the
initial condition is spatially homogeneous with small fluctuations. The fluctuations grow due
to gravitational interactions, up to be dominated by the finite size of the simulation box. The
characteristic time of dynamics is defined as tdyn = ∣g∣−1/2. In Fig. 4, the Split-Step integrators
are compared with the IFC. We observe for t ≳ 5tdyn that the time-step decreases; this is due
to the fact that the dynamics switches from a regime where the largest scales are still linear,
to a regime where all the scales are nonlinear [15]. It indicates that the integrating factor
is particularly efficient in the weakly nonlinear regime, which is the regime of interest in
cosmological simulations. The Split-Step integrators (except SS2) are observed to perform in
the same manner in the weakly non-linear and strongly non-linear regime. We observe that
IFC outperforms the tested Split-Step integrators in the first regime, whereas, in the second
one it becomes equally efficient compared to the split-step methods. This is consistent with
the observation of Sect. 3.3: since the dynamics corresponds to a highly nonlinear regime, the
Split-Step method performs better than the IFC one in this case. Looking to Table (3), it is
clear that (for the whole simulation of this system) the IFC is the most efficient integration
method.
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Figure 4: Comparison for the 1D SN equation (periodical case) between the time-step (left plot) and the error
on the energy conservation (right plot) for the IFC method and the Split-Step solvers.

Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

SS2 10−5 1.6 ⋅ 10−8 8.3 ⋅ 10−9 8.5 ⋅ 10−10 276.5

SS4 3 ⋅ 10−3 1.9 ⋅ 10−8 1.3 ⋅ 10−9 1.5 ⋅ 10−11 1.8

SS6 7 ⋅ 10−3 1.1 ⋅ 10−8 1.1 ⋅ 10−8 3.1 ⋅ 10−11 2.3

SSa, tol = 10−9 5.8 ⋅ 10−3 2.3 ⋅ 10−9 3.3 ⋅ 10−9 1.2 ⋅ 10−11 4.3

IFC, tol = 10−12 6.7 ⋅ 10−3 1.1 ⋅ 10−8 1.8 ⋅ 10−10 6.7 ⋅ 10−11 1.3

Table 3: Comparison for the 1D SN equation (periodical case) between the IFC method and the Split-Step
solvers. T is the total time required to run each simulation, measured in seconds. The ∆t for adaptive
algorithms is the averaged one.
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g = −1 case while the bottom row to g = −6. The last time-step is chosen in such a way that the final time is
the same in all simulations, in order to ensure that ∆ψrev and ∆ψref are evaluated properly, which explain the
step which appears for the last time point in ∆t.

3.4. 2D nonlinear Schrödinger equation

In the 2D NLS case, one has

i∂tψ + 1
2 ∇

2ψ − g ∣ψ∣2 ψ = 0. (30)

The dynamics of (30) presents a finite time singularity: it can be proven [41] that there exists
a finite time when the norm of the solution or of one of its derivatives becomes infinity. This
happens whenever the initial condition ψ0 satisfies Eg = 1

2 ∫ drψ0 (g ∣ψ0∣2 −∇2)ψ∗0 < 0. The

initial condition is taken as ψ(r, t = 0) = e−r2/2/√π and we study the cases g = −1 and g = −6
with respective initial energies Eg=−1 ≈ 0.42 and Eg=−6 ≈ 0.02. Thus, the latter is associated
with an initial energy closer to the singular regime than the former. The simulation is run
in a box of side L = 80, discretized into N = 1024 × 1024 points in the g = −1 case, while for
g = −6 we set L = 120 and N = 4096 × 4096. The characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2.

Split-Step integrators are compared with the IFC, looking at the energy conservation
error, the error on the solution and the total time needed to run each simulation. The results
are illustrated in Fig. (5) and table (4). The gain factor between splitting algorithms and
the IFC method depends on the value of g. However, in both cases, the optimized integrating
factor proved to be more efficient.

11



g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

-1

SS2 10−3 3.3 ⋅ 10−8 4.5 ⋅ 10−8 5.0 ⋅ 10−10 6939

SS4 2 ⋅ 10−2 1.1 ⋅ 10−9 3.5 ⋅ 10−13 7.0 ⋅ 10−11 830

SS6 10−1 4.5 ⋅ 10−11 2.5 ⋅ 10−14 6.2 ⋅ 10−11 445

SSa 2.3 ⋅ 10−1 7.0 ⋅ 10−10 3.0 ⋅ 10−10 2.5 ⋅ 10−11 267

IFC 1.7 ⋅ 10−1 4.5 ⋅ 10−10 3.0 ⋅ 10−10 1.6 ⋅ 10−11 169

-6

SS2 2.5 ⋅ 10−4 8.8 ⋅ 10−7 1.4 ⋅ 10−11 7.9 ⋅ 10−7 405012

SS4 2.5 ⋅ 10−3 6.3 ⋅ 10−9 2.5 ⋅ 10−12 3.7 ⋅ 10−9 82891

SS6 2.5 ⋅ 10−2 1.7 ⋅ 10−9 1.6 ⋅ 10−12 1.8 ⋅ 10−9 24453

SSa 2.8 ⋅ 10−2 6.5 ⋅ 10−9 1.4 ⋅ 10−10 5.4 ⋅ 10−9 29117

IFC 1.8 ⋅ 10−2 2.3 ⋅ 10−9 3.5 ⋅ 10−9 9.4 ⋅ 10−9 22843

Table 4: Comparisons for the 2D NLS equation between different methods for the Dormand and Prince
integrator. The ∆t for adaptive algorithms is the averaged one. T is the total time required to run each
simulation, measured in seconds. The tolerances of the integrator SS4(3) is tol = 10−6 and tol = 10−10 for the
IFC.

3.5. 2D Schrödinger-Newton equation

In the 2D SN case, one has

i∂tψ + 1
2 ∇

2ψ − V ψ = 0, ∇2V = g ∣ψ∣2 . (31)

Similarly to the one dimensional case, we use a Gaussian initial conditions ψ(r, t = 0) =
e−r

2/2/√π and two values of the coupling constant, g = 10 and g = 500. The former corresponds
to a system in the quantum regime and the latter is closer to the semi-classical one. The
potential V , as in the 1D case, is calculated using the Hockney method [37]. The simulation
is run in a box of side L = 40, discretized into N = 10242 points in the g = 10 case, while for
g = 500 we set L = 20 and N = 1024 × 1024, the characteristic time of dynamics is defined as
tdyn = ∣g∣−1/2.

In table (5) and Fig. (6), we compare the Split-Step and the IFC integrators, looking at
the energy conservation error, the error on the solution and the total time needed to run each
simulation.

For the 2D Schrödinger–Newton equation, adaptive splitting algorithms proved to be
as efficient as the IFC. Similarly to the one-dimensional case, also here the SS6 split-step
algorithm with constant time-step resulted to be the fastest among the ones we tested. This
is due to the same reasons mentioned in section 3.3. Note that, here, the performance gap
between the integrating factor and splitting algorithms is smaller than in the one-dimensional
case. Indeed, as the dynamics gets more complicated and the number of spatial dimensions
increase, algorithms with adaptive time-step shall always be preferred.

3.5.1. Periodical case

For the 2D periodical case, we run simulations in a box of side L = 1 with N = 1024×1024,
using again a constant power spectrum as initial condition with g = 106, ρ0 = 1 and a zero
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Figure 6: Comparison for the 2D SN equation between the time-step and the error on the energy conservation
with the IFC method and the Split-Step solvers for both the cases g = 10 (upper plots) and g = 500 (lower
plots).

g Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

10

SS2 3.2 ⋅ 10−3 1.8 ⋅ 10−8 3.5 ⋅ 10−12 1.0 ⋅ 10−7 9070

SS4 6.3 ⋅ 10−2 6.0 ⋅ 10−10 1.4 ⋅ 10−11 3.8 ⋅ 10−8 959

SS6 1.9 ⋅ 10−1 4.6 ⋅ 10−11 1.6 ⋅ 10−7 4.1 ⋅ 10−8 932

SSa 1.7 ⋅ 10−1 4.7 ⋅ 10−11 1.4 ⋅ 10−7 3.9 ⋅ 10−8 1174

IFC 8.4 ⋅ 10−2 1.3 ⋅ 10−10 5.8 ⋅ 10−8 2.9 ⋅ 10−8 1172

500

SS2 2.2 ⋅ 10−4 2.0 ⋅ 10−8 3.1 ⋅ 10−10 9.1 ⋅ 10−8 84030

SS4 4.5 ⋅ 10−3 5.6 ⋅ 10−10 2.8 ⋅ 10−11 7.0 ⋅ 10−9 8401

SS6 2.2 ⋅ 10−2 6.1 ⋅ 10−12 9.1 ⋅ 10−11 4.1 ⋅ 10−9 5143

SSa 2.1 ⋅ 10−2 1.9 ⋅ 10−11 2.0 ⋅ 10−11 3.9 ⋅ 10−9 6676

IFC 9.1 ⋅ 10−3 7.5 ⋅ 10−11 3.0 ⋅ 10−10 1.6 ⋅ 10−9 6637

Table 5: Comparison for the 2D SN equation between the IFC method and the Split-Step solvers. The ∆t for
adaptive algorithms is the averaged one. The tolerance for the SSa algorithm is tol = 10−6 and tol = 10−7 for
g = 10 and g = 500 respectively, and for the IFC algorithm tol = 10−10 and tol = 10−12 for g = 10 and g = 500
respectively.
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Figure 7: Snapshots of the modulus squared of the solution of the 2D SN equation (periodical case) ∣ψ∣2.

0.0001

0.005

0.01

0.015

0.02

0 1 2 3 4 5 6 7

∆
t/
t d

y
n

t/tdyn

SS2
SS4
SS6
SSa
IFC

10−12

10−11

10−10

10−9

10−8

10−7

0 1 2 3 4 5 6 7

∆
E

t/tdyn

SS2
SS4
SS6
SSa
IFC

Figure 8: Comparison for the 2D SN equation (periodical case) between the time-step (left plot) and the error
on the energy conservation (right plot) for the IFC method and the Split-Step solvers.

initial velocity field. In Fig. (7) some snapshots of the modulus squared of the solution are
shown, expressing time in units of tdyn = 1/

√
g.

In table (6) and Fig. (8), we compare the Split-Step and IFC integrators, looking at the
energy conservation error, the error on the solution and the total time needed to run each
simulation. We obtain the same result than in one dimension, with the IFC being the most
efficient method.

3.6. Gross–Pitaevskii–Poisson equation

We conclude by presenting the results for the 2D Gross–Pitaevskii–Poisson equation, which
is a combination of the NLS and SN equations

i∂tψ + 1
2 ∇

2ψ − V ψ = 0, V = V1 + V2, ∇2V1 = g1 ∣ψ ∣2 , V2 = g2 ∣ψ ∣2 .

Based on the results presented so far, in the case of open boundary conditions, one expects
the split-step or the integrating factors to outperform one the other, depending on the values
of g1 and g2. We set them to g1 = −3 and g2 = 100 which are very close to the one typically
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Method ∆t/tdyn ∆E ∆ψrev ∆ψref T (s)

SS2 10−4 1.8 ⋅ 10−8 4.5 ⋅ 10−9 1.0 ⋅ 10−5 31711

SS4 3 ⋅ 10−3 4.2 ⋅ 10−8 3.1 ⋅ 10−6 5.3 ⋅ 10−6 2485

SS6 7 ⋅ 10−3 3.5 ⋅ 10−8 4.5 ⋅ 10−10 5.1 ⋅ 10−6 3046

SSa, tol = 10−7 7.5 ⋅ 10−3 2.3 ⋅ 10−7 8.5 ⋅ 10−7 1.2 ⋅ 10−6 3362

IFC, tol = 10−12 5 ⋅ 10−3 9.5 ⋅ 10−8 4.6 ⋅ 10−6 8.9 ⋅ 10−7 2232

Table 6: Comparison for the 2D SN equation (periodical case) between the IFC method and the Split-Step
solvers. T is the total time required to run each simulation, measured in seconds. The ∆t for adaptive
algorithms is the averaged one.

Method ∆t ∆E ∆ψrev ∆ψref T (s)

SS6 2.5 ⋅ 10−3 1.2 ⋅ 10−9 4.5 ⋅ 10−11 4.5 ⋅ 10−8 32753

SSa, tol = 10−7 4 ⋅ 10−3 2.4 ⋅ 10−11 2.2 ⋅ 10−8 1.4 ⋅ 10−8 63315

IFC, tol = 10−11 2 ⋅ 10−3 7.7 ⋅ 10−10 6.2 ⋅ 10−8 2.3 ⋅ 10−8 28273

Table 7: Comparison for the 2D Gross–Pitaevskii–Poisson equation between the IFC and the Split-Step meth-
ods. T is the total time required to run each simulation, measured in seconds.

employed when simulating the collapse of a self-gravitating Bose-Einstein condensate with
attractive self-interaction [21]. The numerical parameters are N = 2048 × 2048, L = 40 and

tf = 5 while the initial condition is a Gaussian, ψ(r, t = 0) = e−r2/2/√π. In table 7 comparisons
between the most efficient methods tested for the NLS (IFC method) and the SN in the non-
periodical case (SS6 or SSa, depending on the parameters) are shown. For the values of g1
and g2 we use, the IFC method outperforms the split-step solvers. Moreover, we observe that
for our particular initial condition, the smaller the g1/g2 ratio is, the better the IFC performs
with respect to splitting methods, with a robust difference already appearing for g1/g2 ⪅ 0.1.
This confirms that the presence of a short-range interaction term puts the integrating factor
method in a clear more performing position, compared to splitting methods.

4. Conclusion

We studied the numerical resolution of the nonlinear Schrödinger (NLS) and the Newton–
Schrödinger (SN) equations using the optimized integrating factor (IFC) technique. This
method was compared with splitting algorithms. Specifically, for the integrating factor, we
tested fifth-order time-adaptive algorithms, while, for the Split-Step family, we focused on
second-, fourth- and sixth-order schemes with fixed time-step, and a fourth-order algorithm
with adaptive time-step. We performed extensive tests with systems in one and two spatial
dimensions, with open or periodic boundary conditions.

The comparisons between the results obtained in the tested cases, show that the IFC
method can be more efficient than splitting algorithms, especially in the NLS equation and
periodical SN equation cases. For the SN equation in the non-periodical case on the other
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hand, splitting algorithms proved to be more efficient, even though the optimized integrating
factor provided competitive results in terms of both speed and accuracy. Moreover, the
results obtained for the Gross–Pitaevskii–Poisson equation pointed out how the presence of
a short-range interaction term puts the integrating factor method in a clear more performing
position.

Finally, the achieved results indicate how, among the splitting algorithms at fixed step,
working with higher order solvers is always more efficient. In particular the Split-Step order
6 proved to be around 10 times faster compared with the lower order ones, while conserving
the energy with the same error.
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Appendices

Appendix A. Optimized Integrating Factor

The optimized version of the integrating factor is based on the property that, for the
Schrödinger equation, if the value of the potential V is modified by an additive constant C,
only the phase of the solution ψ is changed. Indeed, if ψ is a solution of (1) at a given time

t, then Ψ
def= ψ e−iC t is a solution of

i∂tΨ + 1
2 ∇

2Ψ − (V + C) Ψ = 0, (A.1)
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as it can be easily verified. Thus, adding a constant Cn to V , the solution is modified as

ψ(tn) → ψ(tn) e−iφ, φ
def=

Nh

∑
n=0
Cn hn, (A.2)

where hn
def= tn+1 − tn is the n-th time-step and Nh is the total number of time-steps.

The freedom provided by the gauge condition of the potential is exploited to compute an
optimal value of Cn, which allows to choose a larger time-step compared to the Cn = 0 case
and therefore speeding up the numerical integration. The resulting optimal value, C̃n, which
is obtained at each time step n as the value of Cn minimising the L2-norm of N [30], is

C̃n def= −
⎛
⎝

[M/2]−1
∑

ℓ=−[M/2]
Vℓ ∣ψℓ∣2

⎞
⎠
/
⎛
⎝

[M/2]−1
∑

ℓ=−[M/2]
∣ψℓ∣2

⎞
⎠

(A.3)

where ψℓ
def= ψ(rℓ) and Vℓ def= V (rℓ) at time tn.

Appendix B. Split-Step pseudo-codes

We list below, in ALG. (1), the pseudo-codes for the Split-Step algorithms with fixed
time-step. We consider the general case of order N , with N ∈ {2,4,6}.

Algorithm 1 : SSN, N ∈ {2,4,6}
1: t← t0
2: ψ ← ψ(r, t0)
3: while t < tf do

4: ψ ← FFT−1[exp (−iK̂a1h)FFT[ψ]]
5: ψ ← exp (−iV b1h)ψ
6: ⋮
7: ψ ← FFT−1[exp (−iK̂aN

2
h)FFT[ψ]]

8: ψ ← exp (−iV bN
2
h)ψ

9: ψ ← FFT−1[exp (−iK̂aN
2
−1h)FFT[ψ]]

10: ψ ← exp (−iV bN
2
−1h)ψ

11: ⋮
12: ψ ← FFT−1[exp (−iK̂a1h)FFT[ψ]]
13: ψ ← exp (−iV b1h)ψ
14: t← t + h

In the latter, h is the time step, FFT and FFT−1 denote the Fast Fourier Transform and
its inverse respectively, K̂ is the kinetic energy operator in Fourier space, V is the potential,
and the values of ai and bi, i ∈ {1,2,3,4,5,6}, are listed in table B.8.
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SS2 SS4 SS6

a1 = 1
2 a1 = ω

2 a1 = 0.0502627644003922

b1 = 1 b1 = 1 b1 = 0.148816447901042

a2 = 1−ω
2 a2 = 0.413514300428344

b2 = 1 − 2ω b2 = −0.132385865767784

a3 = 0.0450798897943977

b3 = 0.067307604692185

a4 = −0.188054853819569

b4 = 0.432666402578175

a5 = 0.541960678450780

b5 = 0.5 − (b1 + b2 + b3 + b4)

a6 = 1 − 2(a1 + a2 + a3 + a4 + a5)

b6 = 1 − 2(a1 + a2 + a3 + a4 + a5)

Table B.8: Values of the parameters for the Split-Step algorithms. The quantity ω is given by ω = 2+2
1
3 +2

−
1
3

3
.

In the case of SSa, the adaptive splitting algorithm, i.e. the SS4(3), both the solutions at
the 4th and at the 3rd order must be evaluated. The pseudo-code is described in ALG. (2),
while the coefficients are listed in B.9. In our numerical tests we set α = 0.9, β = 3.

Algorithm 2 : SSa

1: t← t0
2: ψ ← ψ(r, t0)
3: while t < tf do
4: ψ ← ψ̃

5: ψ ← FFT−1[e−iK̂a1hFFT[ψ]]
6: ψ ← e−iV b1hψ
7: ⋮
8: ψ ← FFT−1[e−iK̂a7hFFT[ψ]]
9: ψ ← e−iV b7hψ

10: ψ̃ ← FFT−1[e−iK̂a1hFFT[ψ̃]]
11: ψ̃ ← e−iV b1hψ̃
12: ⋮
13: ψ̃ ← FFT−1[e−iK̂a7hFFT[ψ̃]]
14: ψ̃ ← e−iV b7hψ̃

15: err ←
√
∑N

i=1∣ψ(xi,tn)−ψ̃(xi,tn)∣
2

∑N
j=1∣ψ(xj ,tn)∣2

16: if err ≤ tol then
17: t← t + h
18: else
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19: ψ ← ψ̃

20: h← hmin{α ( tol∆n
)

1
4
, β}

SSa

Order 4 Order 3

a1 0 ã1 0

b1 0.0829844064174052 b̃1 0.0829844064174052

a2 0.245298957184271 ã2 0.245298957184271

b2 0.3963098014983680 b̃2 0.3963098014983680

a3 0.604872665711080 ã3 0.604872665711080

b3 -0.0390563049223486 b̃3 -0.0390563049223486

a4 0.5 - (a2 + a3) ã4 0.5 - (a2 + a3)

b4 1. - 2(b1 + b2 + b3) b̃4 1. - 2(b1 + b2 + b3)

a5 0.5 - (a2 + a3) ã5 0.3752162693236828

b5 -0.0390563049223486 b̃5 0.4463374354420499

a6 0.604872665711080 ã6 1.4878666594737946

b6 0.3963098014983680 b̃6 -0.0060995324486253

a7 0.245298957184271 ã7 -1.3630829287974774

b7 0.0829844064174052 b̃7 0

Table B.9: Values of the parameters for the SSa.
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