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Abstract
This work is concerned with a geometric inverse problem related to the thermography concept.
The aim is the identification of the shape, size and location of a small embedded tumor from
measured temperature on the skin surface. The temperature distribution in the biological tissue is
governed by the Pennes model equation. Our proposed approach is based on the Kohn-Vogelius
formulation and the topological sensitivity analysis method. The ill-posed geometric inverse prob-
lem is reformulated as a topology optimization one. The topological gradient is exploited for
locating the zone containing the embedded tumor. The size and shape of the infected zone are ap-
proximated using the solution of a scalar parameter estimate problem. The efficiency and accuracy
of the proposed approach are justified by some numerical simulations.
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I INTRODUCTION

Due to the advanced technology development, thermography or infrared thermal imaging has
become a very valuable tool in medicine for various applications like blood perfusion monitor-
ing, breast cancer diagnostics, fever screening, dermatological applications, dental diagnostics,
therapeutic assessment, diagnosis of vascular disorder, eye disease, as well as for diagnosis of
thyroid gland disease [21, 20, 13, 6, 18]. It provides a non-invasive diagnostic method based
on the bioheat transfer of the observed tissue. The infrared cameras (IR) are used to detect and
measure the thermal radiation that is being emitted from the skin’s surface. In this process the
temperature can be evaluated based on the intensity and emissivity of the examined surface.
Thermography for diagnostics or medical diagnosis can be carried out using two basic ways:
the first one is known as static (or passive) approach. It involves recording the temperature of
the observed skin surface under steady-state conditions, which take a lot of time since the pa-
tient has to adapt to the environment in the temperature controlled room [1]. The second one
is known as dynamic (or active) approach. It consists in creating thermal stress by cooling or
heating the investigated tissue followed by quantifying the thermal response during the testing
phase, which does not require patient acclimatization and can provide more information about
the skin under examination [13, 18]. It has been reported by many research studies that the
dynamic infrared thermography has an important advantage over the static one and can besuc-
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cessfully used in dermatology for early skin tumor detection [13, 6, 18]. Indeed, skin lesion
has higher metabolic heat generation and blood perfusion rate [7] than the healthy skin, which
reflected in temperature variations that can be recorded using IR cameras. For an early stage
tumor, the temperature difference between lesion and healthy skin is very small in such away it
cannot be detected using the static thermography. This difficulty is overcome by the dynamic
thermography due to the created thermal stresses by cooling the investigated tissue. Such an
approach allows to have higher temperature contrast during the diagnostic process that can be
easily observed [12]. Thereby, the recorded temperature measurements can be exploited to
identify several tumor parameters (like position, size, blood perfusion rate, .... etc) by means
of solving an inverse problem. In this study, we use the dynamic thermography as a medical
diagnostic tool and we develop a fast and efficient detection procedure for identifying location
and size of skin tumors from surface temperature measurements. This study is motivated by the
fact that early detection of cancer increases the patient’s chances of survival tremendously. For
instance, if the melanoma (fatal cancer) is detected and treated early the survival rate is about
98 %, however the survival rate of patient drops sharply to 15% when the tumor has penetrated
into the epidermis layer [9].

1.1 Mathematical model equations

Different skin models have been developed and numerically implemented by mathematicians,
physicists and biologists for solving a variety of applications such as; evaluating the efficacy of
cancer drugs, detecting tumors in early stages, simulating the inflammation in an injured tissue,
.... etc. In the more realistic models, that have been tested in clinical trials, the skin tissue have
been modeled by multiple layers of different thermophysical properties: epidermis, papillary
dermis, reticular dermis, fat layer, muscle layer (See figure 1).

Figure 1: Layers of skin tissue [12].
In this section, we present the mathematical model equations that have been used in the im-
plementation of the dynamic thermography process. The most used models are based on two
main aspects. The first one concerns the heat transfer process in a biological tissue. The second
aspect concerns the local thermoregulation response of the examined tissue.
• Bioheat transfer model : The most important aspects of this model are taken from Çetingűl
and Herman [7]. The Pennes equation [17] has been used for describing the bioheat transfer
process

ρcp
∂T
∂t

− div(σ∇T )−ϖbρbcb(ℏa − T ) = S, (1)

where T represents the temperature distribution in the considered tissue, ρ is the effective tissue
density, σ is the thermal conductivity, cp is the specific heat, ϖb is the blood perfusion coeffi-
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cient, ρb is the density of the blood, cb the specific heat of the blood, ℏa is the artery temperature
and S is the metabolic heat source.

In this model equation, it is assumed that the heat transfer between the blood flow and the
surrounding tissue occurs on the capillary level owing to the large interfacial area. Therefore,
the blood perfusion term plays the role of heat source or sink depending on the difference of
the temperature between arterial blood flow and tissue. During the cooling step of the dynamic
thermography, the blood perfusion acts as a heat source term heating up the tissue during the
thermal recovery similarly to the metabolic heat source. Here, it is important to note that the
tissue properties and other parameters in the previous Pennes equation are usually considered
as constants, because there is no accurate mathematical models for describing theirs behaviors.
• Thermoregulation model : It is concluded in many studies that blood perfusion rate and
metabolic heat generation of skin are controlled by central and local thermoregulation [19, 10].
Therefore, to improve the accuracy of the bioheat transfer model during the cooling-rewarming
process of the dynamic thermography, the local thermoregulation response of the tissue needs
to be taken into account in the model. The basic concept of the proposed model has been
taken from Silva et al [19] and Fiala et al [10], where the local tissue temperature response
has been modeled with the help of an exponential temperature distribution when simulating the
thermoregulation of whole body.

- The metabolic heat generation has been modeled using the Van’t Hoff effect [19, 10];

S(T ) = qm,bas Q
(T −T0

10 )
10,m (2)

with qm,bas denotes the basal metabolic rate at rest, Q10,m is the metabolic rate coefficient
and T0 is the equilibrium temperature of the body.

- Since the blood perfusion rate is in correlation with the metabolic rate by oxygen and nu-
trition demand, the blood perfusion rate in skin tissue has been usually modeled similarly
to the heat generation as

ϖb(T ) = ϖb,bas Q
(T −T0

10 )
10,b (3)

with ϖb,bas denotes the basal blood perfusion rate and Q10,b is the blood perfusion rate
coefficient, which is usually equal to Q10,m [19].

1.2 Research studies

In recent years, new techniques for tumors diagnostic have been developed involving a com-
promise between specific aspects (like accuracy, effectiveness, cost) and invasiveness like ultra-
sound and magnetic resonance imaging (MRI), multispectral imaging systems, digital photog-
raphy, confocal scanning laser microscopy (CSLM), laser Doppler perfusion imaging (LDPI)
optical coherence tomography(OCT) [16]. Due to the technology development many research
studies have been conducted focusing on various issues related to the tumors detection prob-
lems such as the bioheat transfer modeling, estimation of skin tumors parameters, early tumors
detection, dynamic thermography process, modeling of laser treatment [15, 14].
In the context of tumors detection, Cheng and Herman [8] proposed a simple 2D numerical
model for skin tumor identification based on the dynamic thermography process. They em-
ployed multiple tissue layers and presented different skin cooling approaches for dynamic ther-
mography. Therefore, they numerically solved several direct bioheat problems for recovering
which properties (cooling time, heat transfer coefficients, cooling temperature) have the great-
est influence on the temperature difference between the lesion and the surrounding tissue. Çet-
ing�ul and Herman [7] used 3D skin model taking into account the presence of different tissue
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layers (epidermis, muscle, reticular dermis, fat, papillary dermis and lesion) for describing the
rewarming process of dynamic thermography. In [7], they numerically examined how the esion
shape affects the distribution of temperature on the skin surface as well as the influence of some
model parameters such as thickness, blood perfusion rate and thermal conductivity.

Similar numerical approaches have been investigated by Bhowmik et al [4, 5] for estimating the
thickness, diameter, metabolic heat generation and blood perfusion rate of the skin tumor using
static thermography. The presented works in [4, 5] are concerned with tumor identification in
its early stage. In [4], the lesion identification process is affected by the included thermally
significant vessels in the skin model. This identification approach has been improved in [5]
using Frequency Modulated Thermal Wave Imaging (FMTWI).

1.3 Proposed approach

In this work, we deal with a geometric inverse problem related to the thermography concept.
We develop a fast and accurate approach for identifying the shape, size and location of a small
embedded tumor from over-determined boundary data (an imposed heat flux and a measured
temperature) at the skin surface. Our main tool is based on the the Kohn-Vogelius formulation
[2] and the topological sensitivity analysis method [11, 3].

In this work, we extend this approach for solving a biological inverse problem. In this con-
text, the sensitivity analysis method leads to derive a topological asymptotic expansion for the
Pennes equation with respect to the presence of a small tumor inside the examined skin tissue.
Actually, the tumor should be modeled by an inclusion with different material properties from
the background embedded within the healthy tissue. But in this configuration, the mathematical
analysis becomes further complicated, since all coefficients of the Pennes equation would be
subject to topological perturbations. For these reasons, we limit ourselves to a simplified model
based on the following assumptions :
◦ The embedded tumor is modeled as a sub-region where the temperature reaches its maximum.
◦ The temperature distribution in the biological tissue is governed by the linear Pennes equation.
In this study, according to the Kohn-Vogelius concept the ill-posed geometric inverse problem
(in Hadamard’s sense) is reformulated as a topology optimization one. The over-determined
boundary data (Neumann and Dirichlet conditions) are exploited for defining two well-posed
auxiliary parabolic systems. The misfit function to be minimized is constructed using the screp-
ancy between the auxiliary problems solutions. The topological gradient is used for locating the
zone containing the embedded tumor. The size and shape of the infected zone are approximated
using the solution of a scalar parameter estimate problem. The efficiency and accuracy of the
proposed approach are justified by some numerical simulations.

II INVERSE PROBLEM

Let Ω ⊂ R2 be a smooth and bounded domain represents the considered biological tissue. Let
I∗ be an unknown tumor embedded inside the tissue Ω. It is modeled as an infected small
sub-region that are characterized by a maximum temperature peak (T ≈ θm in I∗).

In order to simplify the presentation, we plot in figure 2 a schematic diagram showing an un-
healthy tissue Ω containing an infected zone (an embedded tumor) I∗ and the different compo-
nents of the boundary ∂Ω.

In this configuration example, the temperature field satisfies a non flux condition σ∇T .η = 0
on the lateral boundaries Γl. On the bottom boundary Γb, a constant core temperature θc is
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prescribed. Aiming to detect the unknown anomaly zone I∗, we will use over-determined
boundary data given on the outer surface Σs of the tissue (skin surface).

Figure 2: Schematic diagram: an infected tissue Ω containing an embedded tumor I∗.

The geometric inverse problem that we consider can be formulated as follows:
- Knowing two boundary data on the accessible surface Σs: an imposed heat flux θn (a

Neumann condition) and a measured temperature θd (a Dirichlet condition)
- Determine the location, size and shape of the unknown embedded tumor I∗, in such a

way that the temperature distribution T ∗ in the unhealthy tissue satisfies the following
bio-heat transfer system

ρcp
∂T ∗

∂t
− div (σ∇T ∗)−ϖbρbcb(ℏa − T ∗) = S in Ω\I∗×]0, T [,

T ∗ = θc on Γb×]0, T [,
σ∇T ∗.η = 0 on Γl×]0, T [,

T ∗ = θm on ∂I∗×]0, T [,
T ∗(., 0) = θ0 in Ω\I∗.

(4)

with an over-specified boundary condition on the skin surface

σ∇T ∗.η = θn on Σs×]0, T [,
T ∗ = θd on Σs×]0, T [.

(5)

In (4), θ0 denotes the temperature distribution in the tissue.
To analyze this geometric inverse problem, we will develop an efficient approach based on the
Kohn-Vogelius method and the topological sensitivity concept.

III TOPOLOGY OPTIMIZATION PROBLEM

We begin by reformulating the previous inverse problem as a topology optimization one. Using
the Kohn-Vogelius formulation, for each admissible anomaly zone, we introduce two auxiliary
problems. The first one is defined using the imposed heat flux on the boundary Σs

ρcp
∂T N

∂t
− div (σ∇T N)−ϖbρbcb(ℏa − T N) = S in Ω\I×]0, T [,

σ∇T N .η = θn on Σs×]0, T [,
T N = θc on Γb×]0, T [,

σ∇T N .η = 0 on Γl×]0, T [,
T N = θm on ∂I×]0, T [,

T N(., 0) = θ0 in Ω\I.

(6)
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The second one is called "Dirichlet problem" deefined using the measured temperature on Σs

ρcp
∂T D

∂t
− div (σ∇T D)−ϖbρbcb(ℏa − T D) = S in Ω\I×]0, T [,

T D = θd on Σs×]0, T [,
T D = θc on Γb×]0, T [,

σ∇T D.η = 0 on Γl×]0, T [,
T D = θm on ∂I×]0, T [,

T D(., 0) = θ0 in Ω\I.

(7)

One can remark here that if I coincides with the actual infected zone I∗, then the misfit between
the Neumann and Dirichlet solutions vanishes. Starting from this observation, we propose an
identification process based on the minimization of the following Kohn-Vogelius type functional

F(Ω\I) =
∫ T

0

∫
Ω\I

|T N(I)− T D(I)|2dxdt,

where T N(I) and T D(I) are the solutions, respectively, to (6) and (7).

Then, the considered geometric inverse problem can be reformulated as a topology optimization
one where the unknown infected zone I∗ is characterized as the solution to

(Pmin)

{
Find the location, size and shape of the domain I∗ such that
F(Ω\I∗) = min

I∈Dad

F(Ω\I),

where Dad is a set of admissible domains Dad =
{
I ⊂ Ω; such that ∂I of class C1 and I ⊂ Ω

}
.

To solve this optimization problem, we shall use the topological sensitivity analysis method.

3.1 Topological sensitivity analysis

The topological sensitivity analysis method consists in studying the variation of the function to
be minimized with respect to the creation of a small geometric perturbation inside the domain Ω.
The adaptation of this technique to our problem leads to evaluate the Kohn-Vogelius functional
variation with respect to the presence of a small infected zone inside the tissue Ω.

Let Iz,ε = z + εI be a small infected zone, located around an arbitrary point z ∈ Ω. Its size is
described by a small parameter ε > 0, such that Iz,ε is strictly included in Ω. The shape of the
anomaly Iz,ε is given by a given bounded and smooth domain I ⊂ R2 containing the origin.

Practically, this approach requires the development of an asymptotic expansion of the form

F(Ω\Iz,ε) = F(Ω) + ϕ(ε)G(z) + o
(
ϕ(ε)

)
, where

- G : Ω 7−→ R is a scalar function (called the topological gradient of F), represents the
leading term of the variation F(Ω\Iz,ε) − F(Ω) with respect to the insertion of a small
hole inside the domain Ω.

- ϕ : R+ 7−→ R+ is a scalar positive function, represents the asymptotic behavior of the
variation F(Ω\Iz,ε)−F(Ω) with respect to the geometric perturbation size ε.
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IV TOPOLOGICAL ASYMPTOTIC FORMULA

This section is concerned with the development of an asymptotic formula describing the varia-
tion of the function

F(Ω\Iz,ε) =

∫ T

0

∫
Ω\Iz,ε

|T N
ε − T D

ε |2dxdt,

F with respect to the presence of a small anomaly Iz,ε inside the tissue Ω. Here T N
ε and T D

ε

are the solutions to the following systems

ρcp
∂T N

ε

∂t
− div (σ∇T N

ε ) +ϖbρbcbT N
ε = ℜ in Ω\Iz,ε×]0, T [,

σ∇T N
ε .η = θn on Σs×]0, T [,
T N
ε = θc − θm on Γb×]0, T [,

σ∇T N
ε .η = 0 on Γl×]0, T [,
T N
ε = 0 on ∂Iz,ε×]0, T [,

T N
ε (., 0) = θ0 − θm in Ω\Iz,ε.

(8)



ρcp
∂T D

ε

∂t
− div (σ∇T D

ε ) +ϖbρbcbT D
ε = ℜ in Ω\Iz,ε×]0, T [,

T D
ε = θd − θm on Σs×]0, T [,

T D
ε = θc − θm on Γb×]0, T [,

σ∇T D
ε .η = 0 on Γl×]0, T [,
T D
ε = 0 on ∂Iz,ε×]0, T [,

T D
ε (., 0) = θ0 − θm in Ω\Iz,ε.

(9)

with ℜ = S +ϖbρbcb(ℏa + θm). The following theorem summarizes the obtained result.

Theorem IV.1:
The variation of the function F , with respect to the presence of a small internal anomaly Iz,ε =
z + εI inside the tissue domain Ω, satisfies

F(Ω\Iz,ε)−F(Ω) = − 1

log ε
G(z) + o

( −1

| log ε|
)
,

where G is the topological gradient, defined as

G(x) = 2π

∫ T

0

[
TN
0 (z, t)ΨN

0 (z, t) + TD
0 (z, t)ΨD

0 (z, t)
]
dt,∀x ∈ Ω,

where ΨN
0 and ΨD

0 are the solutions to the following auxiliary problems :

(AN)


−ρcp

∂ΨN
0

∂t
− div (σ∇ΨN

0 ) +ϖbρbcbΨ
N
0 = −2(T N

0 − T D
0 ) in Ω×]0, T [,

σ∇ΨN
0 .η = 0 on Σs×]0, T [,
ΨN

0 = 0 on Γb×]0, T [,
σ∇ΨN

0 .η = 0 on Γl×]0, T [,
ΨN

0 (., T ) = 0 in Ω,

(AD)


−ρcp

∂ΨD
0

∂t
− div (σ∇ΨD

0 ) +ϖbρbcbΨ
D
0 = −2(T D

0 − T N
0 ) in Ω×]0, T [,

ΨD
0 = 0 on Σs×]0, T [,

ΨD
0 = 0 on Γb×]0, T [,

σ∇ΨD
0 .η = 0 on Γl×]0, T [,

ΨD
0 (., T ) = 0 in Ω,
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V NUMERICAL EXPERIMENTS

In this section, we propose a fast and efficient numerical procedure for reconstructing the un-
known anomalies from over-determined boundary data. The developed algorithm is based on
the asymptotic formula presented in Theorem IV.1. The topological gradient G is exploited for
detecting the location, size and shape of the anomalies.
For each ξ ∈ [0, 1], we denote by Iξ := {x ∈ Ω, G(x) ≤ ξδmin}, where δmin the most negative
value of the sensitivity function G in the domain Ω.

Algorithm : one iteration reconstruction procedure
• Solve the direct Neumann and Dirichlet problems.
• Solve the adjoint Neumann and Dirichlet problems.
• Compute the topological gradient G(z), z ∈ Ω.
• Find ξ∗ ∈ [0, 1] such that F(Ω\Iξ∗) ≤ F(Ω\Iξ),∀ξ ∈ [0, 1].

Next, we apply our numerical algorithm for identifying two anomalies from noisy boundary
measurements data. We denote by δ the level of the noise. We start by an exact boundary
measurement (i.e. δ = 0%). In this case, as one can observe in Figure 3(a), the topological
gradient detect perfectly the two anomalies (via two strictly negative minima (red zones)).

(a) Identification result from exact measured data, i.e. δ = 0%.

(b) Identification result from noisy measured data, when δ = 10%.

(c) Identification result from noisy measured data, when δ = 15%.

Figure 3: Effect of the noise on the reconstruction.

From the numerical simulations, we deduce the following remarks:
- When the noise level δ is less than 10% (see figures 3(a) and 3(b)), the topological gra-

dient has two local negative minima, which provides a good detection result for the two
unknown anomalies.

- When the noise level is greater that 10% (see figure 3(c)), the amplitude of oscillations in
the topological gradient values becomes large in such a way the actual anomalies cannot
be detected.
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