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1 Introduction

String theory is a unitary theory of quantum gravity. The theory has black hole solutions.
It would be of great interest to show that non-perturbative fundamental string theory
exhibits a unitary evolution in the presence of a black hole. At present, we are far from
attaining this unification grail of theoretical physics.

A more modest goal is to study perturbative scattering amplitudes on a black hole
background. A prime candidate geometry to ponder is the asymptotically AdS3 BTZ
black hole [1, 2]. It has an asymptotic structure that allows for holography on the one
hand, and for a deceptively simple algebraic world sheet description on the other. Indeed,
the BTZ black hole background with Neveu-Schwarz Neveu-Schwarz flux is described by
an orbifold of a Wess-Zumino-Witten model on the universal cover G̃ of the group G =
SL(2,R) [2, 3]. As such, we have multiple tools at our disposal for studying strings on
this black hole background. We may hope to make progress then in the modest study
of perturbative string propagation on a fixed black hole geometry. To start with, we can
attempt a description of the complete spectrum of fundamental strings propagating on the
Lorentzian BTZ geometry. Steps towards this goal were taken in [3–11]. The determination
of the full spectrum is a recognized and hard open problem.

In this paper, we approach this study in two distinct manners. Firstly, we consider the
particle limit of the problem directly in the Lorentzian geometry. We study the partition
function of a particle in a BTZ black hole background, arising as a hyperbolic orbifold of the
covering group G̃. We recall how to derive the Hilbert space of a particle on a compact group
from a path integral [12, 13]. We then show how to extend this reasoning to particles on the
non-compact group SL(2,R) as well as its universal cover G̃, exploiting the coadjoint orbit
quantization results from [14]. This provides us with a direct derivation and interpretation
of the Hilbert space for a particle on AdS3 as well as the partition function twisted by
global symmetry group elements. In a side step, we show that the elliptic orbifold of AdS3
in the Lorentzian neatly connects with a particle partition function on Euclidean AdS3.
Next, we analyze the Lorentzian hyperbolic orbifold of the BTZ partition function and
stress the differences with the elliptic case. The main difference lies in having either a
topologically trivial or non-trivial thermal circle direction.

In a second part of the paper, we revisit the partition function for strings on the Eu-
clidean BTZ black hole background. While the partition function is partly understood [8–
11, 15], we push our understanding further still. In particular, extending the intuition
developed in finite temperature AdS3 [15], we identify pole regions in the Euclidean BTZ
partition sum that correspond to the contribution of long string winding modes that sur-
round the black hole. We also identify short winding string contributions in a saddle point
approximation, and associate them to quasinormal winding modes. We moreover are able
to identify a bound on their sl(2,R) spin from this analysis. The orbifold interpretation
of both short and long string contributions will be clear, and the short string contribu-
tion allows for a rewriting in terms of a standard spectral sum. The differing form of the
long string contribution (which we will obtain in (4.59)) on the other hand, will require
further study.
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The paper is partitioned as follows. It starts with the analysis of path integrals describ-
ing a particle on a group manifold in section 2. Using our knowledge of twisted partition
functions on the group, we formulate the partition functions for particles on orbifolds of
groups in section 3 and discuss how a Lorentzian orbifold partition sum can be analytically
continued to a Euclidean partition function. Sections 2 and 3 are a sequel to [14]. In
section 4, we identify the contribution of Lorentzian long strings to the Euclidean partition
function of string theory on the BTZ hyperbolic orbifold of AdS3. We lay bare the multi-
particle nature of the contribution explicitly and provide an argument and description of
which poles in the partition function can be identified with physical long string contri-
butions. We also identify quasinormal winding mode contributions. This second part is
a sequel to [10]. Both parts make progress in the task to rhyme the Euclidean partition
function with the Lorentzian spectrum of perturbative string theory in the NSNS BTZ
black hole background. We conclude in section 5 by summarizing our main results and
pointing out a few related open problems.

2 The path integral for a particle on a group

In this section, we recall how to derive the Hilbert space for a particle on a compact group
directly from path integration [12, 13]. The technique is to show the equivalence of the path
integral to an integration over left and right group elements that parameterize coadjoint
orbits, then to apply coadjoint orbit theory [16]. We extend this transparent viewpoint on
the derivation of the particle Hilbert space to a non-compact group. The main new feature
is the split of the set of Lie algebra elements into intrinsically distinct classes.

2.1 The particle on a group

A particle on a group G has a phase space which is the cotangent bundle T ∗G to the
group. The wave-functions are taken to be quadratically integrable functions on the group
G. The Hilbert space is L2(G). The latter allows for a description in terms of left and
right regular actions of the group on itself and as such decomposes in a direct sum of left
and right irreducible representations. Firstly, we wish to make this canonical mathematical
statement transparent from a path integral point of view.

To that end, we briefly review the approach of [13], which in turn is based on the path
integral description of coadjoint orbits provided in [12]. The cotangent bundle T ∗G of a
group is a symplectic manifold. We define fields t : L→ g∗ which are maps from the world
line L of the particle into the dual of the Lie algebra g∗ as well as the group valued field
g : L→ G. The canonical symplectic form Ω on the phase space T ∗G is [13]:

Ω = 1
2Tr(dtdgg

−1 + tdgg−1dgg−1) = d

(1
2Trtdgg

−1
)
. (2.1)

We can view the dual Lie algebra variable t as corresponding to momenta and the group
variable g as coordinates. We quantize trajectories in the cotangent bundle with an action
which is a primitive of the symplectic form Ω:

S = 1
2

∫
L
∗Tr(tdgg−1) , (2.2)

– 2 –
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where ∗ indicates the pullback to the world line L. The path integral is:1

Z =
∫

[dt(τ)][dg(τ)]eiS[t,g] . (2.3)

The model has both a right and left global group invariance. It permits a left and right
group Gl×Gr action and there are conserved charges corresponding to these group actions.
Below, our first aim is to compute a partition function of the type:

Z(γl,rj ) =
∫

[dt(τ)][dg(τ)]periodice
iS[t,g]+i

∑
j
(γrjH

j
r+γljH

j
l
)
, (2.4)

where we twist the partition function with the insertion of commuting left and right Hamil-
toniansHj

l,r that correspond to Cartan generators in the Lie algebras gl⊕gr of the symmetry
group Gl ×Gr. The integration is over periodic maps such that the result has an interpre-
tation as a trace. Following [13], we can reparameterize the dual Lie algebra element as
t = gltdg

−1
l in terms of a Cartan element td and an element in the group gl. We find the

action:

S = 1
2

∫
Tr(tddgrg−1

r + tdg
−1
l dgl) , (2.5)

where gr = g−1
l g. If we multiply gl by a Cartan element, td is invariant, and we therefore

have a redundant parameterization and a gauge symmetry [13]. The global symmetries act
on gr on the right and on gl on the left. The local symmetry group conjugating td contains
the Weyl subgroup. The idea in [13] is to read the resulting path integral as a product of
path integrals over co-adjoint orbits, both of a type set by the Cartan Lie algebra element
td. Co-adjoint orbit quantization [12, 16] then gives rise to the Hilbert space:

H =
∑
i

Hli ⊗Hri , (2.6)

where we have a left-right correlation of the sum over representations i due to the fact
that the Cartan element td appears in the action for the group valued field gr as well
as the field gl. The path integrals are computed explicitly in Darboux variables for the
classical compact simple groups in [12] using a classical configuration space counterpart
to the Gelfand-Tsetlin basis for classical Lie algebras. Since there are differences in the
treatment of the path integral compared to the ordinary quantization of co-adjoint orbits,
and since the details in our treatment differ from those of [12, 13], we add a few pointers as
to how this works for the compact group G = SU(2) before turning to a generalization for
non-compact groups. We refer the reader to e.g. [12, 13, 16] for the necessary background
and the detailed derivation of the final formula.

1We have the possibility of adding a quadratic Casimir Hamiltonian H = 1
R2 Trt2. If we integrate out

the variable t then, we obtain a particle model on the group with a second order kinetic term. This model
has a Hamiltonian equal to the Laplacian on the group G.

– 3 –
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2.2 The example of the group SU(2)

We concretely parameterize the path integral for the case of the simple compact group
G = SU(2). We parameterize the group element gl(τ) as:

gl =

 cos θ2e
iφ+ψ

2 i sin θ
2e
iφ−ψ2

i sin θ
2e
iψ−φ2 cos θ2e

−iφ+ψ
2

 . (2.7)

The dual Lie algebra element t we diagonalize such that it becomes proportional to the σ3
Pauli matrix:

t = glt3σ3g
−1
l . (2.8)

In terms of these variables the measure on the (dual) Lie algebra becomes:

dt = t3dt3 ∧ t3 sin θ dφ ∧ dθ . (2.9)

Thus, our path integral reads concretely:

Z(· · · ) =
∫
dt3

∫
(t3 sin θ dφ ∧ dθ)

∫
(t3dgr)e

i
2

∫
dτTr(t3σ3g

−1
l
∂τgl)+ i

2

∫
dτTr(t3σ3∂τgrg

−1
r )(· · · )

where the dots indicate possible operator insertions. We have split the measure into factors
that are naturally associated to the left group element gl and the right group element gr.
The integration over gl and gr are standard in co-adjoint orbit theory [12, 13, 16]. There
are two important extra elements in the path integration though; firstly, the measure dgr
contains an integration over the variable ψ, as it is defined to be

gr =

 cos θr2 e
iψ+φr

2 i sin θr
2 e

iψ−φr2

i sin θr
2 e

iφr−ψ2 cos θr2 e
−iψ+φr

2

 . (2.10)

Note that ψ also appears in gl (this happens via the field redefinition gr = g−1
l g). Second

and more important is the time dependence of the (dual) Lie algebra element t3. To exhibit
the consequences, we compute the action for the left and right group elements:2

S = 1
2Tr(t3σ3g

−1
l ∂τgl) + 1

2Tr(t3σ3∂τgrg
−1
r ) = t3ψ̇ + t3

2 (φ̇ cos θ + φ̇r cos θr) . (2.11)

The extra feature (compared to e.g. [12]) is due to the term proportional to ψ which in the
presence of a time-dependent t3 is significant.

We first perform the path integration on ψ. Due to the fact that ψ is periodic and
because we take a periodic world line, we have a sum over winding configurations. (See
e.g. [12] for similar details.) That sum discretizes the coefficient t3 to take integer values.
The path integral over ψ inserts a delta-function:

PI(ψ) =
∑
n∈N0

δt3,n . (2.12)

2In this calculation, for 2 × 2 Pauli matrix generators, the definition of the trace contains a factor of −i.

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
2

We plug this into the full path integral to find:

Z(· · · ) =
∑
n∈N0

∫ (
n

2 sin θ dφ ∧ dθ
)
ei
n
2

∫
dτφ̇ cos θ

∫ (
n

2 sin θrdφr ∧ dθr
)
ei
n
2

∫
dτφ̇r cos θr(· · · ) .

We dropped the n = 0 term since it is zero and we used the Z2 Weyl symmetry to render
n positive. After performing the co-adjoint orbit quantization with Hamiltonian inser-
tions (2.4), we find the result of the path integral [12, 13]:

Z(hl, hr) =
∑
j∈ 1

2N

χj(hl)χj(hr) , (2.13)

where n = 2j + 1. Thus, we briefly reviewed and illustrated the general procedure in [13].
We wish to argue that a similar logic holds for a large class of non-compact groups.

2.3 A particle on a non-compact group

In this subsection, we again follow the logic outlined in [13], but apply it to the new domain
of non-compact groups. Important differences arise. In this paper, we concentrate on the
simple example of G = SL(2,R) that illustrates some of these differences. We will see that
the integration over Lie algebra orbits splits into non-trivially distinct cases — a difference
that follows from the fact that the Killing metric on the Lie algebra has an indefinite
signature.

2.3.1 The orbit integrals

Before we delve into the details, we describe our expectations. We again calculate the path
integral in steps. We conjugate the (dual) Lie algebra element t which takes values in a
Minkowski space sl(2,R) = R2,1 into a Cartan subalgebra. We concentrate on the generic
cases in which the Lie algebra element t is future time-like, past time-like or space-like.
These cases will also be referred to as discrete plus, discrete minus and continuous. (See
e.g. [14] for details.) The integral over the Lie algebra splits into a sum of three integrals
accordingly. The integration over the left and right group elements will again build coupled
left and right representation spaces. We know that the future and past time-like Lie algebra
elements give rise to discrete plus and discrete minus representations under co-adjoint orbit
quantization, and the space-like Lie algebra elements to continuous representations [17].
(See [14] for details.) We therefore expect a path integral result for periodic maps and with
left and right Hamiltonian insertions:

Z(hl, hr) =
∑

α=±
j=1, 32 ...

χj,α(hl)χj,α(hr) +
∑
ε=0, 12

∫
c
dsρ(s)χs,ε(hl)χs,ε(hr) , (2.14)

where ε = 0, 1/2 corresponds to representations that represent minus the identity in
SL(2,R) trivially or non-trivially. We aim to understand in a little more detail the sum-
mation over discrete representations and the integral over continuous representations from
the path integral. To make our discussion efficient, we stress only the differences with the
case of the group G = SU(2), and for the co-adjoint orbit quantization we lean heavily on
the results derived in [14].

– 5 –
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2.3.2 The differing details

The most convenient parameterization of the group element gl depends on whether the
(dual) Lie algebra element td is time-like (elliptic) or space-like (hyperbolic). When the
element is time-like, we choose the parameterization:

gl =
(

cos t cosh ρ+ cosφ sinh ρ sin t cosh ρ− sinφ sinh ρ
− sin t cosh ρ− sinφ sinh ρ cos t cosh ρ− cosφ sinh ρ

)
. (2.15)

We put
td = tell = t0σ0 (2.16)

where σ0 = iσ2 is proportional to a Pauli matrix. In this case we find the Lie algebra
measure

dt = 2t0dt0 ∧ t0 sinh 2ρ d(φ+ t) ∧ dρ . (2.17)

The treatment of the path integral over these types of Lie algebra elements goes much as
in the SU(2) case. The Lie algebra element t0 becomes discretized upon path integration
over the coordinate φ−t, which appears in the dgr measure. The integration over the other
two coordinates (φ + t, ρ) corresponds to a co-adjoint orbit quantization for discrete plus
and discrete minus orbits. The details can be found in [14] and references therein. This
solves the discrete part of the path integral problem.

We still need to perform the part of the path integral where the Lie algebra element t
diagonalizes to a hyperbolic element:

td = thyp = t3σ3 . (2.18)

Because the Lie algebra element is hyperbolic, it is convenient to use a group element
parameterization that includes a hyperbolic factor. On the other hand, as discussed in
detail in [14], it is most direct in the co-adjoint orbit quantization procedure to parameterize
the orbit in terms of an elliptic group factor. Thus, for instance, the group decomposition
SL(2,R) = G = KNA where K is elliptic, N is parabolic and A is hyperbolic — an
Iwasawa decomposition — is convenient in the detailed calculations. Thus, for this case,
we parameterize the group element gl as:

gl =
(

cos θ − sin θ
sin θ cos θ

)(
1 x
0 1

)(
eρ 0
0 e−ρ

)
. (2.19)

For this parameterization, we find the action:

Sl = 1
2Tr(t3σ3g

−1
l ∂τgl) = t3∂τρ− t3xθ̇ . (2.20)

Because ρ is non-compact, the path integration over the field ρ does not lead to a dis-
cretization of t3. We integrate t3 over a constant real line.3 We conclude that in the case of
the group G = SL(2,R), the quantization of the orbit label td only occurs for the discrete
representations.

3There is a Weyl gauge equivalence that renders t3 and −t3 equivalent.

– 6 –
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2.3.3 Result

Thus, we have understood the reason why the path integral splits, as well as the manner in
which the discrete representations are summed over and the continuous representations are
integrated over. This was our main objective. The rest of the derivation proceeds exactly
along the lines in [12, 13], but now using the results for the co-adjoint orbit quantization
in [14]. We record only the final result:

Z(hl, hr) =
∑

j=1, 32 ,...

(χ+
j (hl)χ+

j (hr) + χ−j (hl)χ−j (hr)) +
∫
ds

2π
∑
ε=0, 12

χcs,ε(hl)χcs,ε(hr) . (2.21)

This is in accord with the standard Hilbert space decomposition of the space L2(G) of
quadratically integrable functions on the group.

For a more general non-compact group G, we expect that the final sum and integration
are over the representations in the reduced dual Ĝr to the non-compact group G, namely the
set of representations occurring in the decomposition of the space L2(G) of quadratically
integrable functions [17]. Extending our reasoning to covers of the group SL(2,R) is possible
along the lines of [14]. We will use the result in the following. It would certainly be
interesting to determine more precisely the class of non-compact groups to which this path
integral treatment of particle models can be generalized — our focus in this paper lies
elsewhere.

3 A particle on the BTZ orbifold

We obtained the partition function of a particle on the non-compact group manifold G̃

twisted by global symmetry group elements. In this section, we exploit the twisted parti-
tion function to obtain the partition function for a particle on the Z orbifold of G̃ = AdS3
which is the geometry of the BTZ black hole. The generator of the BTZ Z orbifold is
hyperbolic [2]. We compare the BTZ orbifold to the case of a Z orbifold of AdS3 which
is elliptic, namely the compactification of the time direction. The former is a Lorentzian
counterpart to the Euclidean black hole while the latter is the counterpart to finite temper-
ature Euclidean AdS3. We take the occasion to discuss to what extent Lorentzian partition
sums can be related by direct analytic continuation to their Euclidean cousins.

3.1 The space-time interpretation

Our particle model will serve in part as a toy model for string theory. To that end it is useful
to think of the particle theory with a quadratic Casimir Hamiltonian as a first quantized
model arising from the introduction of an einbein on the world line [18]. This conceptual
modification also allows us to compare the first quantized results to second quantized field
theory results in AdS3 or the black hole background. This modification entails two technical
changes to the set-up. We introduce a mass m for our particle excitation as well as the
constraint on the quadratic Casimir:

− j(j − 1) + l2m2

4 = 0 , (3.1)

– 7 –
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arising from the equation of motion of the einbein. Here, the curvature scale of the AdS3
space-time is denoted l. Secondly, even after gauge fixing the einbein, we need to integrate
over a modulus with the correctly normalized measure [18]. Note that for positive mass
squared, there are no continuous representation solutions j ∈ 1/2 + iR0 to the on-shell
constraint (3.1).4 The discrete plus D+

j modes are standard particle excitations in AdS3 =
G̃ and the discrete minus modes are their negative energy counterparts. The same on shell
equation (3.1) holds for the BTZ orbifold, and the same conclusions, regarding the Casimir
of on-shell modes, continue to hold.

3.2 The Euclidean partition function

In appendix A we take the twisted Lorentzian partition function for a particle on AdS3
as a starting point and perform an elliptic Z orbifold in order to compactify the time
direction. We then compare the resulting Lorentzian partition function (with compactified
time direction) to the one for a particle in thermal AdS3 which is the Euclidean continuation
of the geometry. The partition sums agree. This is no small feat since the on-shell AdS3
modes are in the discrete representations while the unitary representations of the isometry
group of the Euclidean model are necessarily continuous. Our goal in the rest of the
section is to perform an analogous comparison exercise for the hyperbolic BTZ orbifold.
The hyperbolic orbifold is a qualitatively different Lorentzian continuation of an equivalent
Euclidean geometry.

To relate the Lorentzian hyperbolic orbifold to the Euclidean BTZ partition function
for a point particle, we start by reviewing the latter. One way to obtain the partition
function is as a relabelling of the thermal AdS3 partition function. The one-loop result
is [19]:

Zparticle
BTZ =

∞∑
n=1

2
√
πkbr+

∫ ∞
0

dt

t3/2
e−

kbn
2

t
(2πr+)2

e
− t

4kb
(m2+1)

(4|sinnπ(r− − ir+)|2) (3.2)

where we introduced the alternative notation kb = l2/α′ for the cosmological constant scale
which naturally arises from the string model to be discussed in the next section. We can
expand the denominator using that r+ > 0:

Zparticle
BTZ =

∞∑
n=1

2
√
πkbr+

∫ ∞
0

dt

t3/2
e−

kbn
2

t
(2πr+)2

e
− t

4kb
(m2+1)

∞∑
r,r̄=0

e−2πin(r−−ir+)(r+ 1
2)e2πin(r−+ir+)(r̄+ 1

2) .

We can moreover borrow a technique from the analysis of thermal string spectrum in
AdS3 [15] to exhibit an integral over a continuous momentum:

Zparticle
BTZ =

∞∑
n=1

∫ ∞
0

dt

kbπin

∫ ∞
−∞

ds s e
4πir+ns− s

2t
kb
− t

4kb
(m2+1)

∞∑
r,r̄=0

e−2πin(r−−ir+)(r+ 1
2)e2πin(r−+ir+)(r̄+ 1

2)

= 1
πikb

∞∑
n=1

1
n

∫ +∞

−∞
ds s

kb

s2 + m2+1
4

e4πir+ns
∞∑

r,r̄=0
e−2πin(r−−ir+)(r+ 1

2)e2πin(r−+ir+)(r̄+ 1
2) .

4More precisely, only discrete modes will satisfy the Breitenlohner-Freedman bound.
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If we close the contour in the upper half plane and pick up the pole at j = 1
2 + is =

1
2 + 1

2
√
m2 + 1 we find:

Zparticle
BTZ =

∞∑
n=1

1
n
e−2πr+n

√
m2+1

∞∑
r,r̄=0

e−2πin(r−−ir+)(r+ 1
2)e2πin(r−+ir+)(r̄+ 1

2) (3.3)

= −
∞∑

r,r̄=0
log

(
1− e−2πr+(2j−1)e−2πi(r−−ir+)(r+ 1

2)e2πi(r−+ir+)(r̄+ 1
2)) .

It is well-known that this partition function is a Z orbifold of the Euclidean H3 model [19].
Moreover, the Euclidean one loop determinant can be rewritten as the partition function
of a second quantized scalar field:

eZ
particle
BTZ =

∏
r,r̄=0,1,...

1
(1− e−2πi(r−−ir+)(j+r)e2πi(r−+ir+)(j+r̄))

. (3.4)

Consider the full exponent of a given single particle excitation. It equals:

single particle exponent = −2π(r+ + ir−)(j + r)− 2π(r+ − ir−)(j + r̄) = −2πiL , (3.5)

where j + r and j + r̄ are eigenvalues of left/right-moving (elliptic in the Euclidean, hy-
perbolic in the Lorentzian) group generators. The total exponent is nothing but −2πi
times the particle angular momentum L. See e.g. [10] where this exponent was discussed
in detail for the case of a fundamental string in the black hole background. In the one-loop
particle amplitude the exponent n of the projection operator (in equation (3.2)) also plays
the role of a multi-particle excitation number (e.g. in equation (3.3)) which allows us to
exponentiate the first quantized formula into a neat second quantized quantum field theory
result (3.4).

Remarkably, the same formula (3.4), after transformation, can be interpreted as the
spectrum of single particle quasinormal modes on the black hole background with in-going
boundary conditions at the horizon and a no-energy-loss requirement at infinity [25]. We
have the equality [25, 27]:

Zparticle
BTZ = −

∑
n>0,p≥0

(
log(1− qn+p+j q̄p+j) + log(1− qp+j q̄n+p+j)

)
−
∑
p≥0

log(1− (qq̄)p+j)

(3.6)
where q = e−2πi(r−−ir+). The exponents can be identified as the single particle quasinormal
mode spectrum [29] when j is tuned such that the quasinormal mode energy coincides with
a Matsubara frequency ωQN (j) = ωMatsubara [25]. In other words, the poles of the partition
function code the quasinormal mode frequencies and vice versa. The resulting spectrum
coincides with the one obtained by direct calculation [29]:

E = ±L− i(r+ ∓ r−)(2j + 2p) . (3.7)

We have thus reviewed that there is both a Euclidean orbifold reading of the partition
function in terms of a projection operator and an interpretation in terms of a quasinormal
spectrum.

– 9 –
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3.3 The BTZ Lorentzian hyperbolic orbifold

We wish to circle back now and interpret the Euclidean partition function result in terms
of the Lorentzian representation theory we introduced previously. To that end, we note
the intermediate result — see equation (3.3) —:

Zparticle
BTZ =

∞∑
n=1

1
n
e−2πr+n(2j−1)

∞∑
p,p̄=0

e−2πin(r−−ir+)(p+ 1
2)e2πin(r−+ir+)(p̄+ 1

2) . (3.8)

Recall that the discrete character of a hyperbolic group element is [14]:

χ+
j (et thyp) = e−|2j−1||t|

|sinh t| . (3.9)

We can also rewrite the result as

Zparticle
BTZ =

∑
n>0

1
n
χ+
j (eπn(r++ir−)thyp)χ+

j (eπn(r+−ir−)thyp) . (3.10)

We sketch how this result arises from the direct calculation of the Lorentzian BTZ orbifold
partition function.5 We obtain the partition function for a particle on the BTZ orbifold
from the twisted partition function on the universal cover G̃. The twisted partition function
on the cover is:

Z(hl, hr) =
∫ ∞

1/2
dj(χ+

j (hl)χ+
j (hr) + χ−j (hl)χ−j (hr)) +

∫ ∞
0

ds

∫ 1

0
dεχcs,ε(hl)χcs,ε(hr) .

(3.11)

We wish to insert an orbifold projection operator in the trace which projects onto states that
are invariant under the hyperbolic Z orbifold. To that end, we sum over the insertion of a
group generator (hl, hr) = (eπ(r++ir−)thyp , eπ(r+−ir−)thyp) raised to an arbitrary power n ∈ Z:

Zparticle
BTZ =

∑
n∈Z

∫ ∞
1/2

dj
(
χ+
j (eπn(r++ir−)thyp)χ+

j (eπn(r+−ir−)thyp)

+ χ−j (eπn(r++ir−)thyp)χ−j (eπn(r+−ir−)thyp)
)

+
∫ ∞

0
ds

∫ 1

0
dε χcs,ε(eπn(r++ir−)thyp)χcs,ε(eπn(r+−ir−)thyp) . (3.12)

The physical state condition (3.1) projects this partition function onto the spin j associ-
ated to the mass m of the state under consideration. In the calculation of the Euclidean
partition function, it was the projection of the contour integral onto the pole that played
the role of the on-shell projection. This is implemented by the Schwinger and momen-
tum integral. The prefactor 1/n arises from these integrals in the same manner as in the
Euclidean partition function calculation. By comparing the Lorentzian orbifold partition
function (3.12) with the Euclidean partition function calculation, we again recognize that
the multi-particle number n doubles as the order of the orbifold projection operator in the
partition function (3.12). It is important in making this match that the discrete character
is a function of the smallest hyperbolic eigenvalue, thus rendering the character even in n.6

5In doing so, we will assume that ir− is real which is true after analytic continuation to the Lorentzian.
6The background independent term n = 0 can again be ignored.
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3.3.1 Summary

We conclude that the Euclidean particle partition function on the BTZ black hole affords a
reading as an on-shell hyperbolic Lorentzian orbifold with respect to the angular momentum
operator L. Simultaneously, it can be read as the result of tracing over the black hole
quasinormal modes. In the next section, we generalize this treatment to the case of the
Euclidean fundamental string partition function.

4 The string spectrum on a black hole

In this section, we revisit the fundamental string spectrum on the BTZ black hole back-
ground with NSNS flux [3–11]. We improve on the analysis of the world sheet partition
function [7–11] and acquire a tentative but conjecturally rather complete picture of its
spectral content. All along the analysis it is important to keep the lessons in mind that we
take away from the particle partition functions.

The interpretation of the string partition function poses considerable extra hurdles.
The boundary circles of the Euclidean geometry allow for winding modes and we need to
disentangle the associated novelties. Because the thermal circle in the AdS3 background
is topologically non-trivial while in the black hole background it is topologically trivial,
the analytic continuation to the Lorentzian proceeds quite differently in regard to the
winding modes. Thus, while our analysis certainly draws upon the knowledge acquired in
the context of thermal AdS3 [15], it follows a very different logic and this is reflected in
the course of the calculation.

4.1 The BTZ partition function

Starting from the one loop string amplitude for thermal AdS3 [15], one obtains the corre-
sponding result for the Euclidean BTZ black hole:

Z =
∫
F

d2τ

2τ2
ZBTZZghZint (4.1)

ZBTZ = 2r+
√
kb − 2
√
τ2

∑
m,w

e
−π kb

τ2
r2
+|m−wτ |

2+ 2π
τ2

Im(Ūm,w)2

|θ1(Ūm,w, τ)|2
. (4.2)

We have defined ghost non-zero modes and internal partition function factors Zgh = |η(τ)|4

and Zint. The internal conformal field theory is a compact conformal field theory with
central charge cint = 26 −

(
3 + 6

kb−2

)
where kb is the level of the G̃ Wess-Zumino-Witten

model. We have also denoted the holonomy on which the path integral depends as

Ūm,w = (r− − ir+)(m− wτ) . (4.3)

For the notation and further details we refer to [10]. In brief, the formula is obtained by
mapping the inverse temperature β and the fugacity βµ for the angular momentum on the
thermal AdS3 side [15] to the outer and inner horizon radius of the black hole [20, 21]:(

β

2π ,
βµ

2π

)
↔ (r+, r−) . (4.4)
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The path integral in the Euclidean geometries are identical because the geometries are
related by an S-duality transformation on the boundary torus [21].

One open question about this partition function is whether one can rewrite it as a
sum of logarithms which is necessary to find an interpretation of the spectrum in terms
of single particle states. In this section we give a detailed answer to this question in two
parts: first of all we exploit the methods of [15] and perform a saddle point approximation
to the partition function. It is the discrete representations of sl(2,R) that contribute to
the saddle points and we find a stringy generalization of the particle calculation performed
in the previous section, leading to an interpretation of this part of the spectrum in terms
of quasinormal winding modes. We also provide a space-time description of these modes.
In a second part, we analyze the partition function near the poles of the integrand and
interpret the contribution near the poles as arising from multiply wound long strings. This
contribution lies in the irreducible continuous representations of sl(2,R) and it has a distinct
dependence on the boundary modular parameter.

4.1.1 Affine character reading

As a preface to expanding and contracting the formula (4.2) for the partition function, we
attempt to read it at face value. We identify the one loop vacuum amplitude as a sum
over images of a product of hyperbolic affine characters. To that end we conjecture the
existence of hyperbolic affine characters — they are generalizations of sl(2,R) hyperbolic
characters —:

χ̂(τ, t) = cos 2ts
|sinh t|

1∏
n(1− e2tqn)(1− e−2tqn)(1− qn) . (4.5)

In appendix B we provide first arguments for why these proposed characters are sensible,
based on the decomposition of the tensor product of infinite and finite dimensional repre-
sentations of sl(2,R). Given this character, we identify its denominator as proportional to
the θ1 factor in the partition function where we make the identification iπŪm,w = t. As
in the particle case, we surmise that we are summing over orbifold images labelled by m.
Moreover, as always in conformal field theory orbifolds, we have introduced twisted sectors
labelled by the winding number w. There are however important issues that remain to
be understood: first of all, we need to identify the correct spectrum of momenta s that
is integrated over in the partition function and whether there are discrete representation
characters that contribute in the Lorentzian theory; secondly we need to determine which
part of the world sheet spectrum contributes on-shell in space-time. We answer these
questions in the next two subsections.

4.2 The saddle points and the quasinormal winding modes

In this subsection, we mould the partition function into a form in which we can perform
a telling saddle point analysis. It will allow us to identify the contribution of quasinormal
winding modes to the one-loop amplitude.

We first introduce the radial momentum s-integral as in [10]:∫ +∞

−∞
ds e

−4πτ2 s2
kb−2 e−4πisIm(Ūm,w) = 1

2

√
kb − 2
√
τ2

e
−π(kb−2)

τ2
Im(Ūm,w)2

. (4.6)
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This allows one to rewrite the BTZ factor of the one loop integrand as:

ZBTZ = 4r+
∑
m,w

∫ +∞

−∞
dse
−4πτ2 s2

kb−2 e−4πisIm(Ūm,w) e
−π kb

τ2
r2
+|m−wτ |

2+ kbπ

τ2
Im(Ūm,w)2

|θ1(Ūm,w, τ)|2
. (4.7)

We follow the route taken in [22] that makes it possible to expand the θ-function in the
denominator. For this purpose we introduce the delta-function:

1 = τ2

∫ 1

0
d2s

∑
v,w′

δ2(Ūm,w − (s1 + w′)τ + s2 + v) . (4.8)

We now implement a trick, inspired by (but not identical to) the unfolding of thermal
partition functions in string theory [24], which uses the modular invariance of all factors
in the integrand of the integral over the fundamental domain. Given the invariance, each
factor is identical in each copy of the fundamental domain. Moreover, under modular
transformations, the pair of integers (v, w′) transforms as a doublet. For this particular
delta-function factor, instead of integrating a modular invariant expression over a single
fundamental domain, we integrate the vectors (v, 0) over all copies of the fundamental
domain in the strip. This restores the full doublet when transformed back to the funda-
mental domain. These integrations are therefore identical and because all other factors in
the integrand are modular invariant, they go along for the ride. Thus, we set w′ = 0 from
now on, departing strongly from the analysis of thermal partition functions in AdS3, and
unfold the Schwinger τ2-integral, such that we integrate over the strip in the τ -plane, with
|τ1| < 1

2 and 0 < τ2 <∞. We follow this up by introducing the integral representation for
the δ function [22]:

δ2(Ūm,w− s1τ + s2 + v) =
∫
d2λie

2πiλ1(r−(m−wτ1)−r+wτ2−s1τ1+s2+v)e2πiλ2(−r+(m−wτ1)−r−wτ2−s1τ2) .

(4.9)
By making use of the elliptic properties of the θ-function and after simplification we
find that

ZBTZ = 4r+τ2

∫ 1

0
d2s

∑
m,w,v

∫
d2λi

∫ +∞

−∞
ds
e
−4πτ2 s2

kb−2 e−4πisIm(Ūm,w)

|θ1(s1τ − s2, τ)|2 e2πiλ2(−r+(m−wτ1)−r−wτ2−s1τ2)

× e2πkbmwr+r−+πkbw2(−2r+r−τ1+r2
−τ2−r2

+τ2)e2πiλ1(r−(m−wτ1)−r+wτ2−s1τ1+s2+v) .

(4.10)
Given the range of the holonomy s1 one can expand the θ-functions:

1
|θ1(ν, τ)|2 =

√
zz̄

|η(τ)|6
∑
r,r̄∈Z

zr z̄r̄ SrSr̄ , (4.11)

where z = e2πiν is the fugacity and the series Sr is given by Sr =
∑∞
n=0(−1)nq

n
2 (n+2r+1).

We list further steps performed in detail in [22]: i) we perform the sum over v, which leads
to a Dirac comb for λ1. ii) The integral over s2 leads to the constraint λ1 = r− r̄ ∈ Z. iii)
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These two combine and the result is a trivial integral over λ1. Taking these three steps we
obtain

ZBTZ = 4r+τ2

∫ 1

0
ds1

∑
m,w

∫
dλ2

∫ +∞

−∞
dse
−4πτ2 s2

kb−2 e−4πisIm(Ūm,w)e2πkbmwr+r−+πkbw2(−2r+r−τ1+r2
−τ2−r2

+τ2)

×
∑
r,r̄

e2πi(r−r̄)(r−(m−wτ1)−r+wτ2)e2πiλ2(−r+(m−wτ1)−r−wτ2−s1τ2) 1
|η|6

e−2πs1τ2(r+r̄+1)SrSr̄ .

(4.12)
We use the value of the imaginary part of the holonomy ImUm,w = −(r+(m−wτ1)+r−wτ2)
and the primaries plus oscillators expansion

1
|η|6

SrSr̄ ZghZint = (qq̄)
1

4(k−2)−1∑
h,N

dh,N q
h+N q̄h̄+N̄ , (4.13)

to further simplify the worldsheet partition function ZBTZ. We suppress the summation
over the anti-holomorphic indices and labels (r̄, h̄, N̄) on the degeneracies to avoid clutter.
Substituting the resulting expression into the one loop string amplitude, we collect terms
in τ1 and τ2 in the exponent to obtain

Z = 4r+

∫
d2τ

∫ 1

0
ds1

∑
m,w,r,h,N

∫
dλ2

∫ +∞

−∞
ds dh,N e

2πim(r−(r−r̄)+r+(2s−λ2)−ikbwr+r−)

× e2πiτ1(h+N−h̄−N̄−w(r−(r−r̄)+r+(2s−λ2)−ikbwr+r−))

× e
−2πτ2

(
−2+h+N+h̄+N̄+

2s2+ 1
2

(kb−2) + kbw
2

2 (r2
+−r

2
−)+s1(r+r̄+1+iλ2)+iwr+(r−r̄)−iwr−(2s−λ2)

)
.

(4.14)

We perform the τ1-integral by solving the level matching constraint for L̄0 in terms of L0
first and perform the radial momentum s-integral next to obtain

Z = 2r+
√
kb − 2

∫
dτ2

2√τ2

∫ 1

0
ds1

∑
m,w,r,h,N

∫
dλ2 dh,N e

2πim(r−(r−r̄)−r+λ2−ikbwr+r−)

× e
−2πτ2

(
−2+2h+2N+ 1

2(kb−2) + kbw
2

2 (r++ir−)2+s1(r+r̄+1+iλ2)+iw(r++ir−)(r−r̄)+(r++ir−)wλ2

)
× e−

π(kb−2)
τ2

(mr++w(r−−ir+)τ2)2
. (4.15)

The λ2-integral can be trivially done to find the δ-function constraint that allows one to
perform the s1-integral:

s1τ2 = −mr+ + iwτ2(r+ + ir−) . (4.16)

At this point it is clear that if we are to find a real solution for s1, we need to perform an
analytic continuation, and consider the combination i(r+ + ir−) to be real. Crucially, in
the sequel we consider the continuation for which iw(r+ + ir−) is negative. In that case,
m is necessarily negative. Furthermore it is important to keep in mind that this constrains
the range of the parameter τ2 as the solution for s1 has to be in the open interval (0, 1).

0 < −mr+
τ2

+ iw(r+ + ir−) < 1 . (4.17)
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Thus, the s1 and λ2-integrals can be done and we obtain

Z = 2r+
√
kb− 2

∫
dτ2

τ
3
2

2

∑
w,r,h,N

∑
m>0

dh,Ne
2πim

(
−i(r++ir−)(r+ 1

2)−i(r+−ir−)(r̄+ 1
2)−2ir+r−w+(kb−2)r2

+w
)

× e
−2πτ2

(
−2+2h+2N+ 1

2(kb−2) +iw(1+2r)(r++ir−)+w2(r++ir−)2
)
e
−
π(kb−2)m2r2+

τ2 ,

where we have restricted the sum to just m < 0, and multiplied by a factor of two. After
these preparations, since we have not found a method yet to continue exactly, we perform
a saddle point approximation to the τ2-integral. The saddle point is at

(τ2)saddle = − (kb − 2)mr+√
1 + 4(kb − 2)

(
− 1 + h+N + iw2 (r+ + ir−)(1 + 2r) + w2

2 (r+ + ir−)2) .
(4.18)

We denote the argument of the square root as

A = 1 + 4(kb − 2)
(
−1 + h+N + i

w

2 (r+ + ir−)(1 + 2r) + w2

2 (r+ + ir−)2
)
. (4.19)

We shall soon relate this argument to the spin quantum number j. Evaluating the partition
function on the saddle point, and performing the resulting Gaussian integral, we find that

Zsaddle = −
∑

w,r,h,N

dh,N
∑
m<0

1
m
e2πim(−i(r++ir−)(r+ 1

2)−i(r+−ir−)(r̄+ 1
2)−2ir+r−w+(kb−2)r2

+w−ir+
√
A)

= −
∑

w,r,h,N

dh,N log
(
1− e−2πi(−i(r++ir−)(r+ 1

2)−i(r+−ir−)(r̄+ 1
2)−2ir+r−w+(kb−2)r2

+w−ir+
√
A)) .

We have obtained a logarithm that is the result of resummation over the multiple short
string contributions to the one loop amplitude.

Let us interpret this result by exploiting properties of the worldsheet conformal field
theory that describes the BTZ black hole background [3–11]. The first details to recall are
the worldsheet conformal dimensions of the short strings in the Euclidean theory. These
are [10]:

L0 = −j(j − 1)
kb − 2 + i(j + r)(r+ + ir−)w + kbw

2

4 (r+ + ir−)2 + h+N

L̄0 = −j(j − 1)
kb − 2 − i(j + r̄)(r+ − ir−)w + kbw

2

4 (r+ − ir−)2 + h̄+ N̄ . (4.20)

We imposed the level matching condition L0 = L̄0 while integrating over τ1 (and requiring
translation invariance in the world sheet coordinate σ) and the on-shell conditions therefore
reduce to L0 = 1. Solving for the spin j, we find the relation

2j − 1− i(kb − 2)w(r+ + ir−) =
√
A . (4.21)
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This relation allows us to interpret the exponent that appears in the partition function
for the saddle point contribution intuitively. We note that with our analytic continuation,
both the square root as well as the spin j are real. Substituting for A, we obtain

Zsaddle = −
∑

r,h,N,w≥0
dh,N log

(
1− e−2πi(−i(r++ir−)(j+r)−i(r+−ir−)(j+r̄)−ikbr+r−w)

)
.

(4.22)

We recognize the exponent as the eigenvalue of the operator −2πiLstring, where Lstring is
the quantum angular momentum operator [4] in the Euclidean theory

Lstring = 1
w

(h+N − h̄− N̄)

= −i(r+ + ir−)(j + r)− i(r+ − ir−)(j + r̄)− ikbwr+r− . (4.23)

Thus, the full saddle point contribution can be given the interpretation as the trace:

Zsaddle = −
∑
m<0

1
m
Trdiscrete saddlee

2πimLstring . (4.24)

The “multi-particle” number m is the dual of the angular momentum (as in [10]). We
recognized this as the logarithm of the single string trace:

Zsingle string = Trdiscrete saddlee
−2πiLstring . (4.25)

This trace formula is a stringy generalization of the particle formula (3.5) in section 3.

4.2.1 The bound on the spin

As we have seen in the inequality (4.17) the constraint that 0 < s1 < 1 translates to a
bound on τ2. Combining the saddle point equation with the expression (4.21) for the square
root in terms of the spin one can write

− mr+
(τ2)saddle

+ iw(r+ + ir−) = 2j − 1
kb − 2 . (4.26)

Substituting this into the constraint (4.17) we find the bound on spin:
1
2 < j <

kb
2 . (4.27)

We note that there is an intuitive interpretation of this bound. In the context of a su(2)
Wess-Zumino-Witten model for instance, we can argue that a spin j that reaches the level
kb/2 will create a wiggle in space-time which is of the string scale and equivalent to an
oscillator mode. Thus, the bound on the spin is interpreted as a rewriting of a higher
spin excitation as a string oscillation. The same reasoning holds in sl(2,R). When the
spin j reaches the curvature scale squared kb/2, angular momentum turns into string scale
oscillations, also in non-compact, locally AdS3 spaces. For global AdS3, this bound was
indeed found to hold in [15, 23]. The physical phenomenon that we described is independent
of the global structure of the space-time and thus we may expect the bound on spin to be
independent of the background parameters (r+, r−) of the asymptotically AdS3 geometry.
Our saddle point analysis confirms that this is so.
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4.2.2 The quasinormal winding modes

We have derived through analytic continuation and saddle point evaluation of the one
loop vacuum amplitude a contribution of discrete single string modes. It is natural to
ask for a more direct space-time description of this contribution. We propose to use this
contribution to identify space-time frequencies of quasinormal winding modes following
the method of [25] which consists in exploiting poles of the partition function to determine
quasinormal frequencies. We consider the contribution to the partition function from a
primary twisted string, fixing the winding w and the internal conformal dimension h. We
concentrate on the leading terms in the descendant degeneracy function Sr(q), which is a
constant equal to 1 for r ≥ 0 (and subleading for r < 0), and similarly for the quantum
number r̄. In other words, we concentrate on primaries. Thus, we restrict to r ≥ 0 and
r̄ ≥ 0 and start out with the expression

Z
(w)
saddle =

∞∑
|m|=1

∑
r,r̄≥0

1
|m|

e
−2π|m|

(
(r++ir−)

(
j+r−i kbw(r++ir−)

4

)
+(r+−ir−)

(
j+r̄+i kbw(r+−ir−)

4

))
.

(4.28)

The expansion of the logarithm can then be rewritten, following [25–27] as — see also
section 3 —:

Z
(w)
saddle = −

∑
n>0,p≥0

log
(

1− qn+p+j+ kbwr−
2 q̄p+j+

kbwr−
2

)
−

∑
n>0,p≥0

log
(

1− qp+j+
kbwr−

2 q̄n+p+j+ kbwr−
2

)
+

−
∑
p≥0

log
(

1− (qq̄)p+j+
kbwr−

2

)
.

(4.29)
Here we have defined q = e−2π(r++ir+) and q̄ = e−2π(r+−ir−). By the logic of [25], which we
follow in appendix C, identifying the poles of eZsaddle with the locations of the quasinormal
modes, we propose that there are winding quasinormal modes at frequencies:

Estring = ∓Lstring − ikbwr+r− − i(r+ ± ir−)(2p+ 2j) (4.30)
Estring = ∓Lstring − ikbwr+r− + i(r+ ± ir−)(2p+ 2j + 2kbwr−) . (4.31)

It will be interesting to see whether this treatment of primaries only holds up to closer
scrutiny. Unfortunately, we are unable to provide a similar calculation for descendants
at this stage. An independent and more direct argument for the validity of part of the
quasinormal winding spectrum is provided in the next subsection.

4.2.3 A space-time description of the quasinormal winding strings

One way to describe the string modes we identified above is in terms of a curved dou-
bled field theory, namely a doubled field theory [28] adapted to our curved, orbifolded
group manifold. Consider generalized scalar wave-functions Φdouble of string states with
a dependence on the coordinates (t, φ, r) of the BTZ metric and on top of that a wind-
ing dependence on a dual coordinate wD, Φdouble = Φ(t, φ, r)eiwwD . We think of the left
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and right-moving Virasoro constraints as imposing generalized wave operator equations
(involving derivatives ∂φ,t,r but also ∂wD) on the Lorentzian wave-functions Φdouble:

L0 − 1 = � + h+N − 1− w(r+ − r−)J − kb
4 (r+ − r−)2w2

L̄0 − 1 = � + h̄+ N̄ − 1− w(r+ + r−)J̄ − kb
4 (r+ + r−)2w2 , (4.32)

where we denoted the string zero modes of the hyperbolic currents by J and J̄ — see [4, 10]
— and the wave-operator � equals the quadratic Casimir of the representation in which
the ordinary wave-function Φ transforms. The wave-function Φ codes the dependence on
the time t and angular coordinate φ of the string through (Estring, Lstring) where Lstring is
related to the −i∂φ eigenvalue Lφ through [4]

Lstring = Lφ + kbwr+r− . (4.33)

The time translation charge Estring and angular charge Lφ are the ones that appear in the
quadratic wave-operator � that involves time and angular derivatives. The current zero
modes are related to the string energy and angular momentum by the relations [4]:7

(r+ − r−)J = Estring − Lstring + kbwr+r−
2

(r+ + r−)J̄ = Estring + Lstring − kbwr+r−
2 . (4.34)

A given wave-function Φdouble will satisfy the physical state conditions if on the one hand
the wave-function Φ satisfies the ordinary wave-equation �Φ = −j(j − 1)/k, and on the
other hand, the string energy and angular momentum are chosen such that the on-shell
conditions L0 = 1 = L̄0 are satisfied.

We choose the boundary conditions on the wave-function Φ in a discrete representation
j to be in-going at the horizon and without energy loss at infinity. The modes satisfying
these boundary conditions are the quasinormal modes. The analysis of these wave-functions
in the BTZ black hole background is well-known [29]. There is a spectrum of quasinormal
modes that satisfy one of the two equations [29]:

iJ = j + p , −iJ̄ = j + p̄ (4.35)

where p ≥ 0 or p̄ ≥ 0 is a positive integer. We have used here that it is the string eigenvalues
that determine the time and angular dependence of the wave-functions. For instance, if we
assume the first equation in (4.35) is satisfied, we find the quasinormal frequencies:

Estring = Lstring − kbwr+r− − i(r+ − r−)(2j + 2p) , (4.36)

where the string angular momentum Lstring is quantized. This is a stringy modification of
the particle quasinormal mode spectrum (3.7). We note that these modes, derived from a
space-time perspective, match a tower (4.30) of quasinormal modes that we found through

7Our notation matches [10].
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the world sheet approach (after analytic continuation to the Lorentzian). To reproduce the
remaining towers is a challenge, since one needs to model the spin and angular momentum
of the excitations more accurately in the space-time wave-function Φdouble. This requires
further development of the curved doubled field theory that we introduced.

4.3 The long string poles

In this second part, we treat the piece of the partition function that is missed by the saddle
point analysis of the previous section. These are the divergent contributions that arise
from the poles of the θ1 function in the denominator.8 Such a pole was analyzed in [10].
Our analysis will be more complete.

We start over with the one loop string amplitude (4.1):

Z = 2r+
√
kb − 2

∫
F

d2τ

τ
3/2
2

∑
m,w

e
−π kb

τ2
r2
+|m−wτ |

2+ 2π
τ2

Im(Ūm,w)2

|θ1(Ūm,w, τ)|2
|η(τ)|4 Zint . (4.37)

We are interested in the behaviour of the partition function near its singularities, which
occur at the zeroes of the θ-function. We use the product form of the θ-function

η2(τ)
θ1(Ūm,w, τ)

= q
1
12

2q
1
8 sin πŪm,w

∞∏
n=1

(1− qn)
(1− e2πiŪm,wqn)(1− e−2πiŪm,wqn)

. (4.38)

We have poles at those values of τ for which:

Ūm,w + τpole`+ p = 0 , or τpole = p+m(r− − ir+)
w(r− − ir+)− ` (4.39)

where p and ` are integers. The set of poles again transforms as a doublet under SL(2,Z)
modular transformations and by the same unfolding logic as before, we can concentrate on
the poles with ` = 0 in the strip. For the case that ` = 0, we see that it is the zero of the
sine-function that leads to singularities in the partition function. We can approximate this
factor by

sin πŪm,w ∼ (−1)pπ(r− − ir+)w(τ − τpole) , (4.40)

and the poles in the τ -plane are located at

τpole =
(
m

w
+ pr−
w(r2

− + r2
+)

)
+ i

pr+
w(r2

− + r2
+)

. (4.41)

We concentrate on the modes with strictly positive winding w, such that for τ2 > 0, we only
have poles with p ≥ 1. The contribution from this pole to the τ -integral can be evaluated
and we find a logarithmic divergence:

1
π2w2(r2

+ + r2
−)

∫
d2τ

|τ − τpole|2
= 2
πw2(r2

+ + r2
−)

log ε . (4.42)

8These were missed because we assumed s1 to be in the open interval 0 < s1 < 1 when performing the
expansion of the θ1 function.
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Here, we have defined τ − τpole = ε. We now evaluate the leading term in the partition
function near the pole in the τ -plane, that is the coefficient of the logarithmically divergent
term. For starters we see that the non-trivial exponent simplifies drastically

− πkb
τ2
r2

+|m− wτ |2 + 2π
τ2

Im(Ūm,w)2 = −πkbpr+w . (4.43)

The contribution from the ghost, internal conformal field theory and rest of the θ-function
can again be succinctly expressed in a q-expansion:

(qq̄)
1

4(k−2)−1∑
h,N

dh,N q
h+N q̄h̄+N̄ . (4.44)

The overall exponent is fixed by the central charges of the world sheet conformal field
theories and dh,N denotes the degeneracies of states with the given quantum numbers. In
this expression we substitute τ = τpole to obtain the leading contribution to the partition
function. Collecting the various pieces, we find that

Zpole = 1
π

log ε
∑
m,w,p

∑
h,N

dh,N

√
(kb − 2)(r2

+ + r2
−)

p3r+w
e2πim

w
(h+N−h̄−N̄)

× e
−2πp

(
kbwr+

2 + 1
w(r++ir−)

(
h+N−1+ 1

4(kb−2)

)
+ 1
w(r+−ir−)

(
h̄+N̄−1+ 1

4(kb−2)

))
. (4.45)

We now introduce the s-integral:

∫ ∞
−∞

ds e
− 2πp

w

2r+
r2++r2−

s2
kb−2 = 1

2

√
w(r2

+ + r2
−)(kb − 2)
pr+

. (4.46)

The pole contribution is thereby rewritten as

Zpole = 2
π

log ε
∫ ∞
−∞

ds
∑
m,w,p

∑
h,N

dh,N
1
pw

e2πim
w

(h+N−h̄−N̄)

× e
−2πp

(
kbwr+

2 + 1
w(r++ir−)

(
s2+ 1

4
kb−2 +h+N−1

)
+ 1
w(r+−ir−)

(
s2+ 1

4
kb−2 +h̄+N̄−1

))
. (4.47)

The sum over the integer m, where −1/2 < m/w ≤ 1/2 for the pole to lie in the strip,
implies that h+N−h̄−N̄ is an integer multiple of w. This exponential factor corresponds to
the insertion of the operator e2πimL in the amplitude. The sum over m imposes the angular
momentum constraint and adds a factor of w, which implies that the pole contribution takes
the logarithmic form

Zpole= 2
π

logε
∫ ∞
−∞

ds
∑
w,h,N

dh,N

∞∑
p=1

1
p
e
−2πp

(
kbwr+

2 + 1
w(r++ir−)

(
s2+ 1

4
kb−2 +h+N−1

)
+ 1

w(r+−ir−)

(
s2+ 1

4
kb−2 +h̄+N̄−1

))

= 2
π

logε
∫ ∞
−∞

ds
∑
w,h,N

dh,N log
(
1−e−2πf(s)) . (4.48)
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In order to write the second equality, we have recognized the sum over the positive integers
p as a sum over multi-long-string contributions that generates a logarithm. We identify
the exponent f(s) associated to a single long string with radial momentum s as

f(s) = kbw(r+ + ir−)
4 + 1

w(r+ + ir−)

(
s2 + 1

4
kb − 2 + h+N − 1

)

+ kbw(r+ − ir−)
4 + 1

w(r+ − ir−)

(
s2 + 1

4
kb − 2 + h̄+ N̄ − 1

)
, (4.49)

where we need to impose the level matching condition N + h − N̄ − h̄ = wLstring, with
Lstring being the angular momentum. We recall that for the long strings the left and right
worldsheet conformal dimensions are [10]:

L0 =
s2 + 1

4
kb − 2 + h+N + w(r+ + ir−)(iJ) + kbw

2

4 (r+ + ir−)2 (4.50)

L̄0 =
s2 + 1

4
kb − 2 + h̄+ N̄ + w(r+ − ir−)(−iJ̄) + kbw

2

4 (r+ − ir−)2 , (4.51)

where (iJ) and (−iJ̄) are identified with the zero modes of the worldsheet currents in the
w-twisted sector. Solving for the on-shell conditions L0 = L̄0 = 1, we can solve for these
zero modes in terms of the internal dimensions and the twist w. We thereby recognize the
combination that appears in the exponent in (4.48) as

− 2πf(s) = 2π(iJ + (−iJ̄)) . (4.52)

The current zero modes are related to the Euclidean energy and angular momentum of the
twisted string [4, 10]:

Estring = (r+ + ir−)(iJ) + (r+ − ir−)(−iJ̄) (4.53)
Lstring = −(r+ + ir−)(iJ) + (r+ − ir−)(−iJ̄)− ikbwr+r− . (4.54)

While these energy and angular momentum generators were initially discussed classically
in [4, 10], we stress that these expressions are quantum-mechanically exact [3–7]. Indeed,
there are unique affine (purely holomorphic or purely anti-holomorphic) currents whose zero
modes generate time and angular translations in the quantum mechanical Wess-Zumino-
Witten model. In detail, we follow the quantum mechanically exact expressions derived
in [4].9 We thus have the exponent

−2πf(s) = 2πr+
r2

+ + r2
−
Estring + 2πir−

r2
+ + r2

−

(
Lstring −

kbw

2 JBH

)
. (4.55)

9The classical expressions are protected by holomorphy and even the level does not renormalize in the
quantum current algebra. The horizon radii are also protected from renormalization in this Wess-Zumino-
Witten model. A potential total derivative term can be eliminated by demanding that the current have a
single, either holomorphic or anti-holomorphic component. These are the currents that are to be used in
expressions (4.53) and (4.54).
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We recall the definition of the boundary modular parameter for the BTZ black hole. It is
defined as the S-dual of the boundary modular parameter of the thermal AdS3 background,
which is given by [15]

τAdS3 = 1
2π (βµ+ iβ) . (4.56)

Here β is the inverse temperature and µ is the chemical potential for angular momentum
in the thermal AdS3 space-time [15]. In order to write down the partition function of the
Euclidean BTZ background, recall that we made the substitutions(

β

2π ,
βµ

2π

)
= (r+, r−) . (4.57)

Thus, the boundary modular parameter corresponding to the Euclidean BTZ background
is given by

τBTZ = − 1
τAdS3

= − 1
r− + ir+

= −r− − ir+
r2

+ + r2
−
. (4.58)

Putting all this together, one can rewrite (4.55) in terms of the boundary modular param-
eter of the Euclidean BTZ background and interpret the pole contribution to the partition
function as the trace over the multiply wound long strings:

Zpole = 2
π

log εTrmulti-long-strings in BTZ
[
qL0

BTZ q̄
L0
BTZ

]
, (4.59)

where qBTZ = e2πiτBTZ , and we have defined

L0 = −Estring − L̃string
2 , L0 = −Estring + L̃string

2 , (4.60)

with L̃string = Lstring − kbw
2 JBH .

It is an interesting challenge to interpret our final formula (4.59), for multiple reasons.
Firstly, the trace has Hamiltonian insertions L0 that have the opposite sign relation to the
energy of states. We recall that long strings in the BTZ background have negative energy,
as was confirmed by a probe string calculation in [10]. Our definition of the operator
L0 + L0 in (4.60) leads it to have positive eigenvalues as one may expect of a boundary
scaling operator. Secondly, we note that there is no manifest invariance under the T-
transformation τBTZ → τBTZ + 1 in our final result. We explain in appendix D that this
invariance is lacking when we concentrate on the contribution of a single BTZ black hole
background and that it can be restored by summing over contributions from a class of
background geometries.

A naive argument would run that the long strings reach infinity and we may therefore
expect to be able to write the pole contribution Zpole to the one-loop integrand as a trace
in the boundary conformal field theory with modular parameter τBTZ. We note that our
final expression takes this form with both a modification in the sign of the energy operator
and in the twist operator Lstring which is shifted by a contribution proportional to the
winding and the black hole angular momentum.10 However, we note that a winding string

10At zero angular momentum JBH or zero winding, the second point is moot.
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reaching asymptotic infinity has a drastic influence on the boundary conformal field theory
— it even changes the central charge of the boundary conformal field theory. Thus, it is
intriguing that we reach a final expression (4.59) that is close to an ordinary conformal
field theory trace.

Finally, we wish to provide an overview of the aspects in which the short and long string
contributions are alike and different. Firstly, we want to stress that the expressions (4.24)
and (4.47) express respectively the short string and the long string contributions in terms of
the trace of an orbifold projection operator e2πimL. Indeed, the full partition function can
be written as such a trace and so can its individual contributions [10]. Secondly, we have
reshaped the short string contribution (4.28) to interpret it in terms of a trace over modes
with particular space-time on-shell energies. We have manipulated the long string contri-
bution (4.48) in order to obtain a seemingly different interpretation in terms of on-shell
space-time modes. It would certainly be interesting to understand this distinction better.

5 Conclusions

In this paper, we studied the path integral derivation of the Hilbert space of a particle on
the non-compact universal cover G̃ of SL(2,R). The group G̃ doubles as the AdS3 space-
time geometry and we described how to twist and orbifold the particle partition function on
the group, giving a direct algebraic handle on the particle partition sum in thermal AdS3
and BTZ black hole backgrounds. Indeed, we were able to describe these partition sums via
an elliptic and hyperbolic orbifold procedure respectively. We thus showed that the BTZ
particle partition function affords not only a Euclidean but also a Lorentzian hyperbolic
orbifold interpretation, as well as a description in terms of a sum over quasinormal modes.

We exploited the lessons we learnt in the context of the first quantized particle to ad-
vance our understanding of the string theory spectrum in the BTZ black hole background
with NSNS flux. We wrote the one loop vacuum amplitude as a sum over multi-string con-
tributions corresponding to a single string spectrum that we were able to identify. Firstly,
we found discrete winding quasinormal modes in a saddle point approximation to the par-
tition function and described their interpretation in space-time. Secondly, we identified
divergent pole contributions that correspond to winding long strings in the spectrum of
string theory on the black hole background. We thus confirmed the identification of con-
tributions from [10] and put them on a considerably firmer footing.

While we believe that our results constitute a significant step forward, more work is
needed. While hyperbolic characters of groups with sl(2,R) algebra are well-understood,
the hyperbolic characters of the affine sl(2,R) algebra deserve further study. These can
serve the Lorentzian and algebraic interpretation of the partition function well. Indeed, we
have made several approximations in our claim that we identified the two main contribu-
tions to the Euclidean partition function, namely an approximation of the integrand near
poles and the saddle point approximation to the discrete contribution. While these contri-
butions are understood to be neatly complementary, they are not as closely intertwined yet
as in their (thermal) AdS3 counterpart. A better understanding of the state space origin of
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affine hyperbolic characters could help in closing this gap. Secondly, the deceptively simple
long string pole contribution poses the challenge to provide a transparent interpretation.

More generally, we hope that our understanding of a quantum theory of gravity on
black hole backgrounds, both in terms of the perturbative and non-perturbative proper-
ties of the spectrum and interactions may advance further, whether through speculative
conjectures or laying bricks one by one.
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A An elliptic orbifold of AdS3

We perform an elliptic orbifold on the partition function for a particle on AdS3 = G̃. This
is a group theoretic procedure to compactify time. Naive analytic continuation relates the
closed time AdS3 manifold to Euclidean thermal AdS3. One may therefore expect that the
partition functions on these backgrounds agree. In this case, in which the (thermal) circle
is topologically non-trivial, the analytic continuation proceeds smoothly.

A.1 Compactifying time

We derive the partition function for a particle on a closed time AdS3 manifold with an
arbitrary radius as an orbifold of AdS3 = G̃. We start with the twisted covering group
partition function:

Z(hl, hr) =
∫ ∞

1/2
dj (χ+

j (hl)χ+
j (hr) + χ−j (hl)χ−j (hr)) +

∫ ∞
0

ds

∫ 1

0
dε χcs,ε(hl)χcs,ε(hr) ,

(A.1)

with left and right Cartan twists (hl, hr). To compactify the Lorentzian AdS3 time
direction, we choose to sum over powers of the elliptic projection operator generator
(hl, hr) =

(
eiβ

Lor
L tell , eiβ

Lor
R tell

)
. We allow for a different left-right elliptic twist to not only

compactify time, but also introduce a fugacity for the AdS3 angular momentum. We find
the orbifold partition function:

Zparticle
El.O. AdS3

=
∑
n∈Z

∫ ∞
1/2

dj
(
χ+
j

(
einβ

Lor
L tell

)
χ+
j

(
einβ

Lor
R tell

)
+ χ−j

(
einβ

Lor
L tell

)
χ−j

(
einβ

Lor
R tell

))
.

(A.2)

We used the expressions for the sl(2,R) characters evaluated on elliptic group elements (see
e.g. [14]). The continuous characters are zero up to a delta-function contribution which we

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
1
7
2

ignore. To obtain a more explicit expression for the partition sum, we can write out the
discrete characters for elliptic group elements:

Zparticle
El.O. AdS3

=
∑
n∈Z

∫ ∞
1/2

dj

{
einjβ

Lor
L

1− einβLor
L

einjβ
Lor
R

1− einβLor
R

+ e−injβ
Lor
L

1− e−inβLor
L

e−injβ
Lor
R

1− e−inβLor
R

}
. (A.3)

If we view our model as a first quantized particle model on the group manifold and introduce
an einbein modulus in the one-loop integral, we find:

Zparticle
1-loop =

∫ ∞
0

dt

2t
∑
n∈Z

∫ ∞
1/2

dj

{
einjβ

Lor
L

1− einβLor
L

einjβ
Lor
R

1− einβLor
R

+ e−injβ
Lor
L

1− e−inβLor
L

e−injβ
Lor
R

1− e−inβLor
R

}
e−itj(j−1)+it l

2m2
4 . (A.4)

To relate the Lorentzian orbifold result to the Euclidean thermal partition function, we
rewrite the expression in terms of the quantity j − 1/2:

Zparticle =
∫ ∞

0

dt

2t
∑
n∈Z

∫ ∞
1/2

dj

 ein(j−
1
2)βLor

L

−2i sin(nβLor
L )

ein(j−
1
2)βLor

R

−2i sin(nβLor
R )

+e−in(j−
1
2)βLor

L

2i sin(nβLor
L )

e−in(j−
1
2)βLor

R

2i sin(nβLor
R )

 e−it(j− 1
2)2+i t4 +it l

2m2
4 . (A.5)

The n = 0 term corresponds to a βLor
L,R independent divergence associated to a renormaliza-

tion of the cosmological constant — we set n 6= 0 from now on. Moreover, as an expression
of j−1/2 the integrand is even (for each value of n), and we can unfold the j−1/2 integral
into an integral from −∞ to +∞. We find, with j = 1/2 + p:

Zparticle = −
∫ ∞

0

dt

8t
∑
n 6=0

∫ ∞
−∞

dp
einpβ

Lor
L

sin(nβLor
L )

einpβ
Lor
R

sin(nβLor
R )

e−itp
2+i t4 +it l

2m2
4 . (A.6)

After performing the Gaussian p integral and analytically continuing in the world sheet
time t, we recognize the Euclidean heat kernel expression — see e.g. [19] or equation (3.2)
— up to an overall constant of which we did not keep track.

A.2 Summary

We have travelled a smooth path from the Lorentzian orbifold to the Euclidean partition
function. Note that this happened despite the fact that in the Lorentzian, all on-shell
states are in discrete representations, while in the Euclidean, all unitary representations
are in the continuous representations. In the bulk of the paper, we examine a hyperbolic
orbifold in which the thermal (Lorentzian time) circle is topologically trivial.
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B Hyperbolic affine characters

In this short appendix, we make a simple point about the proposed hyperbolic affine
characters. Firstly, we recall that discrete representations of sl(2,R) with lowest weight
state characterized by j have a hyperbolic character — see e.g. [14] —:

χ+
j (et thyp) = e−(2j−1)t

|sinh t| . (B.1)

Strictly speaking, this is a distribution on the space of functions on the group. We propose
that a hyperbolic character of the corresponding Verma current algebra module is given by:

χ̂+
j (et thyp) = e−(2j− 1

2)t

|sinh t|
1∏∞

n=1(1− qn)(1− e2tqn)(1− e−2tqn) . (B.2)

The logic is simple. We only illustrate it at the first level and hope the sequel will be
clear. Firstly, consider the lowest weight representation of the current algebra built on the
primary representation of spin j. Consider it in an elliptic basis. Next, contemplate the first
level descendants of the representation, corresponding to the coefficient of the power q in
the expansion of the character. In the elliptic basis, it is clear how to decompose the tensor
product of the discrete lowest weight representation D+

j of the current algebra primary
and the adjoint representation of sl(2,R) made up of the current components J±,3−1 . We
obtain representations D+

j ⊗adj = D+
j−1⊕D

+
j ⊕D

+
j+1. This statement is basis independent.

Therefore the character of the representation of the global sl(2,R) representation at this
level is necessarily χ+

j−1 + χ+
j + χ+

j+1. For a hyperbolic group element, this character
evaluates to the coefficient of q in the proposed affine character (B.2). In the case of the
affine continuous character used in the bulk of the paper, the same derivation holds true.
The resulting characters are characters of (often non-unitary) continuous representations.
The result of this reasoning is stated in equation (4.5).

C Derivation of the quasinormal winding frequencies

In this appendix, we start from the partition sum (C.1) and use the method of identifying
poles in the Matsubara frequency dependence to surmise quasinormal winding mode fre-
quencies [25]. The technical details mostly follow [26, 27] but there are some differences
due to the shift of the angular momentum of the string by a term proportional to the
winding and black hole angular momentum.

We begin with the saddle point contribution (4.28) to the partition function from the
sector with winding w and rewrite it:

Z
(w)
saddle =

∞∑
|m|=1

∑
r,r̄≥0

1
|m|

e
−2π|m|

(
(r++ir−)

(
j+r+ kbwr−

2

)
+(r+−ir−)

(
j+r̄+ kbwr−

2

))

=
∞∑
|m|=1

1
|m|

(qq̄)
|m|
(
j+ kbwr−

2

)
1

(1− q|m|)(1− q̄|m|)
. (C.1)
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In the second line we have defined the space-time nomes q = e−2π(r++ir+) and q̄ =
e−2π(r+−ir−). By manipulating the summation as in [27], we can rewrite the expression
as a sum of three logarithms:

Z
(w)
saddle=−

∑
n>0,p≥0

log
(

1−qn+p+j+ kbwr−
2 q̄p+j+ kbwr−

2

)
−

∑
n>0,p≥0

log
(

1−qp+j+ kbwr−
2 q̄n+p+j+ kbwr−

2

)
+

−
∑
p≥0

log
(

1−(qq̄)p+j+ kbwr−
2

)
. (C.2)

We exponentiate to rewrite:

exp(−2Z(w)
saddle) =

∏
n>0,p≥0

(1− qn+p+H q̄p+H)2 ∏
n>0,p≥0

(1− qp+H q̄n+p+H)2 ∏
p≥0

(1− (qq̄)p+H)2 .

We have defined an effective boundary conformal dimension H = j+ kbwr−
2 . We shall denote

the exponential by P1P2P3, where each of the Pi corresponds to one of the three infinite
products. We now show how this can be equivalently written in a product form in terms
of (winding) quasinormal modes. We define 2πTR = (r+ + ir−) and 2πTL = (r+ − ir−).
We shall consider the first two factors in tandem, and, following [25–27], it is possible to
obtain the expression:

P1P2 =
∏

n>0,p≥0,`

[( 2TR
TR + TL

`+ 4πiTLTRn
TR + TL

+ 2πiTR(2p+ 2H)
)

×
(
− 2TL
TR + TL

`+ 4πiTLTRn
TR + TL

+ 2πiTL(2p+ 2H)
)]

×
∏

n<0,p≥0,`

[( 2TR
TR + TL

`+ 4πiTLTRn
TR + TL

− 2πiTR(2p+ 2H)
)

×
(
− 2TL
TR + TL

`+ 4πiTLTRn
TR + TL

− 2πiTL(2p+ 2H)
)]

.

(C.3)

We now recall the Matsubara frequencies [25–27]

ωn = TR − TL
TR + TL

`Φ + 4πiTLTR
TR + TL

n , (C.4)

where the angular momentum lφ associated to translation in the angular coordinate φ in
the BTZ black hole background equals

`Φ = `+ ikbwr+r− ,

and we have identified Lstring = ` ∈ Z to be the quantized string angular momentum. The
quantum number n is the quantized Euclidean time momentum. Then, re-expressing all
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quantities in terms of the horizon radii r±, we obtain

P1P2 =
∏

n>0,p≥0,`
[(ωn + `+ ikbwr+r− + i(r+ + ir−)(2p+ 2j))

× (ωn − `+ ikbwr+r− + i(r+ − ir−)(2p+ 2j))]

×
∏

n<0,p≥0,`
[(ωn + `+ ikbwr+r− − i(r+ + ir−)(2p+ 2j + 2kbwr−))

× (ωn − `+ ikbwr+r− − i(r+ − ir−)(2p+ 2j + 2kbwr−))] .
(C.5)

Let us now consider the remaining factor

P3 =
∏
p≥0

(1− (qq̄)p+H)2 . (C.6)

By following the same sort of logic one can check that we simply obtain the n = 0 factor
in the first product in (C.5), with ω0 = TR−TL

TR+TL `Φ. From the product of P1, P2 and P3
one can then read off the quasinormal modes by conjecturally generalizing the principle
of [25] that the quasinormal frequencies arise as zeroes of this expression as a function of
the Matsubara frequencies ωn. For frequencies ωn≥0, we have energies Estring = ω, with

ω = −`− ikbwr+r− − i(r+ + ir−)(2p+ 2j)
ω = +`− ikbwr+r− − i(r+ − ir−)(2p+ 2j) , (C.7)

while for frequencies with ωn<0, we have the modes

ω = −`− ikbwr+r− + i(r+ + ir−)(2p+ 2j + 2kbwr−)
ω = +`− ikbwr+r− + i(r+ − ir−)(2p+ 2j + 2kbwr−) . (C.8)

In Lorentzian conventions, for frequencies ωn≥0, we have

ω = −`+ kbwr+r− − i(r+ − r−)(2p+ 2j)
ω = +`+ kbwr+r− − i(r+ + r−)(2p+ 2j) , (C.9)

while for frequencies ωn<0, we have the modes

ω = −`+ 2kbwr2
− − kbwr−r+ + i(r+ − r−)(2p+ 2j)

ω = +`− 2kbwr2
− − kbwr−r+ + i(r+ + r−)(2p+ 2j) . (C.10)

These are the winding quasinormal mode frequencies quoted in equations (4.30) and (4.31).
We wish to stress that the assumption that the zeroes in the Matsubara frequencies indeed
also give the frequencies of fundamental string winding modes could benefit from further
corroboration. We provide an independent argument for one of these towers of modes in
the bulk of the paper.
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Symmetries. We perform a mild check on our proposed spectrum. A Z2 symmetry of
the world sheet action in the BTZ background consists in the combined action of world
sheet parity, r− ↔ −r− as well as the flip φ ↔ −φ of the BTZ angular coordinate φ.
The first operation combined with the third leaves the B-field invariant while the second
combined with the third leaves the metric invariant. Moreover, the first combined with
the second action leaves the orbifold group action invariant. On the quantum number
Lstring = ` this symmetry acts as Lstring ↔ −Lstring. When we act on our spectrum, we
note that (`, r−)↔ (−`,−r−) leaves the set of modes indexed by the integer w invariant.

D Modular equivalence classes

The solid torus corresponding to Euclidean thermal AdS3 or Euclidean BTZ has a boundary
torus with modular parameter τs.t.. As discussed in pedagogical detail in [30], the fact
that the non-contractible cycle in the solid torus is ambiguous (up to the addition of the
contractible cycle) makes for the more accurate statement that a given bulk geometry
corresponds to an equivalence class of boundary modular parameters τs.t.. In turn, this
implies that the path integral partition function must be invariant under the equivalence
relation.

For the BTZ path integral (4.2) under study in the bulk of the paper this implies that
it must be invariant under the transformation:

r− → r− + 1 . (D.1)

Using the elliptic property of the θ1 function:

|θ1(Ūm,w +m− wτ, τ)|2 = |q|−w2
e−4πIm(Ūm,w)w , (D.2)

it is straightforward to varify that the path integral (4.2) is indeed invariant under the
transformation (D.1).

We note a crucial consequence of this invariance. For the thermal AdS3 partition
function, the invariance (D.1) translates into the invariance of the partition function under
the transformation βµ → βµ + 2π where βµ functions as the angular chemical potential.
Thus, the partition function is periodic in the angular fugacity due to invariance under the
T transformation τs.t. → τs.t.+1. For the Euclidean BTZ geometry however, the periodicity
in the inner horizon radius r− implies periodicity in the real part of −1/τs.t.. Once more
this is a consequence of the thermal circle being topologically non-trivial for thermal AdS3
and topologically trivial for BTZ. To restore periodicity in the real part of τs.t. for the BTZ
partition function, we may sum over bulk geometries that differ by the twist τs.t. → τs.t. +1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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