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Abstract

We considered a simple model describing the propagation of an epi-

demic on a geographical network. The initial rate of growth of the epi-

demic is the maximal eigenvalue of a matrix formed by the susceptibles

and the graph Laplacian. Assuming the vaccination reduces the suscepti-

bles, we define different vaccination strategies: uniform, local, or follow-

ing a given vector. Using perturbation theory and the special form of the

graph Laplacian, we show that it is most efficient to vaccinate along with

the eigenvector corresponding to the largest eigenvalue of the Laplacian.

This result is illustrated on a 7 vertex graph, a grid, and a realistic exam-

ple of the french rail network.

KeywordsSIR epidemic model, Graph, Matrix perturbation

AMS indices 92D30, 05C50, 47A55

1 Introduction

The propagation of an epidemic in a country or an ensemble of countries can be
modeled using a graph where each vertex has susceptible-infected (SI) variables
and where the geographic coupling is realized through a connection matrix. A
pioneering study was conducted by Helbling et al [1] to analyze the propagation
of influenza via the airline routes. Such a model is very general and could
describe the propagation of an internet virus or how populations mix in a given
environment.
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In a recent article, we considered a simple SI model on each vertex where
the vertices are coupled by a graph Laplacian [2]. This is a symmetric version
of the mobility matrix introduced by Helbling [1]. Our model was accurate in
predicting the arrival of the epidemic in Mexico [3]. It is also very simple: an
SI model coupled to a discrete diffusion. This means it can easily be fitted to
real data. Other models suggested for analyzing the propagation of COVID,
for example the study done by Gatto et al [4], use a more complex model with
many parameters and these can be difficult to estimate from data. In addition,
the geographic coupling is complicated so that it is difficult to analyze. From a
theoretical perspective, Cantin and Silva [5] studied a more complex model than
SIR coupled to a mobility matrix as Helbling [1]. They proved the existence,
unicity, and positivity of the solutions and show the existence of a disease-free
fixed point. They also analyzed how this fixed point is affected by the coupling
between vertices; however, the results are hard to interpret even for chain graphs
with two or three vertices.

In our much simpler study [2], we defined an epidemic criterion based on
the maximum eigenvalue λ of a matrix M obtained from the susceptibles and
the graph Laplacian matrix. We simply assume that vaccination reduces the
susceptibles. This may not always be correct, like in the case of COVID-19
but we will assume it for simplicity. Our preliminary results indicated that it
is more effective to vaccinate high degree vertices and not neighbors. Here,
we study more in depth the problem to infirm/confirm these findings. We
assume a geographic network where the epidemic propagates. Following the
study [2], we assume all populations are the same. This could be a city with
similar neighborhoods. We examine the geometric effect of the graph. Assuming
susceptibles are all the same, we can ask the following questions :
which vertex if vaccinated, will reduce most λ?
Is it better to vaccinate 2 vertices or 3 vertices instead of 1?
What role do the eigenvectors of the graph Laplacian play?

To address these questions, we use perturbation theory on the matrix M of
the vaccination criterion. We compute the corrections at orders 1 and 2 of the
maximal eigenvalue using the special properties of the Laplacian matrix. We
find that the corrections are minimal, indicating that λ will be minimal when
vaccination is applied along the high-order eigenvector. We illustrate these find-
ings on a seven vertex graph, a grid 4× 12 ( for this system eigenvectors/values
can be calculated explicitly), and give special graphs (complete, stars) for which
this argument does not hold. Finally, we study numerically a more realistic sit-
uation where the Laplacian has weights corresponding to routes more traveled
than others and where again the argument holds.
The article is organized as follows, section 2 presents the model and the per-
turbation method. In section 3, we give our main results. Several graphs are
analyzed numerically in section 4 and conclusions are presented in section 5.
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2 The model and the perturbation method

We recall the model introduced in [2] describing the propagation of an epidemic
on a geographical network where the vertices are indexed 1, 2, . . . , n

{

Ṡ = LS − βS I,

İ = LI + βSI − γI.
(1)

where S = (S1, S2, . . . , Sn)
T , I = (I1, I2, . . . , In)

T are respectively the suscep-
tibles and infected, β, γ are respectively the infection and recovery ratios, L is
the graph Laplacian matrix [8], and where we denote by SI the vector
(S1I1, S2I2, . . . , SnIn)

T . This is a simplified model where we assume all popu-
lations are the same. We concentrate on the geometric effects due to the graph.

The graph Laplacian L is the real symmetric negative semi-definite matrix,
defined as Lkl = 1 if k and l are connected, 0 otherwise, and Lkk = −∑

l 6=k Lkl.
This matrix has important properties, see Ref. [8], in particular, it is a finite
difference approximation of the continuous Laplacian [9]. The eigenvalues of L
are the n non-positive real numbers ordered and denoted as follows:

0 = −ω2
1 ≥ −ω2

2 ≥ ... ≥ −ω2
n.

The eigenvectors {V 1, ..., V n} satisfy

LV j = −ω2
jV

j .

and can be chosen to be orthonormal with respect to the standard scalar product
in R

n, i.e. (V i, V j) = δi,j where δi,j is the Kronecker symbol.

In Ref. [2], we introduced an epidemic criterion in the following way. For
small I, observe that equations (1) imply

İ = MI

where
M = L+ βdiag(S)− γIdn. (2)

All eigenvalues of L are real and the additional terms will shift these eigenvalues
towards the real axis in the complex plane, keeping the eigenvalues real. The
maximum eigenvalue λ of M gives the initial rate of growth of the infected on
the network.

A simple description of vaccination or partial isolation of a vertex i is to
change its number of susceptibles Si. We assume this change to be small, O(ǫ)
so that

Si = 1− ǫsi. (3)

Then −ǫsi represents the reduction in the number of susceptibles at vertex i
due to vaccination. Our main goal in this article is to discover the vaccination
policy that minimizes λ.
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The matrix M can be written as

M = M0 + ǫR, M0 = L+ (β − γ)Id, R = −β













s1 0 . . . 0

0 s2
. . .

...
...

. . .
. . . 0

0 . . . 0 sn













(4)

The principle of the perturbation theory for eigenvalues and eigenvectors of a
matrix [6] is to write expansions of an eigenvalue of M and its corresponding
eigenvector as

λ = λ0 + ǫλ1 + ǫ2λ2 + ǫ3λ3 + ..., (5)

v = v0 + ǫv1 + ǫ2v2 + ǫ3v3 + ... (6)

and write the different orders in ǫ. These expansions can be shown to converge
with ǫ [6].

We introduce the expansions above in the eigenvalue equation Mv = λv,
and the first three orders in ǫ yield

(M0 − λ0)v0 = 0, (7)

(M0 − λ0)v1 = λ1v0 −Rv0, (8)

(M0 − λ0)v2 = λ2v0 + λ1v1 −Rv1. (9)

These linear equations have solutions if their right-hand side is orthogonal to
the kernel of (M0 − λ0)

† = (M0 − λ0). This is the solvability condition. In our
special case (M0 − λ0) = L so the equations above reduce to

Lv0 = 0, (10)

Lv1 = (λ1 −R)v0, (11)

Lv2 = λ2v0 + (λ1 −R)v1. (12)

We have
λ0 = β − γ. (13)

From the solvability conditions, we obtain λ1 and λ2 as

λ1 =
(v0, Rv0)

(v0, v0)
, (14)

λ2 =
(v0, Rv1 − λ1v1)

(v0, v0)
. (15)

We now consider the linear systems (10,11,12) for the particular case when
L is a graph Laplacian. The Laplacian has real eigenvalues and orthogonal
eigenvectors

LV i = −ω2
i V

i, (16)
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where ω1 = 0 and V 1 is the constant vector. The other eigenvalues verify

−ω2
n ≤ · · · ≤ −ω2

1 = 0. (17)

We assume the graph to be simply connected so that there is only one eigenvalue
zero [8]. The matrix L is therefore singular and special care must be taken when
solving the system. The standard way to solve the system is to use the singular
value decomposition of L. Since L is symmetric, this reduces to projecting the
solution and the right-hand side on the eigenvectors of L. Therefore, we can
choose v0 = V 1 where V 1 the constant eigenvector is normalized. The formulas
(14,15) become

λ1 = (V 1, RV 1), (18)

λ2 =
(

V 1, (R− λ1

)

v1). (19)

These equations together with the linear equation

Lv1 = (λ1 −R)V 1, (20)

are the core of our study.

3 Perturbation results

Our main goal is to study vaccination strategies, i.e. to choose the vector
(s1, s2, . . . , sn) that minimizes

λ = λ0 + ǫλ1 + ǫ2λ2 +O(ǫ3)

From equation (4) we can establish three vaccination strategies

(i) Reduce Si uniformly on all vertices, then si ≥ 0, i = 1, . . . , n.

(ii) Reduce Si on some vertices and not others, then si ≥ 0, for some i =
1, . . . , n.

(iii) Adjust Si globally using an eigenvector V k of the Laplacian L, i.e. S =
V 1 − ǫV k. Then si can be positive or negative.

Approach (i) is to vaccinate uniformly all vertices. This assumes a large quantity
of vaccines. It is the simplest of strategies and will be the benchmark by which
we will test the other strategies.
Approach (ii) assumes there are a limited number of vaccine doses available and
a choice needs to be made.
Approach (iii) is not practical since we cannot increase si, we can only decrease
it. We can mimick this by using approach (i) and transferring some of the
vaccines from one vertex to another.
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We can state the following
Mathematical program

Minimize maximum eigenvalue λ of M such that
∑n

i=1
si is constant

For strategy (ii) si ≥ 0
For strategy (iii) there are no positivity constraints on si.

3.1 The first order λ1

We have the following result

Theorem 3.1. Let G be a graph with n vertices. If we reduce the susceptibility

at every vertex vi ∈ V (G) by si, then we have

λ1 = −β

n

n
∑

i=1

si. (21)

Proof. This is a direct consequence of equation (14) where we chose v0 = V 1

the constant eigenvector.

Theorem 3.1. Let G be a graph on n. Suppose that we completely isolate any

vertex v ∈ V (G), then we have

λ1 = −β

n

We can make the following remarks.

(i) Note that λ1 is always negative.

(ii) The quantity λ1 only depends on the quantity si and does not depend on
the degree of i.

(iii) From Theorem 3.1, λ1 is minimal when the
∑n

i=1
si is maximal. In other

words, we can minimize λ1 and thus the epidemic criterion λ by increasing
the total percentage of the vaccinated population on the network regard-
less of their location.

(iv) In the special case where we vaccinate only one vertex, λ1 is independent
of this vertex and of the graph. On the contrary, λi, i ≥ 2 depends on
the vaccinated vertex and the graph.

3.2 The second-order λ2

The estimation of λ2 benefits from using the eigenvectors of the Laplacian matrix
L (16). We have

λ2 = (V 1, (R− λ1)v1),
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where
Lv1 = (λ1 −R)V 1.

Writing

v1 =

n
∑

k=2

αkV
k,

plugging it into the equation above, and then projecting it onto each eigenvector
V k yields αk. We obtain

v1 =

n
∑

k=2

1

ω2
k

(RV 1, V k)V k, (22)

where

RV 1 = − β√
n
(s1, s2, . . . , sn)

T

We can now compute λ2, as

λ2 = (V 1, (R− λ1)v1) =
n
∑

k=2

1

ω2
k

(RV 1, V k)(V 1, (R− λ1)V
k)

We have
(V 1, (R− λ1)V

k) = (V 1, RV k)

because V 1 and V k are orthogonal. We finally get

λ2 =

n
∑

k=2

1

ω2
k

(RV 1, V k)2. (23)

Note that the correction λ2 is always positive.

3.3 Optimal vaccination strategy

An important theorem follows from the estimate (23).

Theorem 3.2. When RV 1 is proportional to V k, k ≥ 2, λ1 = 0. The eigen-

value correction λ2 is minimum when RV 1 is proportional to V n.

Proof. Choosing RV 1 = (s1, s2, . . . , sn)
T = V k where V k, k ≥ 2 is an eigenvec-

tor of L leads to λ1 = 0.
In equation (21), we have from the orthogonality of V k to V 1

n
∑

i=1

si =

n
∑

i=1

V k
i = 0.
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Assume RV 1 = βV k. Then

λ2 = β
1

ω2
k

.

From the order relation (17), this quantity decreases monotonically as k varies
from 2 to n.

In other words, as we choose RV 1 = V k for increasing k, the correction λ2

decreases.

3.4 Higher-order corrections

We have

v1 =

n
∑

k=2

αk,1V
k =

n
∑

k=2

1

ω2
k

(RV 1, V k)V k

λ2 =

n
∑

k=2

1

ω2
k

(RV 1, V k)2

The equation for v2 is

Lv2 = λ2V
1 + (λ1 −R)v1.

Writing

v2 =
n
∑

k=2

αk,2V
k

we have

αk,2 =
1

ω2
k

[(Rv1, V
k)− λ1αk,1]

The equation yielding vi is

Lvi = λiV
1 + λi−1v1 + . . .+ λ1vi−1 −Rvi−1

Writing

vi =

n
∑

k=2

αk,iV
k,

we have

αk,i =
1

ω2
k

[(Rvi, V
k)− λ1αk,i−1 − . . .− λi−1αk,1]

We can compute λi+1, as

λi+1 = (V 1, (R− λ1)vi − λ2vi−1 − . . .− λiv1) = (V 1, Rvi) = ...

=

n
∑

k=2

[
1

ω2
k

((Rvi−1, V
k)− λ1αk,i−1 − . . .− λi−1αk,1)(RV k, V 1)]
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In particular, we can compute λ3,

λ3 = (V 1, (R− λ1)v2 − λ2v1) = (V 1, Rv2) = ...

=

n
∑

k=2

1

ω2
k

[(Rv1, V
k)(RV k, V 1)− λ1

ω2
k

(RV k, V 1)2]

3.5 Comparison of the different vaccination strategies

From this analysis, we can discuss how different vaccination policies proposed
in the beginning of section 3 affect λ.

(i) Uniform vaccination on the network, i.e. This corresponds to S = (1 −
ǫ)V 1. Then

λ = β(1− ǫ)− γ. (24)

(iii) Vaccination following the eigenvector V k, then S = V 1 − ǫV k. We then
have

λ0 = β − γ, λ1 = 0, λ2 =
β

ω2
k

so that

λ = β − γ + ǫ2
β

ω2
k

+O(ǫ3). (25)

(ii) Vaccination of j < n vertices of the network, i.e. Sk = 1− ǫ, k = 1, . . . , j.
This is the most difficult situation because we cannot control λ2. We have

λ0 = β − γ, λ1 = −βj

n

so that

λ = β − γ − ǫ
βj

n
+O(ǫ2). (26)

Note that when j = n, λi = 0, i ≥ 2 and (ii) reduces to (i).

4 Application: certain graph families

Here, we examine numerically the matrix M and its maximal eigenvalue λ for
different graphs to emphasize the role of the graph topology. We choose for
simplicity β = γ = 1.
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4.1 A 7 vertex graph

Consider the seven vertex graph shown in Fig. 1.

1

2 3

5

4

6

7

Figure 1: A seven vertex graph

We computed the two largest eigenvalues of the matrix M as ǫRV 1 = 0.3V k

for k = 2, . . . n. The results are presented in the table below.

k λ
2 1.2038 10−1

3 6.0732 10−2

4 4.1728 10−2

5 2.7161 10−2

6 2.5472 10−2

7 1.8213 10−2

Table 1: Largest eigenvalue λ of M for RV 1 = V k.

Note how λ decreases between 2 ≤ k ≤ 7. The optimal vaccination policy is
the one that follows V 7. The eigenvalue λ varies from 0.12 to 0.018 as s follows
V 2 or V 7.

The eigenvectors of the Laplacian are plotted in Fig. 2. As expected, the
low-order eigenvectors vary on scales comparable to the size of the graph. The
high order eigenvectors, on the contrary, oscillate on smaller scales.
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1 7

i

0

0.5

1

V
i

6

1 7

i

0

0.5

1

V
i

4

1 7

i

0

0.5

1

V
i

3

1 7

i

0

0.5

1

V
i

2

1 7

i

0

0.5

1

V
i

5

1 7

i

0

0.5

1

V
i

Figure 2: The eigenvectors V i, i = 2, . . . , 7 of the seven vertex graph of Fig. 1.

It is difficult to relate the results of Table 1 to the practical situation of
vaccinating individual vertices. To gain some intuition, we vaccinate two or
three vertices and compute the eigenvalues of M . We choose the sum of the
S vector to be the same for both situations to describe a limited amount of
vaccines to be distributed over a geographic region.

For two vaccinated vertices i, j, we choose si = 0.5, sj = 0.5. Table 2 gives
for i, j, the maximum of the projection on the eigenvectors

pij = max1<k≤n|(s, V k)|, (27)

and the eigenvalue λ of the epidemic criterion. As expected, the largest λ
corresponds to a projection that is maximal on the low order eigenvectors and
vice-versa. This is an average trend and there are some exceptions such as (1,3)
, (2,4). This is because the second-largest projection is on V 2, see Fig. 2.

For three vaccinated vertices i, j, k, we choose si = sj = sk = 0.33. We
define the projection similarly to (27). The results are presented in Table 3.
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i j pij λ
3 6 6 −2.1751 10−2

1 6 4 −1.8658 10−2

2 6 5 −1.6895 10−2

3 5 7 −1.3008 10−2

1 5 5 −1.1325 10−2

3 7 4 −1.0303 10−2

4 6 3 −1.0146 10−2

i j pij λ
2 5 6 −9.5849 10−3

1 7 5 −7.9345 10−3

1 4 7 −7.8741 10−4

4 5 3 −5.6481 10−3

2 7 3 −4.7755 10−3

4 7 4 1.6008 10−4

5 6 4 2.1799 10−4

i j pij λ
2 4 6 6.1549 10−3

3 4 4 7.1014 10−3

1 3 6 7.5348 10−3

5 7 2 8.0539 10−3

1 2 3 1.4141 10−2

2 3 2 1.7100 10−2

6 7 2 4.4036 10−2

Table 2: Maximal eigenvalue λ and projection pij when vaccinating two vertices
i, j for the 7 vertex graph of Fig. 2.

i j k pijk λ
1 4 6 7 −1.5538 10−2

2 4 6 5 −1.5308 10−2

1 3 6 6 −1.5086 10−2

3 5 6 7 −1.4533 10−2

2 5 6 4 −1.3843 10−2

1 4 7 7 −1.3831 10−2

2 4 7 4 −1.3448 10−2

3 4 6 5 −1.3222 10−2

1 3 7 6 −1.3188 10−2

3 5 7 7 −1.2971 10−2

2 3 6 5 −1.2318 10−2

2 5 7 6 −1.2187 10−2

i j k pijk λ
1 2 6 4 −1.1881 10−2

1 5 6 4 −1.1275 10−2

3 4 7 4 −1.1238 10−2

2 3 7 3 −1.0042 10−2

1 2 7 3 −9.6590 10−3

1 5 7 5 −9.5776 10−3

4 5 6 3 −6.2370 10−3

4 5 7 3 −4.3165 10−3

1 4 5 3 −2.8840 10−3

2 4 5 6 −2.0491 10−3

1 3 5 5 −1.7983 10−3

3 4 5 3 −7.4494 10−4

i j k pijk λ
1 2 5 4 7.5857 10−4

2 3 5 7 7.9548 10−4

3 6 7 6 1.8558 10−3

2 6 7 2 3.1658 10−3

1 6 7 2 4.7346 10−3

1 3 4 2 7.6481 10−3

1 2 4 7 8.3041 10−3

4 6 7 2 9.7040 10−3

2 3 4 2 1.2156 10−2

1 2 3 2 1.6396 10−2

5 6 7 2 1.9027 10−2

Table 3: Maximal eigenvalue λ and projection pijk when vaccinating three ver-
tices i, j, k for the 7 vertex graph of Fig. 2.
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Table 3 shows that vaccinating three vertices i, j, k gives eigenvalues that
are minimal when the projection |(s, V k)| corresponds to a small k. As for the
two vertices, this is expected from the general theory. Of course, the trend is
general and there are a few exceptions.

4.2 A grid P4 × P12

We consider a grid P4 ×P12 to illustrate our results. For such a graph, one can
calculate explicitly the eigenvectors and eigenvalues leading to analytic though
complicated expressions for λ2.

We computed the largest eigenvalue of the matrix M for ǫRV 1 = 0.3V k and
k = 2, . . . n. The results are presented in Table 4.

k λ
2 0.3090
3 0.2063
4 0.1396
5 0.1396
6 0.1404
7 0.1017
8 0.0841
9 0.0752
10 0.0588

k λ
11 0.0562
12 0.0445
13 0.0445
14 0.0449
15 0.0448
16 0.0398
17 0.0354
18 0.0350
19 0.0350

k λ
20 0.0299
21 0.0278
22 0.0291
23 0.0263
24 0.0263
25 0.0266
26 0.0261
27 0.0252
28 0.0248

k λ
29 0.0243
30 0.0237
31 0.0226
32 0.0234
33 0.0213
34 0.0211
35 0.0205
36 0.0206
37 0.0199

k λ
38 0.0185
39 0.0180
40 0.0167
41 0.0167
42 0.0158
43 0.0155
44 0.0153
45 0.0141
46 0.0133

k λ
47 0.0127
48 0.0126

Table 4: Largest eigenvalue λ of M for RV 1 = V k for a grid P4 × P12.

The eigenvalue λ varies from 0.3 to 0.01 as s follows V 2 or V 48. Again, it is
difficult to evaluate which vertices to vaccinate.

For grids, the quantity λ2 can be calculated precisely using the fact that
eigenvalues and eigenvectors are known analytically. For completeness, we recall
the formalism, more details can be found in the book [7]. A path Pn has
eigenvalues ω2

i and eigenvectors Vi such that

ω2
i = 4 sin2

π(i− 1)

2n
, i = 1, . . . , n (28)

Vi
p =

1

Ni

cos[
π(i− 1)

n
(p− 1

2
)], p = 1, . . . , n (29)

where the normalization factors are N1 =
√
n and Ni =

√

n/2 i > 1. A grid
is the cartesian product Pn × Pm of two paths Pn and Pm. The associated
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eigenvector is Vij = Vi ⊗ Vj , the Kronecker product of Vi and Vj . The
eigenvalues ω2

i,j and corresponding eigenvectors are given by

ω2
i,j = 4

[

sin2
π(i− 1)

2n
+ sin2

π(j − 1)

2m

]

, (30)

Vij
pq = Vi

pV
j
q =

1

NiNj

cos[
π(i− 1)

n
(p− 1

2
)] cos[

π(j − 1)

m
(q − 1

2
)], (31)

where i, p ∈ {1, . . . , n}, j, q ∈ {1, . . . ,m} and where the normalization factors
Ni, Nj follow the rules defined after (29).

From the estimate (23), using the expressions (30,31) we can get an expres-
sion for λ2. It is extremely cumbersome and we chose not to present it.

Using the expressions of the eigenvectors Vij , we can compare the eigen-
vectors V1,2 and V4,12 corresponding respectively to the minimal and maximal
eigenvalues in the absolute value of the Laplacian. These eigenvectors corre-
spond to k = 2 and 48 in Table 4. They are plotted in Fig. 3. Notice the small
scales associated to V4,12 (right panel) as opposed to the smoothness of V1,2

(left panel).

 1

 2

 3

 4

p

 2
 4

 6
 8

 10
 12

q

 1

 2

 3

 4

p

 2
 4

 6
 8

 10
 12

q

Figure 3: The eigenvectors V1,2 (left panel) and V4,12 (right panel) for the grid
P4 × P12.

4.3 Special graphs: complete graphs and stars

There are classes of graphs for which choosing RV 1 = V k, with k large, does
not necessarily affect λ2. For these graphs, the eigenvalues −ω2

k are equal so
that the ratio

1

ω2
k

(RV 1, V k)2

in the sum (23) does not decrease as k increases.

One example is the class of the complete graphs Kn.
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Definition 4.1 (Complete graph Kn). A clique or complete graph Kn is a

graph where every pair of distinct vertices is connected by a unique edge.

The clique Kn has eigenvalue −n with multiplicity n − 1 and eigenvalue 0.
The eigenvectors for eigenvalue n can be chosen as vk = e1 − ek, k = 2, . . . , n.
Table 5 shows the eigenvalue λ of M for K4,K5, and K7 from left to right. As
expected there are no significant changes in λ as a function of k.

k λ
2 0.021156
3 0.023520
4 0.021153

k λ
2 0.019695
3 0.019117
4 0.019117
5 0.019117

k λ
2 0.013034
3 0.013184
4 0.013594
5 0.011805
6 0.012404
7 0.012313

Table 5: Largest eigenvalue λ ofM for RV 1 = 0.3V k for complete graphsK4,K5

and K7 from left to right.

Another special class of graphs where many eigenvalues are equal are stars.
For these a single vertex, say 1, is connected to the n − 1 other vertices. The
eigenvalues with their multiplicities denoted as exponents are

01, (−1)n−2, , (−n)1.

Eigenvectors for −1 can be chosen as e2 − ei (i = 3, . . . , n).
The eigenvector for −n is (1,−1/(n− 1), . . . ,−1/(n− 1))T .
Table 6 shows λ as a function of k for S5, S7 and S10. Note that the ratio
max(λ)/min(λ) increases as n varies from 5,7 to 10.

k λ
2 0.10643
3 0.075781
4 0.12306
5 0.019695

k λ
2 0.10974
3 0.099318
4 0.10453
5 0.14166
6 0.12715
7 0.014059

k λ
2 0.049159
3 0.055638
4 0.19283
5 0.19283
6 0.19283
7 0.19283
8 0.19283
9 0.19283
10 0.0097722

Table 6: Largest eigenvalue λ of M for RV 1 = 0.3V k for star graphs n = 5, 7
and 10 from left to right
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4.4 A more realistic case: France

The practical case of vaccinating a whole country can be tackled using our
approach. Fig. 4 shows a map of the main railway lines in France. The fast
lines are presented as continuous edges while the slower ones are dashed. In the
graph Laplacian, this corresponds to weights 1 and 0.5 for respectively the fast
and slow connections. We computed the largest eigenvalues of the matrix M as
RV 1 = 0.3V k for k = 2, . . . n. The results are presented in table 7.

PAR1

ROU2

CAE4

MAN6

TOU13

ORL14

CLE17 LYO18

STR24

HAV3

C H E 5

R E N 7

N A N 1 0

BRE8

QUI9

ROC11

BOR12 TOU16

LIM15

M O N 2 0 MAR21

N I C 2 2

DIJ23

LIL19

Figure 4: The main railway network in France where the fast (resp. slow) lines
are shown as continuous (resp. dashed) edges.
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k λ
2 0.54849
3 0.65518
4 0.13082
5 0.27319
6 0.21368
7 0.13526

k λ
8 0.11566
9 0.092688
10 0.41962
11 0.12067
12 0.074661
13 0.099812

k λ
14 0.18237
15 0.050159
16 0.068346
17 0.038906
18 0.045205
19 0.032588

k λ
20 0.056705
21 0.026379
22 0.033961
23 0.025150
24 0.011776

Table 7: Largest eigenvalues of M for RV 1 = 0.3V k for the graph of France
with weights 1 and 0.5 respectively continuous and dashed links.

Note how there is a factor of 50 in the maximal eigenvalue of M between the
cases RV 1 = V 2 and RV 1 = V 24. From a practical point of view, this means
that the epidemic will grow at a rate 50 times slower with V 24 than V 2, using
the same number of vaccines. Another point is that the largest component of
V 24 corresponds to the vertex (PAR1) of highest degree (8). It seems natural
to vaccinate this vertex.

Now, we consider that all the links have the same weights. The results are
reported in table 8. They show a factor of 60 in the maximal eigenvalue of M
between the cases RV 1 = V 2 and RV 1 = V 24.

k λ
2 5.6391 10−1

3 3.1945 10−1

4 2.0931 10−1

5 1.2002 10−1

6 3.9975 10−1

7 9.9597 10−2

k λ
8 4.1840 10−1

9 2.1704 10−1

10 7.3222 10−2

11 7.7353 10−2

12 4.7175 10−2

13 4.8676 10−2

k λ
14 4.1362 10−2

15 3.6214 10−2

16 3.2037 10−2

17 2.8885 10−2

18 2.5455 10−2

19 2.3898 10−2

k λ
20 2.7040 10−2

21 2.9074 10−2

22 2.0045 10−2

23 1.6506 10−2

24 9.2703 10−3

Table 8: Largest eigenvalues of M for RV 1 = 0.3V k for the graph of France
with equal weights 1 on all links.
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5 Conclusion

We studied a vaccination policy on a simple model of an epidemic on a geo-
graphical network by examining the maximum eigenvalue λ of a matrix formed
by the susceptibles and the graph Laplacian matrix L.

We found that it is most effective to ”vaccinate” the network along the
eigenvector of L of the highest order, V n. This answers partially the questions
of the introduction about which vertices one should vaccinate. In practice, one
should vaccinate the vertices along a vector that has a maximum projection on
V n.

To simplify, we assumed that the populations of each city to be equal. This
assumption can be relaxed at the price of a more complex analysis. We sketch
it here for completeness. Assuming a population Nj at vertex j, the evolution
reads

Ṡj = −β
Sj

Nj

Ij + ǫ
∑

k∼j

(Sk − Sj), (32)

İj = β
Sj

Nj

Ij − γIj + ǫ
∑

k∼j

(Ik − Ij), (33)

From this, it can be seen that the epidemic matrix M reads

M = diag(β
Sj

Nj

)− γId+ ǫL. (34)

Following the analysis of section 2, we introduce the vector

S ≡ β(
S1

N1

,
S2

N2

, . . . ,
Sn

Nn

)T . (35)

Then we see that the maximum eigenvalue λ of M will be minimum when S
has a maximum projection on V n.
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