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Abstract

The aim of this article is to thoroughly identify the spurious mode that jeopardizes the
convergence of usual upwind numerical schemes for compressible flows when the Mach number
goes to 0. We show that this spurious mode is the long time limit of a wave system whose
properties and discretization depend on the scheme used for the compressible system. Once
this spurious mode is identified, a filtering method is developed for removing it from the
solution of stationary low Mach number compressible flow. Numerical results confirm that at
the price of the computation of a long time solution of the wave system, the accuracy of an
inaccurate solution of a low Mach number compressible flow can be greatly improved by this
filtering method.

Keywords — Low Mach compressible flows, Density based solvers, Finite volume methods,
Euler equations.

Contents
1 Introduction 2

2 Link between the long time behavior of the wave system and the low Mach
number limit: the continuous case 4
2.1 Two-scale asymptotic expansion of the continuous system . . . . . . . . . . . . . . 4
2.2 Formal link between the low Mach number behavior and the long time limit of the

wave system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 A Hodge-Helmholtz decomposition adapted to the long time study of the wave system 5

3 Discrete case 6
3.1 Asymptotic consistency with the finite volume discretization of the wave system . 6

3.1.1 The finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Formal asymptotic expansion of the schemes when the Mach number goes to 0 7

3.2 Schemes that are low Mach number accurate or not . . . . . . . . . . . . . . . . . 9

4 A filtering method for steady low Mach number flows 10
4.1 Filtered density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Filtered momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 Filtered momentum on triangular meshes . . . . . . . . . . . . . . . . . . . 11
4.2.2 Filtered momentum on quadrangular meshes . . . . . . . . . . . . . . . . . 12

4.3 Summary of the filtering method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Numerical results 13
5.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Matching wave system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Flow around a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Flow around a NACA0012 airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Conclusion 19
∗Corresponding author. Email: jonathan.jung@univ-pau.fr
†Email: vincent.perrier@inria.fr.

1

mailto:jonathan.jung@univ-pau.fr
mailto:vincent.perrier@inria.fr


A Non-dimensional expressions for the numerical fluxes and boundary fluxes 22
A.1 The Rusanov flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.2 The Roe numerical flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.3 Dimensionless Steger-Warming boundary condition . . . . . . . . . . . . . . . . . . 24
A.4 Dimensionless wall boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Proof of the propositions on continuous and discrete Hodge-Helmholtz decom-
positions 25
B.1 Decomposition in the continuous case . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.2 Long time behaviour of the continuous wave system . . . . . . . . . . . . . . . . . 26
B.3 Discrete decomposition on triangular meshes . . . . . . . . . . . . . . . . . . . . . 27
B.4 Long time behaviour of the discrete wave system with Godunov’ scheme on trian-

gular meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction
We consider the isentropic Euler model

#

Btρ`∇ ¨ pρuq “ 0,

Btpρuq `∇ ¨ pρub uq `∇p “ 0,
(1)

where ρ is the density, p the pressure, and u the velocity. The problem is solved on a domain Ω.
For closing the system, the pressure is supposed to depend only on ρ: p “ ppρq. Assume that p
is a convex function of ρ. Under these assumptions, this system is well-known to be hyperbolic
with eigenvalues in the direction n given by λ˘ “ u ¨ n ˘ a, where the sound speed a is given by
apρq “

a

p1pρq, with genuinely nonlinear characteristic fields and λ “ u ¨ n of multiplicity d ´ 1
where d P t1, 2, 3u is the space dimension, with linear characteristic fields. Equations (1) can be
written in the conservative form

Bt W `∇ ¨ fpWq “ 0, (2)

where W “ pρ, ρuqT is the vector of conservative variables and f is the flux, given in dimension d
by

fpWq “

ˆ

ρu
ρub u` pI

˙

.

This paper deals with flow on a bounded domain. This means that a density ρb and a velocity ub
are (weakly) imposed on the boundary of the domain BΩ. In particular, we will consider two types
of boundary conditions: wall, and inlet/outlet. For a wall boundary condition, we impose the flux

FwallpW,nq “ FRoepW,|W,nq (3a)

where the flux FRoe corresponds to the Roe numerical flux (see subsection A.2) and |W is obtained
from the transformation of W: |W “ pId`1 ´ PwallpnqqW with

Pwallpnq “

ˆ

0 0
0 2nnT

˙

.

For inlet/outlet boundary condition, we impose the modified Steger-Warming flux

F SWpW,Wb,nq “ A`pWb,nqW `A´pWb,nqWb, (3b)

where A` and A´ are respectively the positive and negative parts of the Jacobian matrix of the
flux f . For more details on the boundary conditions, we refer to subsection A.3 and subsection A.4.

For studying the behavior of system (1) in the low Mach number regime, three characteristic
scales are supposed to be known: a length scale x0, a density scale ρ0 and a velocity scale u0. Then
the following dimensionless variables may be defined

x̃ “
x

x0
, ρ̃ “

ρ

ρ0
ũ “

u

u0
. (4)

It is natural to scale the time by t0 “ x0{u0, and the pressure by p0 “ ppρ0q, and also to define
a2

0 “ p1pρ0q. If the corresponding dimensionless variables are used instead of the original ones, the
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following system is obtained
$

&

%

Bt̃ρ̃`∇x̃ ¨ pρ̃ũq “ 0

Bt̃pρ̃ũq `∇x̃ ¨ pρ̃ũb ũq `
1

γM2
∇x̃p̃ “ 0,

(5)

with t̃ “ t{t0, p̃ “ p{p0, p̃pρ̃q :“ ppρ0ρ̃q{p0, and M “ u0{a0. The coefficient γ is defined as

γ “
ρ0a

2
0

p0
“ p̃1p1q.

The dimensionless boundary fluxes F̃wall
´

W̃,n,M
¯

and F̃ SW
´

W̃,W̃b,n,M
¯

are detailed in
subsection A.3 and subsection A.4.

We assume that the initial condition and the boundary condition are well prepared [24, p.641]
in the sense that

"

ρ̃px̃, t̃ “ 0,Mq “ ρ̃p0q `O
`

M2
˘

,

ũpx̃, t̃ “ 0,Mq “ ũp0qpx̃q `O pMq , where
"

ρ̃p0qpx̃q “ ρ̃p0q P R`,
∇x̃ ¨ pũ

p0qq “ 0,
(6a)

and the values ρb and ub in (3b) satisfy

ρ̃bpx̃, t̃,Mq “ ρ̃p0q `O
`

M2
˘

, (6b)

and
ũbpx̃, t̃,Mq “ ũ

p0q
b pt̃q `O pMq . (6c)

Injecting an expansion in exponent of the Mach number M in (5), we get that, if the initial
condition and the boundary condition are well prepared (6), the low Mach number limit density
fluctuation scales as O

`

M2
˘

[24].
It is well known [19] that in general classical finite volume methods for (1) are not accurate

in the low Mach number limit because it introduces a spurious mode in O pMq on the density
fluctuations, and that fixes are required for recovering an acceptable accuracy.

The spurious mode is due to an excessive numerical diffusion of the scheme. Some fixes have
been derived by modifying the numerical diffusion of the finite volume schemes [19, 25, 26, 12, 32,
14, 29, 7, 21], the Riemann solver is partially replaced by a central difference approximation for
the pressure gradient. In this sense, low Mach fixes are similar to schemes based on specific semi-
implicit (e.g. IMEX) time discretization [10, 11, 8, 20, 23, 3, 4]. Semi-implicit solvers use central
difference approximation for the pressure gradient because it makes the implicit time integration
easier. Indeed, it allows to decouple the computation of the density field from the velocity field.
These two approaches have their limitations because a central difference approximation for the
pressure gradient does not allow to solve accurately the low Mach number acoustic waves [5], in
particular when the acoustic wave corresponds to a perturbation of order O pMq on the density and
of order O p1q on the velocity (note that in this particular case the initial and boundary conditions
are not well prepared). Indeed, in such a wave, a second order scheme with a central difference
approximation for the pressure gradient provides only a first order on the moments [5].

Recently, low Mach fixes leading to a decentered discretization of the pressure gradient have
been proposed in [5, 2]. However, we note that the fix of [5] is not Galilean invariant while the fix
of [2] is developed only for Cartesian meshes.

Our aim in this article is slightly different: we do not want to propose a new finite volume fix
but we wish to characterize the spurious mode responsible for the low accuracy when the Mach
number goes to 0. An important step is to understand the link between the long time behavior
of the wave system and the low Mach number limit of (5), which is developed in section 2 for the
continuous case, and in section 3 for the discrete case.

Once the spurious mode of the numerical scheme at the low Mach number limit is well identified,
it is possible to remove it. We thus propose in section 4 a numerical method for using the associated
numerical long time limit of the wave system to filter the numerical solution of the compressible
system at low Mach number. We test this method in section 5, and prove that this method allows
to transform a low accurate low Mach number solution into a highly accurate low Mach number
solution. The filtering method is rather viewed as a way to validate the identification of the spurious
mode than as a numerical method itself. Indeed, to compute low Mach number steady flows, we
could directly use preconditioning techniques (e.g. [35, 36]).
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2 Link between the long time behavior of the wave system
and the low Mach number limit: the continuous case

In [34, Theorem 3.1] a rigorous proof of a link between the low Mach number expansion of the
solution of (5) and a wave system was provided: the first order pressure and the zeroth order
velocity are indeed solution of a wave system. From this, the uniformity of the first order pressure
and the vanishing divergence of the zeroth order velocity can be proven. The proof of [34] is done
in the unbounded case and relies on the Fourier analysis, which can hardly be extended to the
bounded case. In this section, we aim at doing formally the same link, but in the bounded case.

2.1 Two-scale asymptotic expansion of the continuous system
A two time scales asymptotic expansion of the system (5) is performed as in [27]. The two time
scales are the material time t̃ and the acoustic time τ “ t̃{M.We write ϕ̃ P tρ, ρuu as an expansion
in exponent of the Mach number M :

ϕ̃px̃, t̃;Mq “
N
ÿ

n“0

Mnϕ̃pnqpx̃, t̃, τq `O
`

MN`1
˘

, (7)

with τ “ t̃{M and where the derivative with respect to the time is

Bt̃ϕ̃ px̃, t̃;Mq “
N
ÿ

n“0

Mn

ˆ

Bt̃ϕ̃
pnqpx̃, t̃, τq `

1

M
Bτ ϕ̃

pnqpx̃, t̃, τq

˙

`O
`

MN`1
˘

. (8)

By injecting (7) in (5), it can be proven that ρ̃p0q does not depend on τ and x̃, but only on t̃, and
that the following system coupling ρ̃p1q and pρ̃ũqp0q holds

$

’

’

&

’

’

%

Bτ ρ̃
p1q `∇x̃ ¨ pρ̃ũq

p0q
“ ´

dρ̃p0q

dt̃

Bτ pρ̃ũq
p0q
`
p̃1
`

ρ̃p0q
˘

γ
∇x̃ρ̃

p1q “ 0

(9)

Using the equation of state gives

p̃1
`

ρ̃p0q
˘

γ
“

p0

ρ0a2
0

ρ0

p0
p1
´

ρ0ρ̃
p0q

¯

“
p1
`

ρ0ρ̃
p0q

˘

a2
0

“
a2

`

ρ0ρ̃
p0q

˘

a2
0

“ ã2
´

ρ̃p0q
¯

, (10)

so that provided ρ̃p0q is constant, (9) can be rewritten
#

Bτ ρ̃
p1q `∇x̃ ¨ pρ̃ũq

p0q
“ 0

Bτ pρ̃ũq
p0q
` ã2

`

ρ̃p0q
˘

∇x̃ρ̃
p1q “ 0.

(11)

Since the initial and boundary conditions are well prepared (6), the initial condition for (11) is
given by

"

ρ̃p1qpx̃, τ “ 0q “ 0,

pρ̃ũq
p0q
px̃, τ “ 0q “ ρ̃p0qũp0qpx̃q,

where ∇x̃ ¨ pρ̃
p0qũp0qq “ 0, (12a)

and the boundary fluxes are given by
„

pρ̃ũqp0q ¨ n

ã2
`

ρ̃p0q
˘

ρ̃p1qn



wall
“

ˆ

0

ã2
`

ρ̃p0q
˘

ρ̃p1qn` ãpρ̃p0qq
`

pρ̃ũqp0q ¨ n
˘

n

˙

(12b)

for a wall boundary condition and

„

pρ̃ũqp0q ¨ n

ã2
`

ρ̃p0q
˘

ρ̃p1qn



SW
“

¨

˚

˚

˝

pρ̃ũqp0q ¨ n` pρ̃ũq
p0q
b ¨ n

2
`
ãpρ̃p0qq

2
pρ̃p1q ´ 0q

ã2
`

ρ̃p0q
˘ ρ̃p1q ` 0

2
n`

ãpρ̃p0qq

2

´

pρ̃ũqp0q ¨ n´ pρ̃ũq
p0q
b ¨ n

¯

n

˛

‹

‹

‚

(12c)

for inlet/outlet boundary condition.
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2.2 Formal link between the low Mach number behavior and the long
time limit of the wave system

The system (11) belongs to the larger family of first order waves systems, which reads
$

&

%

Bτ pp`
1

pρ0
divxpu “ 0

Bτ pu`xκ0∇pp “ 0
(13)

depending on two strictly non-negative parameters, xκ0 and pρ0. The wave velocity is pc0, linked
with the parameters of the system by pc0

2
“ xκ0{ pρ0. In particular, we note that system (11) can

be written as system (13) with pρ0 “ 1 and xκ0 “ ã2pρ̃p0qq such that pc0 “ ãpρ̃p0qq. The initial and
boundary conditions (12) lead us to study system (13) with the following initial condition

"

pppx, τ “ 0q “ 0,
pupx, τ “ 0q “ pu0pxq

where divxpu0 “ 0 (14a)

and with the following boundary fluxes:
»

–

1

pρ0
pu ¨ n

xκ0ppn

fi

fl

wall

“

ˆ

0
xκ0ppn` pc0ppu ¨ nqn

˙

(14b)

for wall boundary condition and

»

–

1

pρ0
pu ¨ n

xκ0ppn

fi

fl

SW

“

¨

˚

˝

1

pρ0

pu ¨ n` pub ¨ n

2
`

pc0
2
ppp´ 0q

xκ0
pp` 0

2
n`

pc0
2
ppu ¨ n´ pub ¨ nqn

˛

‹

‚

(14c)

for inlet/outlet boundary condition.
As we are interested in the limit when M Ñ 0, and considering that τ “ t̃{M , it is natural to

be interested in the long time limit of (13). If the derivatives with respect to τ vanish, this gives
∇pp “ 0, so that pp is uniform. Considering (6), the boundary pressure of (13) is ppb “ 0, so that the
long time pressure pp is uniformly 0. The fact that the long time pressure is 0 can be rewritten as
ρ̃p1q “ 0, so that

ρ̃px̃, t̃q “ ρ̃p0q `O
`

M2
˘

,

which means that the pressure fluctuations should scale as M2. Concerning the velocity, the
problem is slightly more complicated and developed in the next section.

2.3 A Hodge-Helmholtz decomposition adapted to the long time study
of the wave system

The Hodge-Helmholtz decomposition was used in the analysis of low Mach number flows [15] in
periodic or infinite domains. In the bounded case, this decomposition depends on the boundary
conditions imposed. We provide here a Hodge-Helmholtz decomposition that will be adapted to
the analysis in a bounded domain.

Proposition 1 (Hodge-Helmholtz decomposition). If Ω is such that TrpHspΩqq Ă Hs´1{2pBΩq,
then any u P pL2pΩqqd can be uniquely decomposed as

"

u “ uϕ ` uΨ in Ω
uϕ ¨ n “ u ¨ n´ ub ¨ n in BΩ (15)

where uϕ P ∇x

`

H1pΩq
˘

and uΨ P curlx

´

`

H1pΩq
˘d
¯

.

The proof of this proposition was deferred to subsection B.1. We say that the Hodge-Helmholtz
decomposition proposed in Proposition 1 is adapted to the study of the long time limit of (13),
because if a solution has initially a uniform pressure equal to the boundary pressure imposed, and
an initial velocity such that uϕ “ 0, then this solution is not changed by the wave system. More
precisely,

5



Proposition 2. Consider a solution of the wave system (13) with initial and boundary conditions
given by (14). Then it has a limit when tÑ8, and this limit has a uniform pressure, equal to ppb,
and the velocity tends to puΨp0q where puΨp0q corresponds to the divergence free component of the
Hodge-Helmholtz decomposition (15) of the initial condition pu0.

The proof of this proposition is deferred to subsection B.2. Proposition 2 implies that if pu is
initially curl free, then pu is curl free for all time, and so pu is harmonic. Therefore the same result
as in [34] holds formally.

3 Discrete case
In this section, we aim at doing a similar analysis as in the previous section, but in the discrete
case with a finite volume method.

It is worth noting that the discrete unbounded case was investigated in [1], by using the same
tool as in [34], the Fourier transform, which can be used only in the unbounded case and concerning
the discrete case on Cartesian meshes.

3.1 Asymptotic consistency with the finite volume discretization of the
wave system

The aim of this section is to show that with a formal asymptotic development, the discrete problem
of the low Mach number limit is also linked with the long time behavior of a discretization of the
wave system.

3.1.1 The finite volume scheme

We consider a discretization of (1). The domain is supposed to be bounded, and Th denotes a
mesh of this domain, on which a cell-centered finite volume discretization is applied. For a given
cell i of Th, we denote by Vintpiq the set of the neighbors of the cell i, by Vwallpiq the set of the
boundary sides of i on which wall boundary conditions are imposed, and by VSWpiq the set of the
boundary sides of i on which inlet/outlet Steger-Warming boundary conditions are imposed. Also,
we denote by |Ωi| the volume of the cell i, by |Γij | the size of the side linking ij, and by nij the
unit normal outgoing from i. The finite volume discretization of (1) reads for cell i

BtWi `
1

|Ωi|

ř

jPVintpiq

|Γij |F pWi,Wj ,nijq

`
1

|Ωi|

ř

jPVwallpiq

|Γij |F
wall pWi,nijq

`
1

|Ωi|

ř

jPVSWpiq

|Γij |F
SW pWi,Wb,nijq “ 0

(16)

where the numerical flux F inside the domain, the Steger-Warming flux F SW at inlet and outlet
boundary conditions, and the flux at wall boundaries Fwall are defined in Appendix A.

We aim at performing an asymptotic expansion of the numerical scheme, and for this, we need
to rephrase the numerical scheme (16) in term of the non-dimensional variables (4). We also
consider

|Γ̃ij | “
|Γij |

xd´1
0

, |Ω̃i| “
|Ωi|

xd0
, (17)

we get the dimensionless scheme

Bt̃W̃i `
1

|Ω̃i|

ř

jPVintpiq

|Γ̃ij |F̃
´

W̃i,W̃j ,nij ,M
¯

`
1

|Ω̃i|

ř

jPVwallpiq

|Γ̃ij |F̃
wall

´

W̃i,nij ,M
¯

`
1

|Ω̃i|

ř

jPVSWpiq

|Γ̃ij |F̃
SW

´

W̃i,W̃b,nij ,M
¯

“ 0

(18)

where the component associated to the variable w of the numerical flux and boundary flux are
defined as

F̃w̃

´

W̃i,W̃j ,nij ,M
¯

“
1

u0w0
Fw

´

W0W̃i,W0W̃j ,nij

¯

6



where the products W0W̃i should be understood componentwise. Details of the fluxes and bound-
ary fluxes and their non-dimensional version are provided in Appendix A.

3.1.2 Formal asymptotic expansion of the schemes when the Mach number goes to 0

By doing the same formal two time-scales asymptotic development (7), but on the discrete system
(18), we first prove the following result:

Proposition 3. (Uniformity of ρ̃p0q)

• If the numerical flux is conservative, namely

F pWi,Wj ,nijq “ ´F pWj ,Wi,njiq,

and ensures

F̃ρ̃

´

W̃i,W̃j ,n,M
¯

“
1

M
α̃
´

ρ̃
p0q
i , ρ̃

p0q
j

¯´

ρ̃
p0q
i ´ ρ̃

p0q
j

¯

`O p1q

where α̃
´

ρ̃
p0q
i , ρ̃

p0q
j

¯

is strictly non-negative,

• if the wall boundary flux ensures

F̃wall
ρ̃

´

W̃i,n,M
¯

“ O p1q ,

• if the imposed boundary value ρ̃p0qb on the Steger-Warming boundary conditions is constant,

• if the Steger-Warming flux ensures

F̃SWρ̃

´

W̃i,n,M
¯

“
1

M
β̃
´

ρ̃
p0q
i , ρ̃

p0q
b

¯´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

`O p1q

where β̃
´

ρ̃
p0q
i , ρ̃

p0q
b

¯

is strictly non-negative,

then
@i, ρ̃

p0q
i “ ρ̃

p0q
b .

Proof. As the flux of the density on the wall is always 0, the scale O
ˆ

1

M

˙

of the first equation of

(18) gives, for all i:

ř

jPVintpiq

|Γ̃ij |α̃
´

ρ̃
p0q
i , ρ̃

p0q
j

¯´

ρ̃
p0q
i ´ ρ̃

p0q
j

¯

`
ř

jPVSWpiq

|Γ̃ij |β̃
´

ρ̃
p0q
i , ρ̃

p0q
b

¯´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

“ 0

We multiply by ρ̃p0qi ´ ρ̃
p0q
b , and sum over all the cells of the mesh to find

ř

iPTh

ř

jPVintpiq

|Γ̃ij |
´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

α̃
´

ρ̃
p0q
i , ρ̃

p0q
j

¯´

ρ̃
p0q
i ´ ρ̃

p0q
j

¯

`
ř

iPTh

ř

jPVSWpiq

|Γ̃ij |
´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

β̃
´

ρ̃
p0q
i , ρ̃

p0q
b

¯´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

“ 0

We switch to a sum over the faces of the mesh
ř

fPFint

|Γ̃f |
´´

ρ̃
p0q
L ´ ρ̃

p0q
b

¯

α̃
´

ρ̃
p0q
L , ρ̃

p0q
R

¯´

ρ̃
p0q
L ´ ρ̃

p0q
R

¯

`

´

ρ̃
p0q
R ´ ρ̃

p0q
b

¯

α̃
´

ρ̃
p0q
R , ρ̃

p0q
L

¯´

ρ̃
p0q
R ´ ρ̃

p0q
L

¯¯

`
ř

fPFSW

|Γ̃f |
´

ρ̃
p0q
L ´ ρ̃

p0q
b

¯

β̃
´

ρ̃
p0q
L , ρ̃

p0q
b

¯´

ρ̃
p0q
L ´ ρ̃

p0q
b

¯

“ 0.

As the scheme is conservative, we have

α̃
´

ρ̃
p0q
L , ρ̃

p0q
R

¯

“ α̃
´

ρ̃
p0q
R , ρ̃

p0q
L

¯

,

so that the sum may be rewritten

ř

fPFint

|Γ̃f |α̃
´

ρ̃
p0q
L , ρ̃

p0q
R

¯´

ρ̃
p0q
L ´ ρ̃

p0q
R

¯2

`
ř

fPFSW

|Γ̃f |β̃
´

ρ̃
p0q
L , ρ̃

p0q
b

¯´

ρ̃
p0q
L ´ ρ̃

p0q
b

¯2

“ 0

7



As the α̃ and β̃ are strictly non-negative, we have on all interior faces ρ̃p0qL “ ρ̃
p0q
R , which means

that all the ρ̃p0q have the same value. Last, as all the β̃ are strictly non-negative, we have on all
the Steger-Warming boundary faces ρ̃p0qL “ ρ̃

p0q
b , so that if the set of Steger-Warming boundary

sides is non empty, for all i, ρ̃p0qi “ ρ̃
p0q
b , which ends the proof.

We state now the link at the discrete level, between the discretization of (5) and (13). In
general, a numerical scheme for (13) can be written as

BτUi `
1

|Ω̃i|

ř

jPVintpiq

|Γ̃ij |
´

Apnijq ttU uuij ´Dpnijq pUj ´Uiq

¯

`
1

|Ω̃i|

ř

jPVwallpiq

|Γ̃ij |

ˆ

Apnijq
Ui

2
`

1

2
pApnijq ´ 2A´pnijqPwallpnijqqUi

˙

`
1

|Ω̃i|

ř

jPVSWpiq

|Γ̃ij |

ˆ

Apnijq
Ui `Ub

2
´

1

2
pA`pnijq ´A

´pnijqq pUb ´Uiq

˙

“ 0,

(19)

where ttU uuij “ pUi `Ujq{2,

U “

ˆ

pp
pu

˙

, Apnq “

¨

˝

0
1

pρ0
nT

xκ0n 0

˛

‚, Pwallpnq “

ˆ

0 0
0 2nnT

˙

,

and Dpnq depends on the numerical stabilization chosen. A` and A´ are the positive and negative
parts of A. We can then prove the following consistency result with a discrete wave system:

Proposition 4 (Consistency with the wave system). We suppose that the hypotheses of Proposi-
tion 3 hold, so that ρ̃p0qi “ ρ̃

p0q
b for all i and we note

α̃
p0q
b :“ α̃

´

ρ̃
p0q
b , ρ̃

p0q
b

¯

, ã
p0q
b :“ ã

´

ρ̃
p0q
b

¯

.

Moreover, we suppose that the numerical flux ensures the following asymptotic development (once
ρ̃
p0q
i “ ρ̃

p0q
b is ensured)

F̃
´

W̃i,W̃j ,n,M
¯

“

¨

˚

˚

˚

˚

˝

ρ̃
p0q

b

´

ũ
p0q

i ` ũ
p0q

j

¯

¨ n

2
` α̃

p0q

b

´

ρ̃
p1q

i ´ ρ̃
p1q

j

¯

`O pMq

1

M

¨

˝

´

p̃
p1q

i ` p̃
p1q

j

¯

n

2γ
`D22pnqρ̃

p0q

b

´

ũ
p0q

i ´ ũ
p0q

j

¯

˛

‚`O p1q

˛

‹

‹

‹

‹

‚

(20)

and that the boundary condition is well prepared as defined in (6), and that the boundary flux
ensure the following asymptotic expansion

• Wall boundary condition

F̃wall
ρ̃ũ

´

W̃i,n,M
¯

“
1

M

˜

p̃
p1q
i

γ
n` ã

p0q
b ρ̃

p0q
b

´

ũ
p0q
i ¨ n

¯

n

¸

`O p1q (21)

• Steger-Warming boundary condition

F̃SW
´

W̃i,W̃b,n,M
¯

“

¨

˚

˚

˝

ρ̃
p0q

b

´

ũ
p0q

i ` ũ
p0q

b

¯

¨ n

2
`
ã

p0q

b

2

´

ρ̃
p1q

i ´ ρ̃
p1q

b

¯

`O pMq
1

M

˜

´

ã
p0q

b

¯2 ρ̃
p1q

i ` ρ̃
p1q

b

2
`
ã

p0q

b ρ̃
p0q

b

2

´

ũ
p0q

i ´ ũ
p0q

b

¯

¨ n

¸

n`O p1q

˛

‹

‹

‚

(22)

then
`

ρ̃p1q, pρ̃ũqp0q
˘

follows a discretization as (19) with pρ0 “ 1, xκ0 “

´

ã
p0q
b

¯2

(pc0 “ ã
p0q
b ), and with

the numerical dissipation

Dpnq “

ˆ

α̃
p0q
b 0
0 D22pnq

˙

.
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Proof. We begin by reformulating the centered pressure of the second component of (20). The
Mach expansion of the pressure can be written as

p̃ “ p̃p0q `Mp̃p1q `O
`

M2
˘

,

but can be also obtained by using the equation of state and (10),

p̃“ p̃pρ̃q

“ p̃
´

ρ̃
p0q
b `Mρ̃p1q `O

`

M2
˘

¯

“ p̃
´

ρ̃
p0q
b

¯

`Mp̃1
´

ρ̃
p0q
b

¯

ρ̃p1q `O
`

M2
˘

p̃“ p̃
´

ρ̃
p0q
b

¯

`Mγ
´

ã
p0q
b

¯2

ρ̃p1q `O
`

M2
˘

,

which leads to the equality

p̃p1q “ γ
´

ã
p0q
b

¯2

ρ̃p1q. (23)

The discretization of (19) follows, by combining the O p1q and the O
ˆ

1

M

˙

of the numerical flux,

and by using (23).

With Proposition 4, it is possible to determine the asymptotic consistency of a given scheme
for (1) with a discretization of the wave system (20). The hypothesis of Proposition 4 are checked
for the boundary conditions in Appendix A. In this same section, it is also proven that

• if the Rusanov flux for the Euler system is used, then

α̃
p0q
b “

ã
p0q
b

2
, D22pnq “

ã
p0q
b

2
Id, (24)

• if the Roe flux for the Euler system is used, then

α̃
p0q
b “

ã
p0q
b

2
, D22pnq “

ã
p0q
b

2
nnT , (25)

Note that the same asymptotic expansion can be performed on all the classical numerical fluxes.
They are separated into two families:

• The ones that preserve the contact surface, for example: exact Godunov scheme, HLLC,
HLLE, Osher. Theses solvers have an asymptotic expansion which gives (25).

• The ones that do not preserve the contact surface, for example, the HLL, or all the variants
of the Rusanov scheme. Theses solvers have an asymptotic expansion which gives (24).

3.2 Schemes that are low Mach number accurate or not
As we did in the continuous case in subsection 2.1, we are now considering the limit of the dis-
cretization (19) of (11) when τ Ñ8. We formally find

"

ρ̃h“ ρ̃
p0q `Mp̂8h `O

`

M2
˘

ρ̃p0qũh“ û8h `O pMq , (26)

where pp̂8h , û
8
h q is the long time limit of the matching discretization of the wave system provided

by Proposition 4, with boundary conditions (12). The long time limit of symmetrizable linear
systems was studied in [22]. More precisely, the existence of the long time limit was proved for
stabilizations (24) and (25) and some features of the long time limit were studied numerically.
Defining the discrete divergence on each cell Ki by

pdivxuqKi
“

1

|Ki|

ř

jPVpiq

ż

Γij

ttu ¨ nij uu , (27)

it was found that for the wave system

9



• On triangular meshes, with the stabilization (25), the long time limit is such that the pressure
is 0, and the discrete divergence (27) is equal to 0. This result can be proved analytically.
Indeed, in [18] (see also [33, 15]), it was proved that the limit is such that the jump of p and
the jump of u ¨ n are zero at all faces of the mesh. The discretly divergence-free velocity
property follows. Since p “ 0 on Steger-Warming boundary faces, the pressure is equal to 0.

• On non triangular meshes, with the stabilization (25), and with the stabilization (24) on any
mesh, the long time limit is such that the pressure is nonzero.

Gathering these results on the linear wave system, with (26) leads to the well known result that

• On triangular meshes, the Roe scheme is low Mach number accurate whereas the Rusanov
scheme is not.

• On quadrangular meshes, neither the Roe scheme nor the Rusanov scheme are low Mach
number accurate.

Thus, for testing the non-accuracy at low Mach number of a nonlinear numerical flux for the
barotropic Euler equations, we should first compute its low Mach number expansion, which leads
to a stabilization of the wave system. Then the long time limit of this numerical discretization of
the wave system is studied, and the numerical flux is not low Mach number accurate provided for
a given test case (here, the scattering of a flow by a cylinder), this long time limit does not have
a zero pressure or does not have a discretely divergence-free velocity. If the matching numerical
discretization of the wave system has a zero pressure and a discretely divergence-free velocity on
the same test case, then this is a hint for performing a more thorough study as it is done in the
next section especially in Proposition 6.

4 A filtering method for steady low Mach number flows
In the previous section, we found that the low Mach number accuracy of a numerical flux could be
studied by expanding this numerical flux in Mach number, and by studying the long time behavior
of the matching discretization of the wave system.

In this section, we aim at going further: we want to use the numerical long time limit of the
wave system for filtering the numerical solution of the Euler system. This will be led in three steps

1. Compute the steady solution WEuler of the Euler system with the finite volume scheme (16),
with boundary conditions ρb and ub at the Steger-Warming boundary conditions.

2. Choose the density scale ρ0 and the velocity scale u0 in (4). Compute the long time limit of
the matching wave system (11) in dimensionless variables with the matching finite volume
scheme and initial condition, and with the boundary conditions ppb “ 0 and pub “

`

ρ̃ũEuler
˘p0q

b
.

We denote the discrete long time limit as pp8h and pu8h . From this, compute the numerical
spurious component WSpurious in dimensioned variables.

3. Subtract the spurious component from the Euler solution

WFiltered “ WEuler ´WSpurious

In the following subsections, we explain in details how WSpurious is computed.

4.1 Filtered density
The following expansion holds in general when M Ñ 0

ρ̃Euler
h “

`

ρ̃Euler˘p0q
h
`M

`

ρ̃Euler˘p1q
h
`O

`

M2
˘

.

The numerical scheme is low Mach number accurate only if
`

ρ̃Euler
˘p1q

h
“ 0. With (26), we know

that the spurious component
`

ρ̃Euler
˘p1q

h
is the pressure pp8h of the long time limit of the matching

wave system. The dimensionless filtered density is given by

ρ̃Filtered
h “ ρ̃Euler

h ´Mpp8h ,

10



so that the dimensioned filtered density is given by

ρFiltered
h “ ρEuler

h ´Mρ0pp
8
h , (28)

where M “ u0{a0 and ρ0, u0 and a0 correspond to the characteristic scales (4).
Then, we will get

`

ρ̃Filtered˘p1q
h
“ 0

as expected.

4.2 Filtered momentum
The computation of the filtered velocity is slightly more difficult than for the density: for the
density, the full ρp1q belongs to the spurious mode, whereas for the velocity, we know that up0q is
not equal to 0. More precisely, the velocity of the long time solution of the wave system minus the
divergence free component (in the sense of the decomposition (15)) of the initial condition of the
wave system needs to be removed.

The filtering of the velocity can be deduced from a discrete version of Proposition 1, which
exists only on triangles in 2D and on tetrahedra in 3D. We then extend this method to general
finite element meshes. The method is described in 2D and the extension to 3D is specified.

4.2.1 Filtered momentum on triangular meshes

To simplify the notations, we denote Fwall/SW all the boundary faces

Fwall/SW “ Fwall Y FSW.

We define ub on the wall boundary faces as ub “ 0 such that the condition u ¨ n “ 0 on walls can
also be written as u ¨ n “ ub ¨ n.

In the triangular case, the following discrete equivalent of Proposition 1, is available:

Proposition 5 (Discrete Hodge-Helmholtz decomposition on triangular mesh). A piecewise con-
stant velocity uh on the triangular mesh Th can be uniquely decomposed as

uh “ Pϕh ruhs ` PΨ
h ruhs

where

• Pϕh ruhs and PΨ
h ruhs are piecewise constant on the mesh Th,

• Pϕh ruhs is the gradient of a Crouzeix-Raviart [9] scalar potential, i.e. Pϕh ruhs “ ∇ϕh with

ϕh PWh :“
 

ϕh
ˇ

ˇ @K P Th, pψhq|K P P1pKq and ϕh is continuous at the face midpoint
(

,

• PΨ
h ruhs P Zh where

Zh :“
!

uh P RN
2
Cells

ˇ

ˇ @f P Fint, rruh ¨ nf ss “ 0, @f P Fwall/SW, ui ¨ nf “ ub ¨ nf

)

(29)

Moreover, we can prove that PΨ
h ruhs is the curl of a continuous P1 potential vector, i.e. PΨ

h ruhs “
∇ˆ ψh with

ψh P Vh :“
 

ψh P C
0pΩq

ˇ

ˇ @K P Th, pψhq|K P P1pKq
(

.

The proof of Proposition 5 is deferred to subsection B.3. It is an extension of [16, Theorem 4.1]
in the H1

0 case and of [15, Lemma 3.1] or [13, Lemme 3.5] in the periodic case.
The decomposition of Proposition 5 is adapted to the discretization of the wave system with

the stabilization (25), as it was previously explained in [15] in the periodic case. More precisely,
we have the following proposition which is a discrete version of Proposition 2

Proposition 6. If we use the discrete wave system (19) on a triangular mesh with the stabilization
(25) and with a forward Euler method for time integration, a state ppp0

h, pu
0
hq such that pp0

h is uniform
(equals to ppb) and Pϕh

“

pu0
h

‰

“ 0 is constant in time.
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The proof is deferred to subsection B.4.
Suppose now that we are dealing with the Rusanov scheme, which matches the stabilization

(24) of the wave system. Then the Proposition 6 does not hold for this stabilization; moreover,
the discrete divergence (27) of the long time limit of the velocity is not 0. Nevertheless, the initial
condition of the wave system û0

h can be decomposed as

û0
h “ Pϕh

“

û0
h

‰

` PΨ
h

“

û0
h

‰

.

Then the spurious component of the velocity clearly appears as being û8h ´ PΨ
h

“

û0
h

‰

. Based on
the proof of Proposition 5 detailed in subsection B.3, the component Pϕh

“

û0
h

‰

can be computed by
solving the variational problem

Find ϕh PWh @gh PWh

ř

K

ż

K

∇xgh ¨∇xϕh “
ř

K

ż

K

pu0
h ¨∇gh ´

ř

fPFwall/SW

ż

f

ghpub ¨ n (30)

and by computing the cell-by-cell gradient of ϕh. PΨ
h

“

û0
h

‰

is then computed as PΨ
h

“

û0
h

‰

“ û0
h ´

Pϕh
“

û0
h

‰

. This leads to the following filtered momentum

pρuq
Filtered

“ pρuq
Euler

´ ρ0u0

`

pu8h ´ PΨ
h

“

û0
h

‰˘

. (31)

4.2.2 Filtered momentum on quadrangular meshes

We have no knowledge of a decomposition similar to Proposition 5 on quadrangular meshes. It
is of course possible to use a formulation similar to (30) by replacing the Crouzeix-Raviart finite
element space by its equivalent for nonconforming finite elements approximations on quad meshes:
the Rannacher-Turek finite element space [30]. However contrary to triangles in which the cell-
by-cell derivative of a Crouzeix-Raviart function belongs to P0, the cell-by-cell derivative of a
Rannacher-Turek function is not in Q0. As a consequence a Pϕh

“

û0
h

‰

belonging to Q0 cannot be
defined as the cell-by-cell gradient of ϕh. Instead, we define Pϕh rû0

hs as a Q0 approximation on
each cell: the average of the gradient of ϕh on each cell:

@K P Th Pϕh rû0
hsK “

1

|K|

ż

K

∇xϕh. (32)

Note that on triangles, Pϕh rû0
hs “ Pϕh

“

û0
h

‰

. The filtered momentum on quadrangular meshes is
then defined as (31), by using Pϕh rû0

hs instead of Pϕh
“

û0
h

‰

:

pρuq
Filtered

“ pρuq
Euler

´ ρ0u0

´

pu8h ´ PΨ
h rû

0
hs

¯

, (33)

where PΨ
h rû

0
hs :“ û0

h ´ Pϕh rû0
hs.

4.3 Summary of the filtering method
For a given mesh and a given distribution of the Steger-Warming and wall boundary conditions

1. Determine the wave stabilization matching the numerical flux used.

2. Compute the long time limit p̂8h and û8h of the wave system, with p̂b “ 0 and ûb “ pρ̃ũ
Eulerq

p0q
b

on the Steger-Warming boundary conditions.

3. Compute Pϕh rû0
hs by solving (30) and by using then (32). From a practical point of view,

(30) is solved by using PETSc with the conjugate gradient method. Note that because of
the Neumann boundary conditions, the variational formulation (30) has a kernel matching
uniform potentials, so that direct methods are not well suited.

4. Filter the solution by using (28) and (33).

Since dimensionless variables are used, it is important to note that all the computations needed for
the filtering phase are independent of the Mach number. Also, all these computations are linear.

The filtering method naturally extends to 3D. Of course, we have to compute the numerical long
time solution ppp8h , pu

8
h q of the matching wave system in 3D. The filtered density is obtained with

(28) as in 2D. For the filtered momentum, we also use (33) where Pϕh
“

û0
h

‰

is obtained by solving
the variational problem (30) with Crouzeix-Raviart finite element space on tetrahedral mesh or
with Rannacher-Turek finite element space on hexahedral mesh.

12



5 Numerical results
In this section, we test the filtering method described in the previous section to compute low Mach
number steady solution of the Euler equations (1) with the finite volume scheme (16).

5.1 Test case description
We consider an open domain Ω with a number of obstacles Ωl, such that the boundaries of Ω and
Ωl are regular. Boundary conditions set on BΩl are of wall type, whereas on BΩ, Steger-Warming
boundary conditions are imposed with a state characterized by its density at infinity ρb, and its
Mach number at infinity Mb. All the computations are led with the equation of state

ppρq “ ρ2.

For all the computations, an external density of ρb “ 2 is imposed, and the external velocity is
deduced from the Mach number by ub “ pMb

a

p1pρbq, 0q
T . The initial data are uniform and set

equal to
ρ “ ρb, u “ 0.

All simulations were run with a forward Euler time stepping with a CFL number of 0.4.

5.2 Matching wave system
To apply the filtering method, we need to compute the long time limit of a wave problem. Choosing
ρ0 “ ρb for the density scale and u0 “Mb

a

p1pρbq for the velocity scale, the matching wave problem
(13) is obtained with pρ0 “ xκ0 “ 1 and the matching finite volume scheme is (19) where at the
Steger-Warming boundary condition we have ppb “ 0 and pub “ p1, 0q

T .

5.3 Flow around a Cylinder
In this section, we are interested in the case when a single cylinder obstacle is in Ω. This test case
is interesting because an exact solution of the velocity field up0q is known in the low Mach number
limit provided the computational domain is a ring between the cylinder, which radius is r0 and
the external part of the computational domain, which is of radius r1:

up0qex “Mb

a

p1pρbq
r2
1

r2
1 ´ r

2
0

¨

˚

˝

1´
r2
0

r2
cosp2θq

´
r2
0

r2
sinp2θq

˛

‹

‚

. (34)

The numerical results are obtained with r0 “ 0.5 and r1 “ 5.5. For all the studies except for
the one with mesh convergence, the test is performed on a triangular and a quadrangular mesh
with the following characteristics. The quadrangular mesh is obtained by discretizing the annulus
rr0, r1sˆr0, 2πr with a resolution of nr “ 50 in the radial direction and nθ “ 160 in the orthoradial
direction. This mesh contains 8 000 quadrangular cells. The triangular mesh is obtained from
a quadrangular mesh produced with nr “ 25 and nθ “ 80 by dividing each quadrangle into two
triangles. This mesh contains 4 000 triangular cells.

We first aim at illustrating the convergence towards a steady state for the Euler system. In
Figure 1, the density residual

max
i

ˇ

ˇ

ˇ

ˇ

|Ωi|
ρn`1
i ´ ρni
δt

ˇ

ˇ

ˇ

ˇ

and the momentum residuals are plotted as a function of the time. Even if the time required
depends on the Mach number, the mesh and the numerical scheme, all schemes allow to reach a
steady state. For similar results on the matching wave system, we refer to [22]. All the results pre-
sented in the following match a final computational time for which all the residuals are converged.
This final time depends on the mesh, the Mach number and the scheme used.

In Figure 2, the L2 norm of density fluctuation ρ´ρb is plotted with respect to the Mach number
(for Mb “ 10´1 to Mb “ 10´10) on quadrangular (8 000 cells) and triangular (4 000 cells) mesh.
Results with and without filtering are shown. Without filtering, as expected, a O pMq scaling of
the density fluctuation is obtained for the Rusanov and Roe schemes on the quadrangular mesh
[19], and for the Rusanov scheme on the triangular mesh [31]. A O

`

M2
˘

scaling is obtained for
the Roe scheme on the triangular mesh [33, 18]. With filtering, all the numerical solutions recover
the O

`

M2
˘

behavior. For some schemes, the convergence rate is lost for Mach number smaller
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Figure 1: Residual obtained with quadrangular and triangular mesh on the density and the mo-
mentum ρux and ρuy as a function of the time.
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Figure 2: L2 norm of density fluctuation ρ´ ρb with respect to the Mach number (for Mb “ 10´1

to Mb “ 10´10). Rusanov and Roe schemes are used on triangular (right) and quadrangular (left)
mesh. A log-log plot is used. Results with and without filtering are shown, and confirm that
filtering allows to recover the O

`

M2
˘

scaling of the density fluctuation (or pressure fluctuation)
when the Mach number goes to 0.

than 10´7 because the numerical precision limit is reached. These results validate the link between
the long time pressure of the wave system and the spurious mode in the low Mach number limit
that was proposed in the filtering of the density in (28).

In Figure 3 and Figure 4, the iso-contours of the norm of the velocity obtained at Mb “ 10´4

are plotted. Results with and without filtering are shown on triangular and quadrangular mesh
and are compared to the reference solution (34). Results show that even if the unfiltered solution
is very far from the reference solution, the filtering method allows to recover a solution close to
the reference solution. These results validate the filtering of the momentum that was proposed in
(33).

In Figure 5, a grid convergence study on the velocity field is performed on triangular and quad-
rangular meshes. Rusanov and Roe scheme are used with and without filtering. Four different
meshes are used in both cases. Without filtering, the Rusanov scheme on triangular and quadran-
gular mesh and the Roe scheme on quadrangular mesh do not converge to the reference solution.
However, the Roe scheme on triangular mesh converges to the reference solution with a rate of 1.
With filtering, the convergence with a rate of 1 on quadrangular and triangular mesh is recovered
for the Rusanov and the Roe scheme. These results confirm the relevance of the filtering of the
momentum of (33).

5.4 Flow around a NACA0012 airfoil
In this section, the filtering method is tested on a low Mach number flow around a NACA0012
included in a rectangular domain r´1; 2s ˆ r´2; 2s. Two meshes are used:

• a triangular mesh generated with GMSH[17] with a characteristic length lc “ 0.024 around the
NACA profile, and 5lc on the external boundaries.

• an unstructured quadrangular mesh, still generated with GMSH by recombination of a trian-
gular mesh on which the blossom algorithm is applied.

For this computation, no exact solution is known. However, we still expect the density fluctuations
around ρb to scale as O

`

M2
˘

when the Mach number goes to 0. Results obtained for this scaling
are shown on Figure 6. They confirm that without filtering, a O pMq scaling is obtained for the
Rusanov and Roe scheme on the quadrangular mesh, and for the Rusanov scheme on the triangular
mesh. Once filtered, all the numerical solutions recover a O

`

M2
˘

behavior. Last, a well known
result is observed: the Roe scheme on the triangular mesh has a O

`

M2
˘

behavior without any
filtering. We are now interested in the results of the velocity. In this case, the numerical solution
obtained with the Roe scheme on triangles is taken as a reference solution. Results obtained for a
Mach numberMb “ 10´4 are shown in Figure 7. Results prove that the filtering method developed
in this article allows to recover a good solution, even with the solution with the very noised solution
obtained with the Roe scheme on quadrangular meshes (We believe that the very noisy solution
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Figure 3: Iso-contours of the norm of the velocity obtained at Mach number Mb “ 10´4 on
quadrangular mesh. Results with and without filtering are shown for the Rusanov and the Godunov
scheme. Twenty equally reparted contours between 8ˆ 10´6 and 3ˆ 10´4 are plotted.
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Figure 4: Iso-contours of the norm the velocity obtained at Mach numberMb “ 10´4 on triangular
mesh. Results with and without filtering are shown for the Rusanov and the Godunov scheme.
Twenty equally reparted contours between 8ˆ 10´6 and 3ˆ 10´4 are plotted.
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Figure 5: L2 norm of the velocity error between the exact incompressible solution and the long
time limit state obtained with the Rusanov and the Godunov scheme. Results with and without
filtering are shown on quadrangular (left) and triangular (right) meshes for a Mach number of
Mb “ 10´4.

10−6 10−5 10−4 10−3

Mach number

10−12

10−10

10−8

10−6

‖ρ
−
ρ
b‖

2

slope=2

slope=1

Quads, Rusanov, unfiltered

Quads, Rusanov, filtered

Quads, Roe, unfiltered

Quads, Roe, filtered

10−6 10−5 10−4 10−3

Mach number

10−12

10−10

10−8

10−6

‖ρ
−
ρ
b‖

2

slope=2

slope=1

Triangles, Rusanov, unfiltered

Triangles, Rusanov, filtered

Triangles, Roe, unfiltered

Figure 6: Results obtained for the L2 norm of ‖ρ´ ρb‖ with respect to the Mach number. A
log-log plot is used. Rusanov and Roe scheme are used on both triangular (right) and quadrangular
(left) meshes, and results with and without filtering are shown, and confirm that filtering allows
to recover the M2 scaling for the density when the Mach number goes to 0.
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with the Roe solver is induced by the use of a quad mesh obtained with the blossom algorithm,
which is strongly different to the O-meshes used usually for NACA computations).

6 Conclusion
In this article, the behavior of numerical schemes for compressible flows in the low Mach number
limit was enlightened to share a lot of properties with the long time behavior of the discretization
of a wave system. We deduce that the numerical fluxes for (1) can be divided into two families:

• The numerical fluxes that are low Mach number accurate, which are matching a discretization
of the wave system for which the long time limit ensures a uniform pressure and an irrotational
velocity for all configurations defined by equations (13),(14).

• The numerical fluxes that are not low Mach accurate, which are matching a discretization
of the wave system for which the long time limit does not ensure a uniform pressure nor an
irrotational velocity for at least one configuration defined by equations (13),(14).

This means that for studying the low Mach number accuracy of a numerical scheme for (1), it is
sufficient to study the long time limit of a matching discretization of the wave system, which is
much easier because it is a linear problem.

In the triangular case, a sharp algebraic framework including a discrete Hodge-Helmholtz de-
composition with initial condition and boundary conditions allowed to extend the accuracy on
triangles for some numerical fluxes. This result was already known in the unbounded case [15, 18].

In the case of a numerical flux not accurate at low Mach number, the spurious mode was
identified (up to a factor) as

• For the pressure, the pressure component of the long-time limit of the wave system.

• For the velocity, the long time limit of the wave system minus the divergence free component
(as defined in Proposition 1) of the initial velocity of the wave system.

From the exact knowledge of the spurious mode, a filtering method was proposed. We proved that
with this method, an accuracy comparable with numerical fluxes accurate at low Mach number
could be recovered. This filtering needs only the long time limit of the wave system for the filtering
of the pressure, and needs also the inversion of one Laplace system for the computation of the
divergence free component of the initial velocity.

This article deals only with finite volume schemes, however, we would like to stress that our
methodology is very generic: all the results obtained can be applied in any numerical scheme,
especially the asymptotic expansion of the numerical scheme for checking compatibility with the
wave system (section 2), and Hodge-Helmholtz decomposition for filtering the steady low Mach
number solution (section 4).

We consider the identification of the spurious mode at low Mach number as an important step
for deriving accurate low Mach number numerical methods. We were able here to use this spurious
mode for developing a filtering method but only for stationary barotropic Euler computations.
There is still a lot of work for extending this method to full Euler system, to unstationary problems,
or to viscous problems. As far as the full Euler system is concerned, the difficulty would be raised
by the fact that the pressure is constant, but other thermodynamic variables (temperature, density)
are not, so that the sound velocity of the matching wave system would not be uniform within the
computational domain. The result of [22] would still hold, as uniformity of the wave velocity is
not required. Last, the Hodge-Helmholtz decomposition of Proposition 5 would probably need to
be modified, for example by being weighted by the sound velocity field as in [13].
For the extension towards time dependent or viscous flows, we are currently trying to develop a
reformulation of the system as a fluctuation around the spurious mode. This is a strategy that is
usually developed for getting well balanced schemes for hyperbolic systems with a source term, by
formulating the system as a fluctuation around the steady state [6].
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experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux,
Bordeaux INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr/).
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A Non-dimensional expressions for the numerical fluxes and
boundary fluxes

In this section, we detail which fluxes are considered in this article and give their non-dimensional
expression.

A.1 The Rusanov flux
The Rusanov numerical flux is given by

FLF pWi,Wj ,nq “
fpWiq ` fpWjq

2
¨ n ´

λij
2
pWj ´Wiq (35)

where λij “ max
WPtWi,Wju

p|λ˘pWq|q “ max
WPtWi,Wju

p|u ¨ n| ` aq.

22



This flux can be rephrased in dimensionless variables as

F̃LF
´

W̃i,W̃j ,n,M
¯

“
1

2

¨

˝

pρ̃iũi ` ρ̃jũjq ¨ n

ρ̃iũipũi ¨ nq ` ρ̃jũjpũj ¨ nq `
1

γM2
pp̃i ` p̃jqn

˛

‚

`
1

2
max

WPtWi,Wju

ˆ

|ũ ¨ n| `
ã

M

˙

´

W̃i ´ W̃j

¯

,

to get that

F̃LF
ρ̃

´

W̃i,W̃j ,n,M
¯

“
1

M
max

´

ã
´

ρ̃
p0q
i

¯

, ã
´

ρ̃
p0q
j

¯¯´

ρ̃
p0q
i ´ ρ̃

p0q
j

¯

`O p1q .

Moreover, if ρ̃p0qi “ ρ̃
p0q
b , we get (20) where α̃p0qb and D22pnq are given by (24).

A.2 The Roe numerical flux
Defining the Roe average as

ρij “
?
ρiρj , uij “

?
ρiui `

?
ρjuj

?
ρi `

?
ρj

and a2
ij “

$

&

%

∆p

∆ρ
, if ∆ρ ‰ 0,

apρiq, otherwise
(36)

where ∆p¨q “ p¨qj ´ p¨qi, the Roe numerical flux is defined as

FRoepWi,Wj ,nq “
fpWiq ` fpWjq

2
¨ n

´
1

4
|uij ¨ n ´ aij |

ˆ

∆ρ´
ρij
aij

∆ pu ¨ nq

˙ˆ

1
uij ´ aijn

˙

´
1

2
|uij ¨ n| ρij

ˆ

0
∆uKpnq

˙

´
1

4
|uij ¨ n ` aij |

ˆ

∆ρ`
ρij
aij

∆ pu ¨ nq

˙ˆ

1
uij ` aijn

˙

(37)

where
uKpnq :“ u´ pu ¨ nqn

denotes the tangential component of u with respect to normal direction n.
The general dimensionless Roe scheme is very complicated, we focus here only on the low Mach

number behavior, and therefore express it only in the subsonic case. Then, we have

F̃Roe
ρ̃

´

W̃i,W̃j ,n,M
¯

“
ρ̃iũi ` ρ̃jũj

2
¨ n `M

ρ̃ij
2ãij

pũij ¨ nqpũi ´ ũjq ¨ n `
ãij
2M

pρ̃i ´ ρ̃jq

F̃Roe
ρ̃ũ

´

W̃i,W̃j ,n,M
¯

“
ρ̃ipũi ¨ nqũi ` ρ̃jpũj ¨ nqũj

2

`
ãij
2M

pρ̃i ´ ρ̃jq rũij ` pũij ¨ nqns

`
ρ̃ij
2
|ũij ¨ n|pũ

K
i pnq ´ ũKj pnqq

`M
ρ̃ijpũij ¨ nq

2ãij
rpũi ´ ũjq ¨ nsũij

`

„

1

γM2

p̃i ` p̃j
2

`
1

2M
ρ̃ij ãijpũi ´ ũjq ¨ n



n.

(38)

Then, we get

F̃Roe
ρ̃

´

W̃i,W̃j ,n,M
¯

“
ã
p0q
ij

2M

´

ρ̃
p0q
i ´ ρ̃

p0q
j

¯

.

Moreover, if ρ̃p0qi “ ρ̃
p0q
b , since the pressure p is a convex function of the density ρ, we get that

ã
p0q
ij “ ã

´

ρ̃
p0q
b

¯

and then we obtain (20) where α̃p0qb and D22pnq are given by (25).
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A.3 Dimensionless Steger-Warming boundary condition
For inlet and outlet boundary conditions, the Steger-Warming boundary condition is used. Given
an external full state Wb, and an interior state Wi, the flux is

F SWpWi,Wb,nq “ A`pWb,nqWi `A
´pWb,nqWb,

where A` and A´ are respectively the positive and negative parts of the Jacobian matrix of f . For
the barotropic Euler system, in the subsonic case ub ¨n´ ab ă 0 ă ub ¨n` ab, this flux is equal to

F SWpWi,Wb,nq “
1

2
pub ¨ n` abq

„

ρi `
ρi
ab
pui ´ ubq ¨ n

ˆ

1
ub ` abn

˙

` pub ¨ nq
`ρi

ˆ

0
pui ´ ubq

Kpnq

˙

`
1

2
pub ¨ n´ abqρb

ˆ

1
ub ´ abn

˙

.

Then, we get the dimensionless expression as

F̃ SW
´

W̃i,W̃b,n,M
¯

“
1

2
ρ̃i

ˆ

ũb ¨ n`
ãb
M

˙„

1`
M

ãb
pũi ´ ũbq ¨ n



˜

1

ũb `
ãb
M
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¸

` ρ̃ipũb ¨ nq
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ˆ

0
pũi ´ ũbq

Kpnq

˙

`
1

2
ρ̃b

ˆ

ũb ¨ n´
ãb
M

˙

˜

1

ũb ´
ãb
M

n

¸

that can be rewritten as

F̃ SW
ρ̃

´

W̃i,W̃b,n,M
¯

“
ρ̃iũi ` ρ̃bũb

2
¨ n`

ãb
2M
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2ãb
pũb ¨ nqpũi ´ ũbq ¨ n

F̃ SW
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`
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2M
ρ̃iãb rpũi ´ ũbq ¨ nsn

`
1

2
ρ̃i|ũb ¨ n|pũ

K
i pnq ´ ũKb pnqq `

1

2
ρ̃ipũb ´ ũiq rpũi ´ ũbq ¨ ns

`M
ρ̃ipũb ¨ nq

2ãb
rpũi ´ ũbq ¨ nsũb.

Then, we get

F̃ SW
ρ̃

´

W̃i,W̃b,n,M
¯

“
ã
p0q
b

2M

´

ρ̃
p0q
i ´ ρ̃

p0q
b

¯

`O p1q .

Moreover, if ρ̃p0qi “ ρ̃
p0q
b , we get (22).

A.4 Dimensionless wall boundary condition
For a wall, the following flux is used

FwallpWi,nq “ F pWi,|Wi,nijq

where the flux F corresponds to the flux taken in the domain and |Wi is obtained from the
transformation of Wi: |Wi “ pId`1 ´ PwallpnqqWi with

Pwallpnq “

ˆ

0 0
0 2nnT

˙

.

In the case of a Rusanov flux, we get

F̃wall,Rusanov
´

W̃i,n,M
¯

“

¨

˝

0
1

γM2
p̃in` ρ̃ipũi ¨ nq

2n`

ˆ

|ũi ¨ n| `
ãi
M

˙

ρ̃ipũi ¨ nqn

˛

‚
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so that F̃wall,Rusanov
ρ̃ “ 0. Moreover, if ρ̃p0qi “ ρ̃

p0q
b is ensured, F̃wall,Rusanov

ρ̃ũ satisfies (21) because

ã
p0q
i “ ã

p0q
b .

In the case of the Roe flux, we get

F̃wall,Roe
´

W̃i,n,M
¯

“

¨

˝

0
1

γM2
p̃in` ρ̃ipũi ¨ nq

2n`
1

M
ρ̃iãipũi ¨ nqn

˛

‚

and the same result is obtained because order 1{M2 and 1{M are the same as the Rusanov flux.

B Proof of the propositions on continuous and discrete Hodge-
Helmholtz decompositions

B.1 Decomposition in the continuous case
In this subsection, we prove Proposition 1.

The decomposition can be written as

u “ ∇xϕ` curlxΨ.

Taking the divergence of the equality gives

∆xϕ “ divxu.

This equation is multiplied by a regular test function g and integrated on Ω
ż

Ω

g∆xϕ “

ż

Ω

gdivxu.

The left hand side is integrated by parts as follows
ż

Ω

g∆xϕ“

ż

Ω

gdivx p∇xϕq

“

ż

Ω

divx pg∇xϕq ´

ż

Ω

∇xg ¨∇xϕ

“

ż

BΩ

g∇xϕ ¨ n´

ż

Ω

∇xg ¨∇xϕ

“

ż

BΩ

g pu ¨ n´ ub ¨ nq ´

ż

Ω

∇xg ¨∇xϕ.

Therefore the following variational formulation is found

Find ϕ P H1pΩq @g P H1pΩq

ż

Ω

∇xg ¨∇xϕ “

ż

BΩ

g pu ¨ n´ ub ¨ nq ´

ż

Ω

gdivxu. (39)

Note that all the integral of the right hand side have a sense, because if u P H1pΩq, then its
divergence is in H´1pΩq. The variational problem (39) has a unique solution up to a constant
provided Ω is simply connex. By taking the gradient of ϕ, we find the component uϕ. By defining

uΨ “ u´ uϕ,

existence of the decomposition is found. Let’s now proof the uniqueness. Suppose that we have
two decompositions

u “ u1
ϕ ` u1

Ψ “ u2
ϕ ` u2

Ψ,

with the following boundary conditions

u1
ϕ ¨ n “ u2

ϕ ¨ n “ u ¨ n´ ub ¨ n,

then
u1
ϕ ´ u2

ϕ “ u2
Ψ ´ u1

Ψ. (40)

We denote by ϕ1 (resp. ϕ2) a potential such that ∇xϕ
1 “ u1

ϕ (resp. ∇xϕ
2 “ u2

ϕ). By taking the
divergence of the equality, we find that ϕ1 ´ ϕ2 is such that

"

∆x

`

ϕ1 ´ ϕ2
˘

“ 0 in Ω,
∇x

`

ϕ1 ´ ϕ2
˘

¨ n “ 0 in BΩ.

As Ω is simply connex, a constant K exists such that ϕ1 ´ ϕ2 “ K. This leads to u1
ϕ “ u2

ϕ.
Following (40), u1

Ψ “ u2
Ψ, so that uniqueness is proven.
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B.2 Long time behaviour of the continuous wave system
The aim of this section is to prove Proposition 2. We first need to prove the following lemma:

Lemma 1. Consider the wave system (13) with initial velocity pu0, and with boundary conditions
weakly defined by (14b) for wall, and by (14c) for inlet/outlet. Consider now a stationary state
U8 “ ppp8, pu8q that pu8 is divergence free and such that pp8 is uniformly equal to ppb, and such
that pu8 ¨ n “ 0 on walls and pu8 ¨ n “ pub ¨ n on inlet/outlet. We define the relative energy as

EU8pUq :“
pρ0

2
pc0

2

2
ppp´ pp8q

2
`

1

2
ppu´ pu8q

2
.

Then the volumic average of the relative energy is a Liapunov functional.

Proof. Consider the weak formulation of the wave system

@g,g

$

’

’

&

’

’

%

ż

Ω

gBtpp´

ż

Ω

1

pρ0
pu ¨∇xg `

ż

BΩ

g

„

1

pρ0
pu ¨ n



wall/SW
“ 0,

ż

Ω

g ¨ Btpu´

ż

Ω

xκ0ppdivxg `

ż

BΩ

g ¨ rxκ0ppnswall/SW “ 0.

Now, we set g “ pu´ pu8 and g “ pp´ pp8, multiply the equation of pressure by pρ0
2
pc0

2, and add the
two equations, for finding
ż

Ω

BtEU8pUq ´

ż

Ω

pρ0 pc0
2 divx ppppuq

`

ż

BΩ

pρ0
2
pc0

2
ppp´ pp8q

„

1

pρ0
pu ¨ n



wall/SW
` ppu´ pu8q ¨ rxκ0ppnswall/SW “ 0.

The second volumic integral can be integrated, which gives
ż

Ω

BtEU8pUq ´

ż

BΩ

pρ0 pc0
2
pppu ¨ n

`

ż

BΩ

˜

pρ0
2
pc0

2
ppp´ pp8q

„

1

pρ0
pu ¨ n



wall/SW
` ppu´ pu8q ¨ rxκ0ppnswall/SW

¸

“ 0.

The boundary flux on walls is given by (14b). Moreover, on the wall boundary, we have pu8 ¨n “ 0.
This means that on the wall boundary

´ pρ0 pc0
2
pppu ¨ n` pρ0

2
pc0

2
ppp´ pp8q

„

1

pρ0
pu ¨ n



wall
` pu ¨ rxκ0ppnswall

“ ´ pρ0 pc0
2
pppu ¨ n` pρ0 pc0

2
ppp` pc0pu ¨ nq pu ¨ n

“ pρ0 pc0
2
ppu ¨ nq

2
ě 0,

whereas for the inlet/outlet, the boundary flux (14c) can be written as

»

–

1

pρ0
pu ¨ n

xκ0 ppn

fi

fl

SW

“

¨

˚

˝

1

2 pρ0
pu ¨ n

xκ0

2
ppn

˛

‹

‚

`

¨

˚

˚

˝

1

2 pρ0
pub ¨ n`

pc0
2
ppp´ ppbq

ˆ

xκ0

2
ppb `

pc0
2
ppu ¨ n´ pub ¨ nq

˙

n

˛

‹

‹

‚

,

then
´ pρ0 pc0

2
pppu ¨ n` pρ0

2
pc0

2
ppp´ pp8q

„

1

pρ0
pu ¨ n



SW
` ppu´ pu8q ¨ rxκ0ppnsSW

“ ´ pρ0 pc0
2
pppu ¨ n` pρ0

2
pc0

2
ppp´ pp8q

ˆ

1

2 pρ0
pu ¨ n`

1

2 pρ0
pub ¨ n`

pc0
2
ppp´ ppbq

˙

`ppu´ pu8q ¨ n

ˆ

xκ0

2
pp`

xκ0

2
ppb `

pc0
2
ppu ¨ n´ pub ¨ nq

˙

“ ´ pρ0 pc0
2
pppu ¨ n` pρ0

2
pc0

2
ppp´ pp8q

ˆ

1

2 pρ0
pu ¨ n`

1

2 pρ0
pub ¨ n`

pc0
2
ppp´ ppbq

˙

`ppu´ pu8q ¨ n

ˆ

xκ0

2
pp`

xκ0

2
ppb `

pc0
2
ppu ¨ n´ pub ¨ nq

˙

“
pρ0 pc0

3

2
ppp´ ppbq

2
`

pc0
2
ppu ¨ n´ pub ¨ nq

2
ě 0.
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We finally find

Bt

ˆ
ż

Ω

EU8pUq

˙

ď 0,

which ends the proof.

We now prove a second lemma

Lemma 2. If ppp, puq is the solution of the wave system (13), and if we consider the Hodge-Helmholtz
decomposition (15) of pu, then puΨ is constant.

Proof. By integrating by parts in (39) the integral involving the divergence, we find the following
variational formulation

Find ϕ P H1pΩq @g P H1pΩq

ż

Ω

∇xg ¨∇xϕ “

ż

Ω

pu ¨∇xg ´

ż

BΩ

gpub ¨ n. (41)

Taking the derivative in time gives

@g P H1pΩq

ż

Ω

∇xg ¨ Bτ p∇xϕq “

ż

Ω

Bτ pu ¨∇xg “ ´

ż

Ω

xκ0∇xpp ¨∇xg,

which leads to
@g P H1pΩq

ż

Ω

∇xg ¨ pBτ puϕ `xκ0∇xppq “ 0.

As Bτ puϕ `xκ0∇xpp is the gradient of Bτϕ`xκ0pp, this means that

Bτ puϕ `xκ0∇xpp “ 0,

so that Bτ puΨ “ 0.

We can now prove Proposition 2. Considering Lemma 1, it is clear that the pressure at infinity
is uniform, equal to ppb, and that the velocity at infinity is divergence free, so that puϕ is 0 at infinity.
Then, following Lemma 2, puΨ is constant, so that the limit of pu at infinite time is equal to puΨp0q.

B.3 Discrete decomposition on triangular meshes
In this section, Proposition 5 is proven.

Let uh P R2NCells . We first remark that the variational formulation in the continuous case (39)
can be transformed, by using the Green formula on the last integral of the right hand side as

Find ϕ P H1pΩq @g P H1pΩq

ż

Ω

∇xg ¨∇xϕ “ ´

ż

BΩ

gub ¨ n`

ż

Ω

∇xg ¨ u. (42)

This suggests to define ϕh and so Pϕh ruhs “ ∇ϕh as the solution of the following discrete variational
problem

Find ϕh PWh @gh PWh

ÿ

K

ż

K

∇xgh ¨∇xϕh “
ÿ

K

ż

K

uh ¨∇gh ´
ÿ

fPFwall/SW

ż

f

ghub ¨ n. (43)

We will now prove that uψh :“ uh ´∇ϕh P Zh and later we will prove that all element of Zh can
be written as the curl of an element of Vh. For all gh PWh, we have

ÿ

fPFwall/SW

ż

f

ghub ¨ n “
ÿ

K

ż

K

puh ´∇ϕhq ¨∇gh

“
ÿ

K

ż

K

uψh ¨∇gh

“
ÿ

K

ż

K

divxpu
ψ
hghq ´

ÿ

K

ż

K

ghdivxpu
ψ
h q

“
ÿ

K

ż

BK

ghu
ψ
h ¨ n

“
ÿ

fPFint

ż

f

rr ghu
ψ
h ¨ n ss `

ÿ

fPFwall/SW

ż

f

ghu
ψ
h ¨ n

“
ÿ

fPFint

ż

f

tt gh uu rru
ψ
h ¨ n ss `

ÿ

fPFint

ż

f

rr gh ss
!!

uψh ¨ n
))

`
ÿ

fPFwall/SW

ż

f

ghu
ψ
h ¨ n.

27



As uψh is piecewise constant,
!!

uψh ¨ n
))

is constant along the face, which means that on all interior
faces f P Fint,

ż

f

!!

uψh ¨ n
))

rr gh ss

is proportional to
ż

f

rr gh ss,

which is 0 since gh is in Wh. Then, uψh P Zh and the application

L : Wh ˆ Zh ÝÑ R2NCells

pϕh,u
ψ
h q ÞÝÑ ∇ϕh ` uψh

is surjective. Moreover, since any ϕh P Wh is completely and uniquely determined by its value at
the #F independent face midpoint of the mesh, we have dimpWhq “ #F . Using the definition of
Zh, we get that dimpZhq “ 2NCells ´#Fwall/SW ´#Fint “ 2NCells ´#F and then,

dimpWhq ` dimpZhq “ 2NCells,

so that the application L is bijective and the decomposition is unique.
We now prove that Zh “ ∇ˆ V boundary

h where

V boundary
h :“

"

ψh P Vh
ˇ

ˇ

ż

Ω

ψh “ 0 and @f P Fwall/SW, p∇ˆ ψhq ¨ nf “ ub ¨ nf

*

.

It is easy to prove that the application

G : V boundary
h ÝÑ Zh

ψh ÞÝÑ ∇ˆ ψh
is well defined and injective. Since any ψh P Vh is completely and uniquely determined by its value
at the S independent nodes of the mesh, we have dimpVhq “ S ` r where r is the number of holes
of the mesh. Since #Fwall/SW “ Swall/SW where Swall/SW is the number of nodes on the boundary,
we have

dimpV boundary
h q “ S ` r ´ Swall/SW ´ 1 “ Sint ` r ´ 1

where Sint is the number of interior nodes. Since S ` NCells “ #F ` 1 ´ r [28, Lemma 2.1] and
since 3NCells “ 2#Fint `#Fwall/SW (because we consider a triangular mesh), we get

NCells “ 2#Fint `#Fwall/SW ´ 2NCells

“ 2p#F ´NCellsq ´#Fwall/SW

“ 2pS ` r ´ 1q ´#Fwall/SW

“ 2pr ´ 1q ` S ` Sint,

so that
Sint ` r ´ 1 “ NCells ´ pS ` r ´ 1q

“ NCells ´ p#F ´NCellsq

“ 2NCells ´#F ,
and dimpV boundary

h q “ dimpZhq.

B.4 Long time behaviour of the discrete wave system with Godunov’
scheme on triangular meshes

We prove Proposition 6. Assume that U0
h “ ppp

0
h, pu

0
hq is such that pp0

h “ ppb and Pϕh
“

pu0
h

‰

“ 0. Using
Proposition 5, we have pu0

h “ PΨ
h

“

pu0
h

‰

P Zh. Then, using (19) with stabilization (25) and the
definition of Zh (29), we get for all j P Vintpiq,

Dpnijq
`

U0
j ´U0

i

˘

“
pc0
2

ˆ

pp0
j ´ pp0

i
`

ppu0
j ´ pu0

i q ¨ nij
˘

nij

˙

“ 0 and ApnijqU
0
i “ ApnijqU

0
j ,
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for all j P Vwallpiq,

`

Apnijq ´ 2A´pnijqPwallpnijq
˘

U0
i “

¨

˝

0 ´
1

pρ0
nTij

xκ0nij 2pc0nijn
T
ij

˛

‚U0
i

“

¨

˝

´
1

pρ0
pu0
i ¨ nij

xκ0pp
0
inij ` 2pu0

i ¨ nij

˛

‚

“

ˆ

0
xκ0pp

0
inij

˙

“ ApnijqU
0
i ,

and for all j P VSWpiq, ApnijqU
0
i “ ApnijqUb and

pA`pnijq ´A
´pnijqq

`

Ub ´U0
i

˘

“ pc0

ˆ

1 0
0 nijn

T
ij

˙

`

Ub ´U0
i

˘

“ pc0

ˆ

ppb ´ pp0
i

`

ppub ´ pu0
i q ¨ nij

˘

nij

˙

“ 0,

so that (19) becomes
U1
i ´U0

i

δt
`

1

|Ω̃i|

ř

jPVpiq
|Γ̃ij |ApnijqU

0
i “ 0.

Since
ř

jPVpiq |Γ̃ij |nij “ 0, we get that U1
i “ U0

i .

29


	Introduction
	Link between the long time behavior of the wave system and the low Mach number limit: the continuous case
	Two-scale asymptotic expansion of the continuous system
	Formal link between the low Mach number behavior and the long time limit of the wave system
	A Hodge-Helmholtz decomposition adapted to the long time study of the wave system

	Discrete case
	Asymptotic consistency with the finite volume discretization of the wave system
	The finite volume scheme
	Formal asymptotic expansion of the schemes when the Mach number goes to 0

	Schemes that are low Mach number accurate or not

	A filtering method for steady low Mach number flows
	Filtered density
	Filtered momentum
	Filtered momentum on triangular meshes
	Filtered momentum on quadrangular meshes

	Summary of the filtering method

	Numerical results
	Test case description
	Matching wave system
	Flow around a Cylinder
	Flow around a NACA0012 airfoil

	Conclusion
	Non-dimensional expressions for the numerical fluxes and boundary fluxes
	The Rusanov flux
	The Roe numerical flux
	Dimensionless Steger-Warming boundary condition
	Dimensionless wall boundary condition

	Proof of the propositions on continuous and discrete Hodge-Helmholtz decompositions
	Decomposition in the continuous case
	Long time behaviour of the continuous wave system
	Discrete decomposition on triangular meshes
	Long time behaviour of the discrete wave system with Godunov' scheme on triangular meshes


