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Steady low Mach number flows : identification of the spurious mode and filtering method
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The aim of this article is to thoroughly identify the spurious mode that jeopardizes the convergence of usual upwind numerical schemes for compressible flows when the Mach number goes to 0. We show that this spurious mode is the long time limit of a wave system whose properties and discretization depend on the scheme used for the compressible system. Once this spurious mode is identified, a filtering method is developed for removing it from the solution of stationary low Mach number compressible flow. Numerical results confirm that at the price of the computation of a long time solution of the wave system, the accuracy of an inaccurate solution of a low Mach number compressible flow can be greatly improved by this filtering method.

Introduction

We consider the isentropic Euler model

# B t ρ `∇ ¨pρuq " 0, B t pρuq `∇ ¨pρu b uq `∇p " 0, (1) 
where ρ is the density, p the pressure, and u the velocity. The problem is solved on a domain Ω. For closing the system, the pressure is supposed to depend only on ρ: p " ppρq. Assume that p is a convex function of ρ. Under these assumptions, this system is well-known to be hyperbolic with eigenvalues in the direction n given by λ ˘" u ¨n ˘a, where the sound speed a is given by apρq " a p 1 pρq, with genuinely nonlinear characteristic fields and λ " u ¨n of multiplicity d ´1 where d P t1, 2, 3u is the space dimension, with linear characteristic fields. Equations ( 1) can be written in the conservative form

B t W `∇ ¨f pWq " 0, (2) 
where W " pρ, ρuq T is the vector of conservative variables and f is the flux, given in dimension d by

f pWq " ˆρu ρu b u `pI ˙.
This paper deals with flow on a bounded domain. This means that a density ρ b and a velocity u b are (weakly) imposed on the boundary of the domain BΩ. In particular, we will consider two types of boundary conditions: wall, and inlet/outlet. For a wall boundary condition, we impose the flux

F wall pW, nq " F Roe pW, | W, nq (3a) 
where the flux F Roe corresponds to the Roe numerical flux (see subsection A.2) and | W is obtained from the transformation of W: | W " pI d`1 ´Pwall pnqqW with

P wall pnq " ˆ0 0 0 2nn T ˙.
For inlet/outlet boundary condition, we impose the modified Steger-Warming flux

F SW pW, W b , nq " A `pW b , nqW `A´p W b , nqW b , (3b) 
where A `and A ´are respectively the positive and negative parts of the Jacobian matrix of the flux f . For more details on the boundary conditions, we refer to subsection A.3 and subsection A. [START_REF] Bouchut | A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations[END_REF].

For studying the behavior of system [START_REF] Barsukow | Stationarity preserving schemes for multi-dimensional linear systems[END_REF] in the low Mach number regime, three characteristic scales are supposed to be known: a length scale x 0 , a density scale ρ 0 and a velocity scale u 0 . Then the following dimensionless variables may be defined

x " x x 0 , ρ " ρ ρ 0 ũ " u u 0 . (4) 
It is natural to scale the time by t 0 " x 0 {u 0 , and the pressure by p 0 " ppρ 0 q, and also to define a 2 0 " p 1 pρ 0 q. If the corresponding dimensionless variables are used instead of the original ones, the following system is obtained

$ & % B t ρ `∇x ¨pρũq " 0 B tp ρũq `∇x ¨pρũ b ũq `1 γM 2 ∇ x p " 0, (5) 
with t " t{t 0 , p " p{p 0 , ppρq :" ppρ 0 ρq{p 0 , and M " u 0 {a 0 . The coefficient γ is defined as γ " ρ 0 a 2 0 p 0 " p1 p1q.

The dimensionless boundary fluxes F wall ´W, n, M ¯and F SW ´W, Wb , n, M ¯are detailed in subsection A.3 and subsection A. [START_REF] Bouchut | A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations[END_REF].

We assume that the initial condition and the boundary condition are well prepared [24, p.641] in the sense that " ρpx, t " 0, M q " ρp0q `O `M 2 ˘, ũpx, t " 0, M q " ũp0q pxq `O pM q , where " ρp0q pxq " ρp0q P R `,

∇ x ¨pũ p0q q " 0, (6a) 
and the values ρ b and u b in (3b) satisfy

ρb px, t, M q " ρp0q `O `M 2 ˘, (6b) 
and ũb px, t, M q " ũp0q b p tq `O pM q .

(6c)

Injecting an expansion in exponent of the Mach number M in [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF], we get that, if the initial condition and the boundary condition are well prepared [START_REF] Castro | Well-balanced high order extensions of Godunov's method for semilinear balance laws[END_REF], the low Mach number limit density fluctuation scales as O `M 2 ˘ [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF].

It is well known [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF] that in general classical finite volume methods for [START_REF] Barsukow | Stationarity preserving schemes for multi-dimensional linear systems[END_REF] are not accurate in the low Mach number limit because it introduces a spurious mode in O pM q on the density fluctuations, and that fixes are required for recovering an acceptable accuracy.

The spurious mode is due to an excessive numerical diffusion of the scheme. Some fixes have been derived by modifying the numerical diffusion of the finite volume schemes [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF][START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF][START_REF] Li | Development of Roe-type scheme for all-speed flows based on preconditioning method[END_REF][START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF][START_REF] Rieper | A low-Mach number fix for Roe's approximate Riemann solver[END_REF][START_REF] Dellacherie | Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system[END_REF][START_REF] Oß Wald | L 2 Roe: a low dissipation version of Roe's approximate Riemann solver for low Mach numbers[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF][START_REF] Iampietro | A Mach-Sensitive Splitting Approach for Euler-like Systems[END_REF], the Riemann solver is partially replaced by a central difference approximation for the pressure gradient. In this sense, low Mach fixes are similar to schemes based on specific semiimplicit (e.g. IMEX) time discretization [START_REF] Degond | Mach-number uniform asymptotic-preserving gauge schemes for compressible flows[END_REF][START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF][START_REF] Cordier | An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations[END_REF][START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF][START_REF] Kaiser | A new stable splitting for the isentropic Euler equations[END_REF][START_REF] Boscheri | A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations[END_REF][START_REF] Bouchut | A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations[END_REF]. Semi-implicit solvers use central difference approximation for the pressure gradient because it makes the implicit time integration easier. Indeed, it allows to decouple the computation of the density field from the velocity field. These two approaches have their limitations because a central difference approximation for the pressure gradient does not allow to solve accurately the low Mach number acoustic waves [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF], in particular when the acoustic wave corresponds to a perturbation of order O pM q on the density and of order O p1q on the velocity (note that in this particular case the initial and boundary conditions are not well prepared ). Indeed, in such a wave, a second order scheme with a central difference approximation for the pressure gradient provides only a first order on the moments [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF].

Recently, low Mach fixes leading to a decentered discretization of the pressure gradient have been proposed in [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF][START_REF] Barsukow | Truly multi-dimensional all-speed schemes for the Euler equations on Cartesian grids[END_REF]. However, we note that the fix of [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF] is not Galilean invariant while the fix of [START_REF] Barsukow | Truly multi-dimensional all-speed schemes for the Euler equations on Cartesian grids[END_REF] is developed only for Cartesian meshes.

Our aim in this article is slightly different: we do not want to propose a new finite volume fix but we wish to characterize the spurious mode responsible for the low accuracy when the Mach number goes to 0. An important step is to understand the link between the long time behavior of the wave system and the low Mach number limit of (5), which is developed in section 2 for the continuous case, and in section 3 for the discrete case.

Once the spurious mode of the numerical scheme at the low Mach number limit is well identified, it is possible to remove it. We thus propose in section 4 a numerical method for using the associated numerical long time limit of the wave system to filter the numerical solution of the compressible system at low Mach number. We test this method in section 5, and prove that this method allows to transform a low accurate low Mach number solution into a highly accurate low Mach number solution. The filtering method is rather viewed as a way to validate the identification of the spurious mode than as a numerical method itself. Indeed, to compute low Mach number steady flows, we could directly use preconditioning techniques (e.g. [START_REF] Turkel | Preconditioned methods for solving the incompressible and low speed compressible equations[END_REF][START_REF] Turkel | Local preconditioners for steady state and dual time-stepping[END_REF]).

2 Link between the long time behavior of the wave system and the low Mach number limit: the continuous case

In [START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF]Theorem 3.1] a rigorous proof of a link between the low Mach number expansion of the solution of ( 5) and a wave system was provided: the first order pressure and the zeroth order velocity are indeed solution of a wave system. From this, the uniformity of the first order pressure and the vanishing divergence of the zeroth order velocity can be proven. The proof of [START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF] is done in the unbounded case and relies on the Fourier analysis, which can hardly be extended to the bounded case. In this section, we aim at doing formally the same link, but in the bounded case.

Two-scale asymptotic expansion of the continuous system

A two time scales asymptotic expansion of the system ( 5) is performed as in [START_REF] Müller | Low Mach number asymptotics of the Navier-Stokes equations and numerical implications[END_REF]. The two time scales are the material time t and the acoustic time τ " t{M. We write φ P tρ, ρuu as an expansion in exponent of the Mach number M :

φpx, t; M q " N ÿ n"0 M n φpnq px, t, τ q `O `M N `1˘, (7) 
with τ " t{M and where the derivative with respect to the time is

B t φ px, t; M q " N ÿ n"0 M n ˆBt φpnq px, t, τ q `1 M B τ φpnq px, t, τ q ˙`O `M N `1˘. (8) 
By injecting [START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF] in [START_REF] Bruel | A low Mach correction able to deal with low Mach acoustics[END_REF], it can be proven that ρp0q does not depend on τ and x, but only on t, and that the following system coupling ρp1q and pρũq p0q holds

$ ' ' & ' ' % B τ ρp1q `∇x ¨pρũq p0q " ´dρ p0q d t B τ pρũq p0q `p 1 `ρ p0q γ ∇ x ρp1q " 0 (9) 
Using the equation of state gives

p1 `ρ p0q γ " p 0 ρ 0 a 2 0 ρ 0 p 0 p 1 ´ρ0 ρp0q ¯" p 1 `ρ0 ρp0q ȃ2 0 " a 2 `ρ0 ρp0q ȃ2 0 " ã2 ´ρ p0q ¯, (10) 
so that provided ρp0q is constant, (9) can be rewritten

# B τ ρp1q `∇x ¨pρũq p0q " 0 B τ pρũq p0q `ã 2 `ρ p0q ˘∇x ρp1q " 0. (11) 
Since the initial and boundary conditions are well prepared (6), the initial condition for ( 11) is given by " ρp1q px, τ " 0q " 0, pρũq p0q px, τ " 0q " ρp0q ũp0q pxq, where ∇ x ¨pρ p0q ũp0q q " 0,

and the boundary fluxes are given by " pρũq p0q ¨n ã2 `ρ p0q ˘ρ p1q n  wall " ˆ0 ã2 `ρ p0q ˘ρ p1q n `ãpρ p0q q `pρũq p0q ¨n˘n ˙(12b) for a wall boundary condition and

" pρũq p0q ¨n ã2 `ρ p0q ˘ρ p1q n  SW " ¨pρũq p0q ¨n `pρũq p0q b ¨n 2 `ãpρ p0q q 2 pρ p1q ´0q ã2 `ρ p0q ˘ρ p1q `0 2 n `ãpρ p0q q 2 ´pρũq p0q ¨n ´pρũq p0q b ¨n¯n ‹ ‹ ' (12c)
for inlet/outlet boundary condition.

2.2 Formal link between the low Mach number behavior and the long time limit of the wave system

The system [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF] belongs to the larger family of first order waves systems, which reads

$ & % B τ p p `1 p ρ 0 div x p u " 0 B τ p u `x κ 0 ∇p p " 0 (13) 
depending on two strictly non-negative parameters, x κ 0 and p ρ 0 . The wave velocity is p c 0 , linked with the parameters of the system by p c 0 2 " x κ 0 { p ρ 0 . In particular, we note that system (11) can be written as system [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF] with p ρ 0 " 1 and x κ 0 " ã2 pρ p0q q such that p c 0 " ãpρ p0q q. The initial and boundary conditions [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF] lead us to study system [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF] with the following initial condition

" p ppx, τ " 0q " 0, p upx, τ " 0q " p u 0 pxq where div x p u 0 " 0 (14a)
and with the following boundary fluxes:

» - 1 p ρ 0 p u ¨n x κ 0 p pn fi fl wall " ˆ0 x κ 0 p pn `p c 0 pp u ¨nqn ˙(14b)
for wall boundary condition and

» - 1 p ρ 0 p u ¨n x κ 0 p pn fi fl SW " ¨1 p ρ 0 p u ¨n `p u b ¨n 2 `p c 0 2 pp p ´0q x κ 0 p p `0 2 n `p c 0 2 pp u ¨n ´p u b ¨nqn ‹ ' (14c) 
for inlet/outlet boundary condition.

As we are interested in the limit when M Ñ 0, and considering that τ " t{M , it is natural to be interested in the long time limit of [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF]. If the derivatives with respect to τ vanish, this gives ∇p p " 0, so that p p is uniform. Considering [START_REF] Castro | Well-balanced high order extensions of Godunov's method for semilinear balance laws[END_REF], the boundary pressure of ( 13) is p p b " 0, so that the long time pressure p p is uniformly 0. The fact that the long time pressure is 0 can be rewritten as ρp1q " 0, so that ρpx, tq " ρp0q `O `M 2 ˘, which means that the pressure fluctuations should scale as M 2 . Concerning the velocity, the problem is slightly more complicated and developed in the next section.

A Hodge-Helmholtz decomposition adapted to the long time study of the wave system

The Hodge-Helmholtz decomposition was used in the analysis of low Mach number flows [START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF] in periodic or infinite domains. In the bounded case, this decomposition depends on the boundary conditions imposed. We provide here a Hodge-Helmholtz decomposition that will be adapted to the analysis in a bounded domain.

Proposition 1 (Hodge-Helmholtz decomposition).

If Ω is such that TrpH s pΩqq Ă H s´1{2 pBΩq, then any u P pL 2 pΩqq d can be uniquely decomposed as

" u " u ϕ `uΨ in Ω u ϕ ¨n " u ¨n ´ub ¨n in BΩ ( 15 
)
where u ϕ P ∇ x `H1 pΩq ˘and u Ψ P curl x ´`H 1 pΩq ˘d¯.

The proof of this proposition was deferred to subsection B.1. We say that the Hodge-Helmholtz decomposition proposed in Proposition 1 is adapted to the study of the long time limit of [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF], because if a solution has initially a uniform pressure equal to the boundary pressure imposed, and an initial velocity such that u ϕ " 0, then this solution is not changed by the wave system. More precisely, Proposition 2. Consider a solution of the wave system (13) with initial and boundary conditions given by [START_REF] Dellacherie | Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system[END_REF]. Then it has a limit when t Ñ 8, and this limit has a uniform pressure, equal to p p b , and the velocity tends to p u Ψ p0q where p u Ψ p0q corresponds to the divergence free component of the Hodge-Helmholtz decomposition (15) of the initial condition p u 0 .

The proof of this proposition is deferred to subsection B.2. Proposition 2 implies that if p u is initially curl free, then p u is curl free for all time, and so p u is harmonic. Therefore the same result as in [START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF] holds formally.

Discrete case

In this section, we aim at doing a similar analysis as in the previous section, but in the discrete case with a finite volume method.

It is worth noting that the discrete unbounded case was investigated in [START_REF] Barsukow | Stationarity preserving schemes for multi-dimensional linear systems[END_REF], by using the same tool as in [START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF], the Fourier transform, which can be used only in the unbounded case and concerning the discrete case on Cartesian meshes.

Asymptotic consistency with the finite volume discretization of the wave system

The aim of this section is to show that with a formal asymptotic development, the discrete problem of the low Mach number limit is also linked with the long time behavior of a discretization of the wave system.

The finite volume scheme

We consider a discretization of (1). The domain is supposed to be bounded, and T h denotes a mesh of this domain, on which a cell-centered finite volume discretization is applied. For a given cell i of T h , we denote by V int piq the set of the neighbors of the cell i, by V wall piq the set of the boundary sides of i on which wall boundary conditions are imposed, and by V SW piq the set of the boundary sides of i on which inlet/outlet Steger-Warming boundary conditions are imposed. Also, we denote by |Ω i | the volume of the cell i, by |Γ ij | the size of the side linking ij, and by n ij the unit normal outgoing from i. The finite volume discretization of (1) reads for cell i

B t W i `1 |Ω i | ř jPVintpiq |Γ ij |F pW i , W j , n ij q `1 |Ω i | ř jPV wall piq |Γ ij |F wall pW i , n ij q `1 |Ω i | ř jPV SW piq |Γ ij |F SW pW i , W b , n ij q " 0 (16) 
where the numerical flux F inside the domain, the Steger-Warming flux F SW at inlet and outlet boundary conditions, and the flux at wall boundaries F wall are defined in Appendix A. We aim at performing an asymptotic expansion of the numerical scheme, and for this, we need to rephrase the numerical scheme [START_REF] Douglas | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF] in term of the non-dimensional variables (4). We also consider

| Γij | " |Γ ij | x d´1 0 , | Ωi | " |Ω i | x d 0 , (17) 
we get the dimensionless scheme

B t Wi `1 | Ωi | ř jPVintpiq | Γij | F ´W i , Wj , n ij , M 1 
| Ωi | ř jPV wall piq | Γij | F wall ´W i , n ij , M 1 
| Ωi | ř jPV SW piq | Γij | F SW ´W i , Wb , n ij , M ¯" 0 (18) 
where the component associated to the variable w of the numerical flux and boundary flux are defined as

F w ´W i , Wj , n ij , M ¯" 1 u 0 w 0 F w ´W0 Wi , W 0 Wj , n ij
where the products W 0 Wi should be understood componentwise. Details of the fluxes and boundary fluxes and their non-dimensional version are provided in Appendix A.

Formal asymptotic expansion of the schemes when the Mach number goes to 0

By doing the same formal two time-scales asymptotic development [START_REF] Chalons | An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes[END_REF], but on the discrete system (18), we first prove the following result:

Proposition 3. (Uniformity of ρp0q )

• If the numerical flux is conservative, namely

F pW i , W j , n ij q " ´F pW j , W i , n ji q,
and ensures

Fρ ´W i , Wj , n, M ¯" 1 M α ´ρ p0q i , ρp0q j ¯´ρ p0q i ´ρ p0q j ¯`O p1q
where α ´ρ p0q i , ρp0q j ¯is strictly non-negative,

• if the wall boundary flux ensures

F wall ρ ´W i , n, M ¯" O p1q ,
• if the imposed boundary value ρp0q b on the Steger-Warming boundary conditions is constant,

• if the Steger-Warming flux ensures

F SW ρ ´W i , n, M ¯" 1 M β ´ρ p0q i , ρp0q b ¯´ρ p0q i ´ρ p0q b ¯`O p1q where β ´ρ p0q i , ρp0q b ¯is strictly non-negative, then @i, ρp0q i " ρp0q b .
Proof. As the flux of the density on the wall is always 0, the scale O ˆ1 M ˙of the first equation of [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells[END_REF] gives, for all i:

ř jPVintpiq | Γij |α ´ρ p0q i , ρp0q j ¯´ρ p0q i ´ρ p0q j ¯`ř jPV SW piq | Γij | β ´ρ p0q i , ρp0q b ¯´ρ p0q i ´ρ p0q b ¯" 0
We multiply by ρp0q i ´ρ p0q b , and sum over all the cells of the mesh to find

ř iPT h ř jPVintpiq | Γij | ´ρ p0q i ´ρ p0q b ¯α ´ρ p0q i , ρp0q j ¯´ρ p0q i ´ρ p0q j ř iPT h ř jPV SW piq | Γij | ´ρ p0q i ´ρ p0q b ¯β ´ρ p0q i , ρp0q b ¯´ρ p0q i ´ρ p0q b ¯" 0
We switch to a sum over the faces of the mesh

ř f PFint | Γf | ´´ρ p0q L ´ρ p0q b ¯α ´ρ p0q L , ρp0q R ¯´ρ p0q L ´ρ p0q R ¯`´ρ p0q R ´ρ p0q b ¯α ´ρ p0q R , ρp0q L ¯´ρ p0q R ´ρ p0q L ¯ř f PF SW | Γf | ´ρ p0q L ´ρ p0q b ¯β ´ρ p0q L , ρp0q b ¯´ρ p0q L ´ρ p0q b ¯" 0.
As the scheme is conservative, we have

α ´ρ p0q L , ρp0q R ¯" α ´ρ p0q R , ρp0q L ¯,
so that the sum may be rewritten

ř f PFint | Γf |α ´ρ p0q L , ρp0q R ¯´ρ p0q L ´ρ p0q R ¯2 `ř f PF SW | Γf | β ´ρ p0q L , ρp0q b ¯´ρ p0q L ´ρ p0q b ¯2 " 0
As the α and β are strictly non-negative, we have on all interior faces ρp0q L " ρp0q R , which means that all the ρp0q have the same value. Last, as all the β are strictly non-negative, we have on all the Steger-Warming boundary faces ρp0q L " ρp0q b , so that if the set of Steger-Warming boundary sides is non empty, for all i, ρp0q i " ρp0q b , which ends the proof. We state now the link at the discrete level, between the discretization of ( 5) and [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF]. In general, a numerical scheme for (13) can be written as

B τ U i `1 | Ωi | ř jPVintpiq | Γij | ´Apn ij q t t U u u ij ´Dpn ij q pU j ´Ui q 1 | Ωi | ř jPV wall piq | Γij | ˆApn ij q U i 2 `1 2 pApn ij q ´2A ´pn ij qP wall pn ij qq U i 1 | Ωi | ř jPV SW piq | Γij | ˆApn ij q U i `Ub 2 ´1 2 pA `pn ij q ´A´p n ij qq pU b ´Ui q ˙" 0, (19) 
where

t t U u u ij " pU i `Uj q{2, U " ˆp p p u ˙, Apnq " ¨0 1 p ρ 0 n T x κ 0 n 0 ', P wall pnq " ˆ0 0 0 2nn T ˙,
and Dpnq depends on the numerical stabilization chosen. A `and A ´are the positive and negative parts of A. We can then prove the following consistency result with a discrete wave system: Proposition 4 (Consistency with the wave system). We suppose that the hypotheses of Proposition 3 hold, so that ρp0q i " ρp0q b for all i and we note

αp0q b :" α ´ρ p0q b , ρp0q b ¯, ãp0q b :" ã ´ρ p0q b ¯.
Moreover, we suppose that the numerical flux ensures the following asymptotic development (once

ρp0q i " ρp0q b is ensured) F ´W i , Wj , n, M ¯" ¨ρ p0q b ´ũ p0q i `ũ p0q j ¯¨n 2 `α p0q b ´ρ p1q i ´ρ p1q j ¯`O pM q 1 M ¨´p p1q i `p p1q j ¯n 2γ `D22pnqρ p0q b ´ũ p0q i ´ũ p0q j ¯' `O p1q ‹ ‹ ‹ ‹ ' (20) 
and that the boundary condition is well prepared as defined in [START_REF] Castro | Well-balanced high order extensions of Godunov's method for semilinear balance laws[END_REF], and that the boundary flux ensure the following asymptotic expansion

• Wall boundary condition

F wall ρũ ´W i , n, M ¯" 1 M ˜p p1q i γ n `ã p0q b ρp0q b ´ũ p0q i ¨n¯n ¸`O p1q (21) 
• Steger-Warming boundary condition

F SW ´W i , Wb , n, M ¯" ¨ρ p0q b ´ũ p0q i `ũ p0q b ¯¨n 2 `ã p0q b 2 ´ρ p1q i ´ρ p1q b ¯`O pM q 1 M ˜´ã p0q b ¯2 ρp1q i `ρ p1q b 2 `ã p0q b ρp0q b 2 ´ũ p0q i ´ũ p0q b ¯¨n ¸n `O p1q ‹ ‹ ' (22) 
then `ρ p1q , pρũq p0q ˘follows a discretization as [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF] Proof. We begin by reformulating the centered pressure of the second component of [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF]. The Mach expansion of the pressure can be written as

with p ρ 0 " 1, x κ 0 " ´ã p0q b ¯2 ( p c 0 " ãp0q 
p " pp0q `M pp1q `O `M 2 ˘,
but can be also obtained by using the equation of state and (10),

p " ppρq " p ´ρ p0q b `M ρp1q `O `M 2 ˘" p ´ρ p0q b ¯`M p1 ´ρ p0q b ¯ρ p1q `O `M 2 p " p ´ρ p0q b ¯`M γ ´ã p0q b ¯2 ρp1q `O `M 2 ˘,
which leads to the equality

pp1q " γ ´ã p0q b ¯2 ρp1q . ( 23 
)
The discretization of ( 19) follows, by combining the O p1q and the O ˆ1 M ˙of the numerical flux, and by using [START_REF] Kaiser | A new stable splitting for the isentropic Euler equations[END_REF].

With Proposition 4, it is possible to determine the asymptotic consistency of a given scheme for (1) with a discretization of the wave system [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF]. The hypothesis of Proposition 4 are checked for the boundary conditions in Appendix A. In this same section, it is also proven that • if the Rusanov flux for the Euler system is used, then

αp0q b " ãp0q b 2 , D 22 pnq " ãp0q b 2 I d , (24) 
• if the Roe flux for the Euler system is used, then

αp0q b " ãp0q b 2 , D 22 pnq " ãp0q b 2 nn T , (25) 
Note that the same asymptotic expansion can be performed on all the classical numerical fluxes. They are separated into two families:

• The ones that preserve the contact surface, for example: exact Godunov scheme, HLLC, HLLE, Osher. Theses solvers have an asymptotic expansion which gives [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF].

• The ones that do not preserve the contact surface, for example, the HLL, or all the variants of the Rusanov scheme. Theses solvers have an asymptotic expansion which gives (24).

Schemes that are low Mach number accurate or not

As we did in the continuous case in subsection 2.1, we are now considering the limit of the discretization ( 19) of ( 11) when τ Ñ 8. We formally find

" ρh " ρp0q `M p8 h `O `M 2 ρp0q ũh " û8 h `O pM q , (26) 
where pp 8 h , û8 h q is the long time limit of the matching discretization of the wave system provided by Proposition 4, with boundary conditions [START_REF] Dellacherie | Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number[END_REF]. The long time limit of symmetrizable linear systems was studied in [START_REF] Jung | Long time behavior of finite volume discretization of symmetrizable linear hyperbolic systems[END_REF]. More precisely, the existence of the long time limit was proved for stabilizations [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF] and [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF] and some features of the long time limit were studied numerically. Defining the discrete divergence on each cell K i by pdiv x uq Ki " 1

|K i | ř jPVpiq ż Γij t t u ¨nij u u , (27) 
it was found that for the wave system

• On triangular meshes, with the stabilization (25), the long time limit is such that the pressure is 0, and the discrete divergence ( 27) is equal to 0. This result can be proved analytically. Indeed, in [START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells[END_REF] (see also [START_REF] Rieper | The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime[END_REF][START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF]), it was proved that the limit is such that the jump of p and the jump of u ¨n are zero at all faces of the mesh. The discretly divergence-free velocity property follows. Since p " 0 on Steger-Warming boundary faces, the pressure is equal to 0.

• On non triangular meshes, with the stabilization [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF], and with the stabilization (24) on any mesh, the long time limit is such that the pressure is nonzero.

Gathering these results on the linear wave system, with (26) leads to the well known result that

• On triangular meshes, the Roe scheme is low Mach number accurate whereas the Rusanov scheme is not.

• On quadrangular meshes, neither the Roe scheme nor the Rusanov scheme are low Mach number accurate.

Thus, for testing the non-accuracy at low Mach number of a nonlinear numerical flux for the barotropic Euler equations, we should first compute its low Mach number expansion, which leads to a stabilization of the wave system. Then the long time limit of this numerical discretization of the wave system is studied, and the numerical flux is not low Mach number accurate provided for a given test case (here, the scattering of a flow by a cylinder), this long time limit does not have a zero pressure or does not have a discretely divergence-free velocity. If the matching numerical discretization of the wave system has a zero pressure and a discretely divergence-free velocity on the same test case, then this is a hint for performing a more thorough study as it is done in the next section especially in Proposition 6.

A filtering method for steady low Mach number flows

In the previous section, we found that the low Mach number accuracy of a numerical flux could be studied by expanding this numerical flux in Mach number, and by studying the long time behavior of the matching discretization of the wave system.

In this section, we aim at going further: we want to use the numerical long time limit of the wave system for filtering the numerical solution of the Euler system. This will be led in three steps 1. Compute the steady solution W Euler of the Euler system with the finite volume scheme [START_REF] Douglas | A uniformly accurate finite element method for the Reissner-Mindlin plate[END_REF], with boundary conditions ρ b and u b at the Steger-Warming boundary conditions.

2. Choose the density scale ρ 0 and the velocity scale u 0 in (4). Compute the long time limit of the matching wave system [START_REF] Degond | All speed scheme for the low Mach number limit of the isentropic Euler equations[END_REF] in dimensionless variables with the matching finite volume scheme and initial condition, and with the boundary conditions p p b " 0 and p u b " `ρũ Euler ˘p0q b . We denote the discrete long time limit as p p 8 h and p u 8 h . From this, compute the numerical spurious component W Spurious in dimensioned variables.

Subtract the spurious component from the Euler solution

W Filtered " W Euler ´WSpurious
In the following subsections, we explain in details how W Spurious is computed.

Filtered density

The following expansion holds in general when M Ñ 0

ρEuler h " `ρ Euler ˘p0q h `M `ρ Euler ˘p1q h `O `M 2 ˘.
The numerical scheme is low Mach number accurate only if `ρ Euler ˘p1q h " 0. With (26), we know that the spurious component `ρ Euler ˘p1q h is the pressure p p 8 h of the long time limit of the matching wave system. The dimensionless filtered density is given by

ρFiltered h " ρEuler h ´M p p 8 h ,
so that the dimensioned filtered density is given by

ρ Filtered h " ρ Euler h ´M ρ 0 p p 8 h , (28) 
where M " u 0 {a 0 and ρ 0 , u 0 and a 0 correspond to the characteristic scales (4). Then, we will get `ρ Filtered ˘p1q h " 0 as expected.

Filtered momentum

The computation of the filtered velocity is slightly more difficult than for the density: for the density, the full ρ p1q belongs to the spurious mode, whereas for the velocity, we know that u p0q is not equal to 0. More precisely, the velocity of the long time solution of the wave system minus the divergence free component (in the sense of the decomposition ( 15)) of the initial condition of the wave system needs to be removed.

The filtering of the velocity can be deduced from a discrete version of Proposition 1, which exists only on triangles in 2D and on tetrahedra in 3D. We then extend this method to general finite element meshes. The method is described in 2D and the extension to 3D is specified.

Filtered momentum on triangular meshes

To simplify the notations, we denote F wall/SW all the boundary faces

F wall/SW " F wall Y F SW .
We define u b on the wall boundary faces as u b " 0 such that the condition u ¨n " 0 on walls can also be written as u ¨n " u b ¨n.

In the triangular case, the following discrete equivalent of Proposition 1, is available:

Proposition 5 (Discrete Hodge-Helmholtz decomposition on triangular mesh). A piecewise constant velocity u h on the triangular mesh T h can be uniquely decomposed as u h " P ϕ h ru h s `PΨ h ru h s where • P ϕ h ru h s and P Ψ h ru h s are piecewise constant on the mesh T h , • P ϕ h ru h s is the gradient of a Crouzeix-Raviart [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[END_REF] scalar potential, i.e. P ϕ h ru h s " ∇ϕ h with ϕ h P W h :" ϕ h ˇˇ@K P T h , pψ h q |K P P 1 pKq and ϕ h is continuous at the face midpoint ( ,

• P Ψ h ru h s P Z h where Z h :" ! u h P R N 2 Cells ˇˇ@f P F int , rr u h ¨nf ss " 0, @f P F wall/SW , u i ¨nf " u b ¨nf ) (29) 
Moreover, we can prove that P Ψ h ru h s is the curl of a continuous P 1 potential vector, i.e. P Ψ h ru h s " ∇ ˆψh with ψ h P V h :" ψ h P C 0 pΩq ˇˇ@K P T h , pψ h q |K P P 1 pKq ( . 3.5] in the periodic case. The decomposition of Proposition 5 is adapted to the discretization of the wave system with the stabilization [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF], as it was previously explained in [START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF] in the periodic case. More precisely, we have the following proposition which is a discrete version of Proposition 2 Proposition 6. If we use the discrete wave system (19) on a triangular mesh with the stabilization [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF] and with a forward Euler method for time integration, a state pp p 0 h , p u 0 h q such that p p 0 h is uniform (equals to p p b ) and

The proof of

P ϕ h " p u 0 h ‰ " 0 is constant in time.
The proof is deferred to subsection B. [START_REF] Bouchut | A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations[END_REF]. Suppose now that we are dealing with the Rusanov scheme, which matches the stabilization (24) of the wave system. Then the Proposition 6 does not hold for this stabilization; moreover, the discrete divergence (27) of the long time limit of the velocity is not 0. Nevertheless, the initial condition of the wave system û0 h can be decomposed as

û0 h " P ϕ h " û0 h ‰ `PΨ h " û0 h ‰ .
Then the spurious component of the velocity clearly appears as being û8 

h P W h @g h P W h ř K ż K ∇ x g h ¨∇x ϕ h " ř K ż K p u 0 h ¨∇g h ´ř f PF wall/SW ż f g h p u b ¨n (30)
and by computing the cell-by-cell gradient of ϕ h .

P Ψ h " û0 h ‰ is then computed as P Ψ h " û0 h ‰ " û0 h Ṕϕ h " û0 h ‰
. This leads to the following filtered momentum

pρuq Filtered " pρuq Euler ´ρ0 u 0 `p u 8 h ´PΨ h " û0 h ‰˘. (31) 

Filtered momentum on quadrangular meshes

We have no knowledge of a decomposition similar to Proposition 5 on quadrangular meshes. It is of course possible to use a formulation similar to (30) by replacing the Crouzeix-Raviart finite element space by its equivalent for nonconforming finite elements approximations on quad meshes: the Rannacher-Turek finite element space [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF]. However contrary to triangles in which the cellby-cell derivative of a Crouzeix-Raviart function belongs to P 0 , the cell-by-cell derivative of a Rannacher-Turek function is not in Q 0 . As a consequence a P ϕ h " û0 h ‰ belonging to Q 0 cannot be defined as the cell-by-cell gradient of ϕ h . Instead, we define P ϕ h rû 0 h s as a Q 0 approximation on each cell: the average of the gradient of ϕ h on each cell:

@K P T h P ϕ h rû 0 h s K " 1 |K| ż K ∇ x ϕ h . (32) 
Note that on triangles, P ϕ h rû 0 h s " P ϕ h " û0 h ‰ . The filtered momentum on quadrangular meshes is then defined as [START_REF] Rieper | On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL[END_REF], by using P ϕ h rû 0 h s instead of P ϕ h " û0 h ‰ :

pρuq Filtered " pρuq Euler ´ρ0 u 0 ´p u 8 h ´PΨ h rû 0 h s ¯, (33) 
where P Ψ h rû 0 h s :" û0 h ´Pϕ h rû 0 h s.

Summary of the filtering method

For a given mesh and a given distribution of the Steger-Warming and wall boundary conditions 1. Determine the wave stabilization matching the numerical flux used.

Compute the long time limit p8 h and û8

h of the wave system, with pb " 0 and ûb " pρũ Euler q p0q b on the Steger-Warming boundary conditions.

3. Compute P ϕ h rû 0 h s by solving [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF] and by using then [START_REF] Rieper | A low-Mach number fix for Roe's approximate Riemann solver[END_REF]. From a practical point of view, (30) is solved by using PETSc with the conjugate gradient method. Note that because of the Neumann boundary conditions, the variational formulation (30) has a kernel matching uniform potentials, so that direct methods are not well suited.

4. Filter the solution by using ( 28) and [START_REF] Rieper | The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime[END_REF].

Since dimensionless variables are used, it is important to note that all the computations needed for the filtering phase are independent of the Mach number. Also, all these computations are linear.

The filtering method naturally extends to 3D. Of course, we have to compute the numerical long time solution pp p 8 h , p u 8 h q of the matching wave system in 3D. The filtered density is obtained with (28) as in 2D. For the filtered momentum, we also use [START_REF] Rieper | The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime[END_REF] where

P ϕ h " û0 h ‰
is obtained by solving the variational problem [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF] with Crouzeix-Raviart finite element space on tetrahedral mesh or with Rannacher-Turek finite element space on hexahedral mesh.

Numerical results

In this section, we test the filtering method described in the previous section to compute low Mach number steady solution of the Euler equations (1) with the finite volume scheme (16).

Test case description

We consider an open domain Ω with a number of obstacles Ω l , such that the boundaries of Ω and Ω l are regular. Boundary conditions set on BΩ l are of wall type, whereas on BΩ, Steger-Warming boundary conditions are imposed with a state characterized by its density at infinity ρ b , and its Mach number at infinity M b . All the computations are led with the equation of state ppρq " ρ 2 .

For all the computations, an external density of ρ b " 2 is imposed, and the external velocity is deduced from the Mach number by u b " pM b a p 1 pρ b q, 0q T . The initial data are uniform and set equal to ρ " ρ b , u " 0.

All simulations were run with a forward Euler time stepping with a CFL number of 0.4.

Matching wave system

To apply the filtering method, we need to compute the long time limit of a wave problem. Choosing ρ 0 " ρ b for the density scale and u 0 " M b a p 1 pρ b q for the velocity scale, the matching wave problem ( 13) is obtained with p ρ 0 " x κ 0 " 1 and the matching finite volume scheme is [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF] where at the Steger-Warming boundary condition we have p p b " 0 and p u b " p1, 0q T .

Flow around a Cylinder

In this section, we are interested in the case when a single cylinder obstacle is in Ω. This test case is interesting because an exact solution of the velocity field u p0q is known in the low Mach number limit provided the computational domain is a ring between the cylinder, which radius is r 0 and the external part of the computational domain, which is of radius r 1 :

u p0q ex " M b a p 1 pρ b q r 2 1 r 2 1 ´r2 0 ¨1 ´r2 0 r 2 cosp2θq ´r2 0 r 2 sinp2θq ‹ '. (34) 
The numerical results are obtained with r 0 " 0.5 and r 1 " 5.5. For all the studies except for the one with mesh convergence, the test is performed on a triangular and a quadrangular mesh with the following characteristics. The quadrangular mesh is obtained by discretizing the annulus rr 0 , r 1 s ˆr0, 2πr with a resolution of n r " 50 in the radial direction and n θ " 160 in the orthoradial direction. This mesh contains 8 000 quadrangular cells. The triangular mesh is obtained from a quadrangular mesh produced with n r " 25 and n θ " 80 by dividing each quadrangle into two triangles. This mesh contains 4 000 triangular cells.

We first aim at illustrating the convergence towards a steady state for the Euler system. In Figure 1, the density residual

max i ˇˇˇ| Ω i | ρ n`1 i ´ρn i δt ˇˇǎ
nd the momentum residuals are plotted as a function of the time. Even if the time required depends on the Mach number, the mesh and the numerical scheme, all schemes allow to reach a steady state. For similar results on the matching wave system, we refer to [START_REF] Jung | Long time behavior of finite volume discretization of symmetrizable linear hyperbolic systems[END_REF]. All the results presented in the following match a final computational time for which all the residuals are converged. This final time depends on the mesh, the Mach number and the scheme used.

In Figure 2, the L 2 norm of density fluctuation ρ´ρ b is plotted with respect to the Mach number (for M b " 10 ´1 to M b " 10 ´10 ) on quadrangular (8 000 cells) and triangular (4 000 cells) mesh. Results with and without filtering are shown. Without filtering, as expected, a O pM q scaling of the density fluctuation is obtained for the Rusanov and Roe schemes on the quadrangular mesh [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF], and for the Rusanov scheme on the triangular mesh [START_REF] Rieper | On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL[END_REF]. A O `M 2 ˘scaling is obtained for the Roe scheme on the triangular mesh [START_REF] Rieper | The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells[END_REF]. With filtering, all the numerical solutions recover the O `M 2 ˘behavior. For some schemes, the convergence rate is lost for Mach number smaller 
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Triangles, Roe, Mb=10 -6 than 10 ´7 because the numerical precision limit is reached. These results validate the link between the long time pressure of the wave system and the spurious mode in the low Mach number limit that was proposed in the filtering of the density in [START_REF] Nicolaides | Direct discretization of planar div-curl problems[END_REF].

In Figure 3 and Figure 4, the iso-contours of the norm of the velocity obtained at M b " 10 ´4 are plotted. Results with and without filtering are shown on triangular and quadrangular mesh and are compared to the reference solution [START_REF] Schochet | Fast singular limits of hyperbolic PDEs[END_REF]. Results show that even if the unfiltered solution is very far from the reference solution, the filtering method allows to recover a solution close to the reference solution. These results validate the filtering of the momentum that was proposed in [START_REF] Rieper | The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime[END_REF].

In Figure 5, a grid convergence study on the velocity field is performed on triangular and quadrangular meshes. Rusanov and Roe scheme are used with and without filtering. Four different meshes are used in both cases. Without filtering, the Rusanov scheme on triangular and quadrangular mesh and the Roe scheme on quadrangular mesh do not converge to the reference solution. However, the Roe scheme on triangular mesh converges to the reference solution with a rate of 1. With filtering, the convergence with a rate of 1 on quadrangular and triangular mesh is recovered for the Rusanov and the Roe scheme. These results confirm the relevance of the filtering of the momentum of (33).

Flow around a NACA0012 airfoil

In this section, the filtering method is tested on a low Mach number flow around a NACA0012 included in a rectangular domain r´1; 2s ˆr´2; 2s. Two meshes are used:

• a triangular mesh generated with GMSH [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF] with a characteristic length lc " 0.024 around the NACA profile, and 5lc on the external boundaries.

• an unstructured quadrangular mesh, still generated with GMSH by recombination of a triangular mesh on which the blossom algorithm is applied.

For this computation, no exact solution is known. However, we still expect the density fluctuations around ρ b to scale as O `M 2 ˘when the Mach number goes to 0. Results obtained for this scaling are shown on Figure 6. They confirm that without filtering, a O pM q scaling is obtained for the Rusanov and Roe scheme on the quadrangular mesh, and for the Rusanov scheme on the triangular mesh. Once filtered, all the numerical solutions recover a O `M 2 ˘behavior. Last, a well known result is observed: the Roe scheme on the triangular mesh has a O `M 2 ˘behavior without any filtering. We are now interested in the results of the velocity. In this case, the numerical solution obtained with the Roe scheme on triangles is taken as a reference solution. Results obtained for a Mach number M b " 10 ´4 are shown in Figure 7. Results prove that the filtering method developed in this article allows to recover a good solution, even with the solution with the very noised solution obtained with the Roe scheme on quadrangular meshes (We believe that the very noisy solution Twenty equally reparted contours between 8 ˆ10 ´6 and 3 ˆ10 ´4 are plotted.
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Conclusion

In this article, the behavior of numerical schemes for compressible flows in the low Mach number limit was enlightened to share a lot of properties with the long time behavior of the discretization of a wave system. We deduce that the numerical fluxes for (1) can be divided into two families:

• The numerical fluxes that are low Mach number accurate, which are matching a discretization of the wave system for which the long time limit ensures a uniform pressure and an irrotational velocity for all configurations defined by equations ( 13), [START_REF] Dellacherie | Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system[END_REF].

• The numerical fluxes that are not low Mach accurate, which are matching a discretization of the wave system for which the long time limit does not ensure a uniform pressure nor an irrotational velocity for at least one configuration defined by equations ( 13), [START_REF] Dellacherie | Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system[END_REF].

This means that for studying the low Mach number accuracy of a numerical scheme for [START_REF] Barsukow | Stationarity preserving schemes for multi-dimensional linear systems[END_REF], it is sufficient to study the long time limit of a matching discretization of the wave system, which is much easier because it is a linear problem.

In the triangular case, a sharp algebraic framework including a discrete Hodge-Helmholtz decomposition with initial condition and boundary conditions allowed to extend the accuracy on triangles for some numerical fluxes. This result was already known in the unbounded case [START_REF] Dellacherie | The influence of cell geometry on the Godunov scheme applied to the linear wave equation[END_REF][START_REF] Guillard | On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells[END_REF].

In the case of a numerical flux not accurate at low Mach number, the spurious mode was identified (up to a factor) as • For the pressure, the pressure component of the long-time limit of the wave system.

• For the velocity, the long time limit of the wave system minus the divergence free component (as defined in Proposition 1) of the initial velocity of the wave system.

From the exact knowledge of the spurious mode, a filtering method was proposed. We proved that with this method, an accuracy comparable with numerical fluxes accurate at low Mach number could be recovered. This filtering needs only the long time limit of the wave system for the filtering of the pressure, and needs also the inversion of one Laplace system for the computation of the divergence free component of the initial velocity. This article deals only with finite volume schemes, however, we would like to stress that our methodology is very generic: all the results obtained can be applied in any numerical scheme, especially the asymptotic expansion of the numerical scheme for checking compatibility with the wave system (section 2), and Hodge-Helmholtz decomposition for filtering the steady low Mach number solution (section 4).

We consider the identification of the spurious mode at low Mach number as an important step for deriving accurate low Mach number numerical methods. We were able here to use this spurious mode for developing a filtering method but only for stationary barotropic Euler computations. There is still a lot of work for extending this method to full Euler system, to unstationary problems, or to viscous problems. As far as the full Euler system is concerned, the difficulty would be raised by the fact that the pressure is constant, but other thermodynamic variables (temperature, density) are not, so that the sound velocity of the matching wave system would not be uniform within the computational domain. The result of [START_REF] Jung | Long time behavior of finite volume discretization of symmetrizable linear hyperbolic systems[END_REF] would still hold, as uniformity of the wave velocity is not required. Last, the Hodge-Helmholtz decomposition of Proposition 5 would probably need to be modified, for example by being weighted by the sound velocity field as in [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF]. For the extension towards time dependent or viscous flows, we are currently trying to develop a reformulation of the system as a fluctuation around the spurious mode. This is a strategy that is usually developed for getting well balanced schemes for hyperbolic systems with a source term, by formulating the system as a fluctuation around the steady state [START_REF] Castro | Well-balanced high order extensions of Godunov's method for semilinear balance laws[END_REF].
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In this section, we detail which fluxes are considered in this article and give their non-dimensional expression.

A.1 The Rusanov flux

The Rusanov numerical flux is given by

F LF pW i , W j , nq " f pW i q `f pW j q 2 ¨n ´λij 2 pW j ´Wi q (35) 
where λ ij " max WPtWi,Wj u p|λ ˘pWq|q " max WPtWi,Wj u p|u ¨n| `aq.

This flux can be rephrased in dimensionless variables as

F LF ´W i , Wj , n, M ¯" 1 2 ¨pρ i ũi `ρ j ũj q ¨n ρi ũi pũ i ¨nq `ρ j ũj pũ j ¨nq `1 γM 2 pp i `p j qn ' `1 2 max WPtWi,Wj u ˆ|ũ ¨n| `ã M ˙´W i ´W j ¯,
to get that

F LF ρ ´W i , Wj , n, M ¯" 1 M max ´ã ´ρ p0q i ¯, ã ´ρ p0q j ¯¯´ρ p0q i ´ρ p0q j ¯`O p1q .

Moreover, if ρp0q

i " ρp0q b , we get [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF] where αp0q b and D 22 pnq are given by [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF].

A.2 The Roe numerical flux

Defining the Roe average as

ρ ij " ? ρ i ρ j , u ij " ? ρ i u i `?ρ j u j ? ρ i `?ρ j and a 2 ij " $ & % ∆p ∆ρ , if ∆ρ ‰ 0, apρ i q, otherwise (36) 
where ∆p¨q " p¨q j ´p¨q i , the Roe numerical flux is defined as

F Roe pW i , W j , nq " f pW i q `f pW j q 2 ¨n ´1 4 |u ij ¨n ´aij | ˆ∆ρ ´ρij a ij ∆ pu ¨nq ˙ˆ1 u ij ´aij n 1 2 |u ij ¨n| ρ ij ˆ0 ∆u K pnq 1 4 |u ij ¨n `aij | ˆ∆ρ `ρij a ij ∆ pu ¨nq ˙ˆ1 u ij `aij n ˙(37)
where u K pnq :" u ´pu ¨nqn denotes the tangential component of u with respect to normal direction n. The general dimensionless Roe scheme is very complicated, we focus here only on the low Mach number behavior, and therefore express it only in the subsonic case. Then, we have

F Roe ρ ´W i , Wj , n, M ¯" ρi ũi `ρ j ũj 2 ¨n `M ρij 2ã ij pũ ij ¨nqpũ i ´ũ j q ¨n `ã ij 2M pρ i ´ρ j q F Roe ρũ ´W i , Wj , n, M ¯" ρi pũ i ¨nqũ i `ρ j pũ j ¨nqũ j 2 `ã ij 2M pρ i ´ρ j q rũ ij `pũ ij ¨nqns `ρ ij 2 |ũ ij ¨n|pũ K i pnq ´ũ K j pnqq `M ρij pũ ij ¨nq 2ã ij rpũ i ´ũ j q ¨nsũ ij `" 1 γM 2 pi `p j 2 `1 2M ρij ãij pũ i ´ũ j q ¨n n. (38) 
Then, we get

F Roe ρ ´W i , Wj , n, M ¯" ãp0q ij 2M ´ρ p0q i ´ρ p0q j ¯.

Moreover, if ρp0q

i " ρp0q b , since the pressure p is a convex function of the density ρ, we get that ãp0q ij " ã ´ρ p0q b ¯and then we obtain [START_REF] Haack | An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations[END_REF] where αp0q b and D 22 pnq are given by [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF].

A.3 Dimensionless Steger-Warming boundary condition

For inlet and outlet boundary conditions, the Steger-Warming boundary condition is used. Given an external full state W b , and an interior state W i , the flux is

F SW pW i , W b , nq " A `pW b , nqW i `A´p W b , nqW b ,
where A `and A ´are respectively the positive and negative parts of the Jacobian matrix of f . For the barotropic Euler system, in the subsonic case u b ¨n ´ab ă 0 ă u b ¨n `ab , this flux is equal to

F SW pW i , W b , nq " 1 2 pu b ¨n `ab q " ρ i `ρi a b pu i ´ub q ¨n ˆ1 u b `ab n ṗu b ¨nq `ρi ˆ0 pu i ´ub q K pnq 1 2 pu b ¨n ´ab qρ b ˆ1 u b ´ab n ˙.
Then, we get the dimensionless expression as

F SW ´W i , Wb , n, M ¯" 1 2 ρi ˆũ b ¨n `ã b M ˙"1 `M ãb pũ i ´ũ b q ¨n ˜1 ũb `ã b M n ρi pũ b ¨nq `ˆ0 pũ i ´ũ b q K pnq 1 2 ρb ˆũ b ¨n ´ã b M ˙˜1 ũb ´ã b M n ţhat can be rewritten as F SW ρ ´W i , Wb , n, M ¯" ρi ũi `ρ b ũb 2 ¨n `ã b 2M pρ i ´ρ b q `M ρi 2ã b pũ b ¨nqpũ i ´ũ b q ¨n F SW ρũ ´W i , Wb , n, M ¯" ρi pũ i ¨nqũ i `ρ b pũ b ¨nqũ b 2 `ã 2 b M 2 ρi `ρ b 2 `ã b 2M pρ i ´ρ b q rũ b `pũ b ¨nqns `1 2M ρi ãb rpũ i ´ũ b q ¨ns n `1 2 ρi |ũ b ¨n|pũ K i pnq ´ũ K b pnqq `1 2 ρi pũ b ´ũ i q rpũ i ´ũ b q ¨ns `M ρi pũ b ¨nq 2ã b rpũ i ´ũ b q ¨nsũ b .
Then, we get

F SW ρ ´W i , Wb , n, M ¯" ãp0q b 2M ´ρ p0q i ´ρ p0q b ¯`O p1q .

Moreover, if ρp0q

i " ρp0q b , we get [START_REF] Jung | Long time behavior of finite volume discretization of symmetrizable linear hyperbolic systems[END_REF].

A.4 Dimensionless wall boundary condition

For a wall, the following flux is used

F wall pW i , nq " F pW i , | W i , n ij q
where the flux F corresponds to the flux taken in the domain and | W i is obtained from the transformation of W i : | W i " pI d`1 ´Pwall pnqqW i with

P wall pnq " ˆ0 0 0 2nn T ˙.
In the case of a Rusanov flux, we get B Proof of the propositions on continuous and discrete Hodge-Helmholtz decompositions

F wall,Rusanov ´W i , n, M ¯" ¨0 1 γM 2 pi n `ρ i pũ i ¨nq 2 n `ˆ|ũ i ¨n| `ã i M ˙ρ i pũ i ¨nqn ' so that

B.1 Decomposition in the continuous case

In this subsection, we prove Proposition 1.

The decomposition can be written as

u " ∇ x ϕ `curl x Ψ.
Taking the divergence of the equality gives Therefore the following variational formulation is found Find ϕ P H 1 pΩq @g P H 

∆ x ϕ " div x u.
We denote by ϕ 1 (resp. ϕ 2 ) a potential such that ∇ x ϕ 1 " u 1 ϕ (resp. ∇ x ϕ 2 " u 2 ϕ ). By taking the divergence of the equality, we find that ϕ 1 ´ϕ2 is such that " ∆ x `ϕ1 ´ϕ2 ˘" 0 in Ω, ∇ x `ϕ1 ´ϕ2 ˘¨n " 0 in BΩ.

As Ω is simply connex, a constant K exists such that ϕ 1 ´ϕ2 " K. This leads to u 1 ϕ " u 2 ϕ . Following (40), u 1

Ψ " u 2 Ψ , so that uniqueness is proven. which is 0 since g h is in W h . Then, u ψ h P Z h and the application L : W h ˆZh ÝÑ R 2N Cells pϕ h , u ψ h q Þ ÝÑ ∇ϕ h `uψ h is surjective. Moreover, since any ϕ h P W h is completely and uniquely determined by its value at the #F independent face midpoint of the mesh, we have dimpW h q " #F. Using the definition of Z h , we get that dimpZ h q " 2N Cells ´#F wall/SW ´#F int " 2N Cells ´#F and then, dimpW h q `dimpZ h q " 2N Cells , so that the application L is bijective and the decomposition is unique. We now prove that Z h " ∇ ˆV boundary h where V boundary h :"

div x pu ψ h g h q ´ÿ K ż K g h div x pu ψ h q " ÿ K ż BK g h u ψ
" ψ h P V h ˇˇż Ω ψ h " 0 and @f P F wall/SW , p∇ ˆψh q ¨nf " u b ¨nf * .

It is easy to prove that the application

G : V boundary h ÝÑ Z h ψ h Þ ÝÑ ∇ ˆψh
is well defined and injective. Since any ψ h P V h is completely and uniquely determined by its value at the S independent nodes of the mesh, we have dimpV h q " S `r where r is the number of holes of the mesh. Since #F wall/SW " S wall/SW where S wall/SW is the number of nodes on the boundary, we have dimpV boundary h q " S `r ´Swall/SW ´1 " S int `r ´1

where S int is the number of interior nodes. Since S `NCells " #F `1 ´r [28, Lemma 2.1] and since 3N Cells " 2#F int `#F wall/SW (because we consider a triangular mesh), we get N Cells " 2#F int `#F wall/SW ´2N Cells " 2p#F ´NCells q ´#F wall/SW " 2pS `r ´1q ´#F wall/SW " 2pr ´1q `S `Sint , so that S int `r ´1 " N Cells ´pS `r ´1q

" N Cells ´p#F ´NCells q " 2N Cells ´#F, and dimpV boundary h q " dimpZ h q.

B.4 Long time behaviour of the discrete wave system with Godunov' scheme on triangular meshes

We prove Proposition 6. Assume that U 0 h " pp p 0 h , p u 0 h q is such that p p 0 h " p p b and P ϕ h " p u 0 h ‰ " 0. Using Proposition 5, we have p u 0 h " P Ψ h " p u 0 h ‰ P Z h . Then, using [START_REF] Guillard | On the behaviour of upwind schemes in the low Mach number limit[END_REF] with stabilization [START_REF] Li | An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour[END_REF] and the definition of Z h (29), we get for all j P V int piq, Dpn ij q `U0 j ´U0 i ˘" p c 0 2 ˆp p 0 j ´p p 0 i `pp u 0 j ´p u 0 i q ¨nij ˘nij ˙" 0 and Apn ij qU 0 i " Apn ij qU 0 j , for all j P V wall piq, `Apn ij q ´2A ´pn ij qP wall pn ij q ˘U0 i "

¨0 ´1 p ρ 0 n T ij x κ 0 n ij 2 p c 0 n ij n T ij 'U 0 i " ¨´1 p ρ 0 p u 0 i ¨nij x κ 0 p p 0 i n ij `2p u 0 i ¨nij ' " ˆ0 x κ 0 p p 0 i n ij " Apn ij qU 0 i ,
and for all j P V SW piq, Apn ij qU 0 i " Apn ij qU b and pA `pn ij q ´A´p n ij qq `Ub

´U0 i ˘" p c 0 ˆ1 0 0 n ij n T ij ˙`U b ´U0 i " p c 0 ˆp p b ´p p 0 i `pp u b ´p u 0 i q ¨nij ˘nij " 0, so that (19) becomes U 1 i ´U0 i δt `1 | Ωi | ř jPVpiq | Γij |Apn ij qU 0 i " 0.
Since ř jPVpiq | Γij |n ij " 0, we get that U 1 i " U 0 i .

  Proposition 5 is deferred to subsection B.3. It is an extension of [16, Theorem 4.1] in the H 1 0 case and of [15, Lemma 3.1] or [13, Lemme

  the proof of Proposition 5 detailed in subsection B.3, the component P ϕ h " û0 h ‰ can be computed by solving the variational problem Find ϕ
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Figure 1 :

 1 Figure 1: Residual obtained with quadrangular and triangular mesh on the density and the momentum ρu x and ρu y as a function of the time.

Figure 2 :

 2 Figure 2: L 2 norm of density fluctuation ρ ´ρb with respect to the Mach number (for M b " 10 ´1 to M b " 10 ´10 ). Rusanov and Roe schemes are used on triangular (right) and quadrangular (left) mesh. A log-log plot is used. Results with and without filtering are shown, and confirm that filtering allows to recover the O `M 2 ˘scaling of the density fluctuation (or pressure fluctuation) when the Mach number goes to 0.
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Figure 3 :

 3 Figure 3: Iso-contours of the norm of the velocity obtained at Mach number M b " 10 ´4 on quadrangular mesh. Results with and without filtering are shown for the Rusanov and the Godunov scheme. Twenty equally reparted contours between 8 ˆ10 ´6 and 3 ˆ10 ´4 are plotted.

Figure 4 :

 4 Figure 4: Iso-contours of the norm the velocity obtained at Mach number M b " 10 ´4 on triangular mesh. Results with and without filtering are shown for the Rusanov and the Godunov scheme. Twenty equally reparted contours between 8 ˆ10 ´6 and 3 ˆ10 ´4 are plotted.
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Figure 5 :

 5 Figure 5: L 2 norm of the velocity error between the exact incompressible solution and the long time limit state obtained with the Rusanov and the Godunov scheme. Results with and without filtering are shown on quadrangular (left) and triangular (right) meshes for a Mach number of M b " 10 ´4.

Figure 6 :

 6 Figure 6: Results obtained for the L 2 norm of ρ ´ρb with respect to the Mach number. A log-log plot is used. Rusanov and Roe scheme are used on both triangular (right) and quadrangular (left) meshes, and results with and without filtering are shown, and confirm that filtering allows to recover the M 2 scaling for the density when the Mach number goes to 0.

Figure 7 :

 7 Figure 7: Iso-contours of the velocity obtained for the different schemes, meshes, and with or without filtering. Fifty equally reparted contours of the norm of the velocity between 9.51125e ´05 and 0.000235117 are plotted. The solution obtained with the Roe scheme on triangles is taken as a reference.

Ω g∆ x ϕ " ż Ω gdiv x p∇ x ϕq " ż Ω div x pg∇ x ϕq ´żΩ ∇ x g ¨∇x ϕ " ż BΩ g∇ x ϕ ¨n ´żΩ ∇ x g ¨∇x ϕ " ż BΩg

 ż This equation is multiplied by a regular test function g and integrated on Ωż Ω g∆ x ϕ " ż Ω gdiv x u.The left hand side is integrated by parts as follows ż pu ¨n ´ub ¨nq ´żΩ ∇ x g ¨∇x ϕ.

  F wall,Rusanov In the case of the Roe flux, we getF wall,Roe ´W i , n, M ¯" ¨0 1 γM 2 pi n `ρ i pũ i ¨nq 2 n `1 M ρi ãi pũ i ¨nqn 'and the same result is obtained because order 1{M 2 and 1{M are the same as the Rusanov flux.

			ρ	" 0. Moreover, if	ρp0q i	"	ρp0q b	is ensured, F wall,Rusanov ρũ	satisfies (21) because
	ãp0q i	"	ãp0q b .				

  Note that all the integral of the right hand side have a sense, because if u P H 1 pΩq, then its divergence is in H ´1pΩq. The variational problem (39) has a unique solution up to a constant provided Ω is simply connex. By taking the gradient of ϕ, we find the component u ϕ . By defining u Ψ " u ´uϕ , existence of the decomposition is found. Let's now proof the uniqueness. Suppose that we have two decompositions u " u 1

					ż
					g pu ¨n ´ub ¨nq	´żΩ	gdiv x u.	(39)
					BΩ
		ϕ	`u1 Ψ " u 2 ϕ	`u2 Ψ ,
	with the following boundary conditions			
	u 1 ϕ ¨n " u 2 ϕ ¨n " u ¨n ´ub ¨n,
	then			
	u 1 ϕ	´u2 ϕ " u 2 Ψ	´u1 Ψ .

1 pΩq ż Ω ∇ x g ¨∇x ϕ "

  is constant along the face, which means that on all interior faces f P F int , ż

	As u ψ h is piecewise constant,	! !	u ψ h	¨n ) )	
				f	! !	u ψ h	¨n ) )	rr g h ss
	is proportional to				
						ż

h ¨n " ÿ f PFint ż f rr g h u ψ h ¨n ss `ÿ f PF wall/SW ż f g h u ψ h ¨n " ÿ f PFint ż f t t g h u u rr u ψ h ¨n ss `ÿ f PFint ż f rr g h ss ! ! u ψ h ¨n ) ) `ÿ f PF wall/SW ż f g h u ψ h ¨n.

f rr g h ss,

B.2 Long time behaviour of the continuous wave system

The aim of this section is to prove Proposition 2. We first need to prove the following lemma: Lemma 1. Consider the wave system [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF] with initial velocity p u 0 , and with boundary conditions weakly defined by (14b) for wall, and by (14c) for inlet/outlet. Consider now a stationary state U 8 " pp p 8 , p u 8 q that p u 8 is divergence free and such that p p 8 is uniformly equal to p p b , and such that p u 8 ¨n " 0 on walls and p u 8 ¨n " p u b ¨n on inlet/outlet. We define the relative energy as

Then the volumic average of the relative energy is a Liapunov functional.

Proof. Consider the weak formulation of the wave system @g, g `pp u ´p u 8 q ¨rx κ 0 p pns wall/SW " 0.

The second volumic integral can be integrated, which gives

`pp u ´p u 8 q ¨rx κ 0 p pns wall/SW ¸" 0.

The boundary flux on walls is given by (14b). Moreover, on the wall boundary, we have p u 8 ¨n " 0. This means that on the wall boundary

whereas for the inlet/outlet, the boundary flux (14c) can be written as

We finally find

which ends the proof.

We now prove a second lemma Lemma 2. If pp p, p uq is the solution of the wave system [START_REF] Dellacherie | Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity[END_REF], and if we consider the Hodge-Helmholtz decomposition (15) of p u, then p u Ψ is constant.

Proof. By integrating by parts in (39) the integral involving the divergence, we find the following variational formulation

Find ϕ P H 1 pΩq @g P H 1 pΩq

Taking the derivative in time gives

which leads to

We can now prove Proposition 2. Considering Lemma 1, it is clear that the pressure at infinity is uniform, equal to p p b , and that the velocity at infinity is divergence free, so that p u ϕ is 0 at infinity. Then, following Lemma 2, p u Ψ is constant, so that the limit of p u at infinite time is equal to p u Ψ p0q.

B.3 Discrete decomposition on triangular meshes

In this section, Proposition 5 is proven. Let u h P R 2N Cells . We first remark that the variational formulation in the continuous case (39) can be transformed, by using the Green formula on the last integral of the right hand side as Find ϕ P H 1 pΩq @g P H 1 pΩq

This suggests to define ϕ h and so P ϕ h ru h s " ∇ϕ h as the solution of the following discrete variational problem Find ϕ h P W h @g h P W h ÿ

We will now prove that u ψ h :" u h ´∇ϕ h P Z h and later we will prove that all element of Z h can be written as the curl of an element of V h . For all g h P W h , we have