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Abstract: Protonated cyclic dipeptides undergo collision-induced dissociation, and this reaction
mechanism strongly depends on the symmetry and the nature of the residues. We review the main
dissociation mechanism for a series of cyclic dipeptides, obtained through chemical dynamics simula-
tions. The systems range from the symmetrical cyclo-(glycyl-glycyl), with two possible symmetrical
protonation sites located on the peptide ring, to cyclo-(tyrosyl-prolyl), where the symmetry of proto-
nation sites on the peptide ring is broken by the dissimilar nature of the different residues. Finally,
cyclo-(phenylalanyl-histidyl) shows a completely asymmetric situation, with the proton located on
one of the dipeptide side chains, which explains the peculiar fragmentation mechanism induced by
shuttling the proton, whose efficiency is strongly dependent on the relative chirality of the residues.

Keywords: chirality; mass spectrometry; chemical dynamics; quantum chemistry

1. Introduction

Symmetry plays an important role in nature, from the macroscopic world to cosmology
and high-energy physics. In particular, it is possible to classify molecules according to
their symmetry or lack thereof. Beyond this, symmetry plays an essential role in molecular
structure and reactivity. To a large extent, it dictates the rules that govern spectroscopy,
i.e., the absorption and emission of light, or photophysics, i.e., the fate of molecules after
light absorption [1]. For example, homonuclear diatomic molecules, such as N2 or O2,
are prohibited from absorbing IR radiation, which is fortunate, since they are the main
constituents of the atmosphere. UV absorption by the highly symmetric benzene molecule is
much weaker than absorption by its less symmetrical substituted derivative. Symmetry also
influences chemical reactivity. For example, the well-known Woodward–Hoffmann rules
that govern concerted thermal and photochemical reactions involving a cyclic transition
state are based on the symmetry of the frontier orbitals of the reagents [2]. A peculiar aspect
of symmetry, or rather dissymmetry, is chirality, which is the property of a molecule to
not be superimposable on its mirror image. The foundations of chirality were laid at the
beginning of the 19th century, when a French physicist, J.B. Biot, discovered that certain
organic substances in solution rotate the plane of polarization of linearly polarized light.
However, the decisive step was provided by L. Pasteur; he proposed that this property
was molecular in nature, and was intimately related to life. The concept was completed
when Lord Kelvin named this property “chirality”. Le Bel and van’t Hoff proposed the
asymmetric carbon, substituted by four different types of atoms or groups, as a source of
chirality [3]. In general, chiral molecules belong to one of the following point groups: C1,
Cn or Dn.
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Chirality is pervasive in biomolecules. All natural amino acids, the constituents of
proteins, with the exception of glycine, possess an asymmetric carbon atom, also called a
stereogenic center, which always has an L absolute configuration (Figure 1).
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Figure 1. (a) The two enantiomers of alanine. (b) DKP dipeptides, involving glycine (Gly), pheny-
lalanine (Phe), tyrosine (Tyr), histidine (His), or proline (Pro), depending on R1 and R2. c-Gly-Gly is
obtained for R1 and R2 = H. Stereogenic centers are marked with *.

Peptides arise from the fusion of amino acids, resulting in the creation of a peptide
bond and the loss of water, with no modification of the stereogenic center. For this reason,
the natural peptides also have an L configuration. Intramolecular peptide bond formation
results in cyclic peptides, also called diketopiperazine (DKP) peptides, from the name
of the cycle. They are important as by-products of sweetener degradation or for their
potential applications as drugs [4]. In contrast to biosynthesis, chemical engineering
allows the synthesis of cyclic dipeptides with different absolute configurations of the
stereogenic carbon atoms. In the past few years, we have undertaken a spectroscopic
study of cyclic dipeptides with identical or opposite configurations of the residues, to
assess the influence of chirality on their structure and reactivity [5–13]. We have resorted
to IR spectroscopy under jet-cooled or ion trap conditions, aided by quantum chemical
calculations, to determine the structure of the neutral or protonated molecules. In addition,
we have rationalized the collision-induced dissociation mechanism of the protonated
peptides in an ion trap, by means of chemical dynamics calculations. Here, we will focus
on the latter aspect, and we will describe how symmetry influences this mechanism. To this
aim, three systems are considered that differ in the substituent of the Cα atoms (Cα

1 and
Cα

3 ) (Figure 1), and by their symmetry. In what follows, the peptides will be denoted by
c-AB, where c stands for cyclic and A or B is the usual notation for the amino acid residue.
We will start with the most simple and symmetrical c-Gly-Gly molecule. In the crystal, it is
centrosymmetric and belongs to the C2h symmetry group because the DKP ring is planar,
and all substituents of Cα

1 and Cα
3 are hydrogen atoms (Figure 2) [14].

In contrast to the solid-state structure, there is no symmetry plane in the gas-phase
structure, which has C2 symmetry [15]. Therefore, c-Gly-Gly exists as a pair of two fast-
interconverting enantiomers, which manifests itself as splitting of the rotational transi-
tions [16]. The planar transition state separating the two fast-interconverting enantiomers
has an inversion center (i) and is not chiral; it can be viewed as a “time-averaged” structure.
The addition of a proton results in the loss of the inversion center and the C2 symmetry
axis [17]. Moreover, there are two equivalent sites for the proton to bind—the two CO
groups. As a result, the macroscopic system can be viewed as the contribution of molecules
protonated on either of these sites. The substitution of the Cα atoms lowers the symmetry,
even if the two substituents are identical, such as in c-Phe-Phe, as shown in Figure 3. The
main reason is that chirality is brought about by the substitution of Cα

1 and Cα
3 . Different

cases are encountered, depending on the relative absolute configuration of the residues
and their nature. When one residue is L and the other D, the symmetry group may be
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Ci (with the inversion center as the only symmetry element) or C1 (no symmetry at all).
Achiral Ci conformers are observed for example in c-DAla-LAla, in which one methyl group
pointing upwards, relative to the peptide plane, and the other pointing downwards [18].
When both conformers are L, the symmetry group may be C2 (two-fold symmetry axis
as the only symmetry element) or C1. The C1 structures in which the two substituents
have non-equivalent orientations are commonly observed in either LL or LD structures
containing an aromatic ring, as shown in Figure 3. The most common geometry consists of
one substituent folded on the DKP ring and the other extended outside. This happens for
c-Phe-Phe in its most stable neutral or protonated forms. The so-called stacked geometry,
where two aromatic rings face each other, belongs to the C2 symmetry point group; this is
an observed stable form of c-LTyr-LTyr in the gas phase. A similar sandwich-like structure
was also proposed for c-LTyr-LPhe in polar solution [19]. Its diastereomer c-LTyr-DPhe
has two rings folded over the DKP ring in polar solution, on each side of the peptide
ring [20]. All these C1 or C2 conformations are chiral. In conditions where conformational
flexibility is possible (high temperature), this type of chirality is transient, because the
substituents can easily go from folded to extended orientations, and vice versa. However, it
is permanently chiral at low temperatures because the molecular motions are frozen. When
protonation happens on the CO group, such as in the abovementioned systems, it has little
effect on the symmetry [8]. For dipeptides built from two identical residues, protonation
breaks the Ci symmetry of the LD systems, but the two CO are equivalent. For the LL
systems, the C2 conformations remain C2 and the two CO are equivalent (see Figure 2a).
In contrast, for the C1 conformations (no symmetry element), the two protonation sites
are not equivalent; either the CO of the folded residue or that of the extended residue is
protonated. However, as mentioned before, rapid interconversion happens between the
extended and folded positions at room temperature. Finally, c-Phe-His shows completely
different properties. As the two residues are different, the system has no symmetry (C1),
no matter the conformation. Moreover, protonation happens on the imidazole ring of His,
which further dissymmetrizes the molecules, in terms of charge distribution.

In this article, we explore how symmetry affects the collision-induced dissociation
(CID) of protonated cyclic dipeptides. We propose an analysis based on the symmetry
of the proton migration pathway that rationalizes the fragmentation of cyclic dipeptides,
depending on their symmetry properties. We start from the most symmetrical c-Gly-Gly
molecule, which is taken as a paradigm. We then extend the discussion to c-Phe-Phe
and c-Phe-His. To this end, we model the collision-induced dissociation efficiency along
different reactive paths and compare them to experimental values. Finally, we show how
symmetry, or lack thereof, along these reaction paths affects the difference in fragmentation
between LL and LD.
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Figure 3. Most stable structures of the DKP dipeptides discussed in this review. The OH+ . . . π,
CH . . . π, NH+ . . . O, hydrogen bond interactions are indicated by the curly red line (see text).

2. Experimental and Theoretical Methods
2.1. Experimental Methods: Collision-Induced Dissociation

This work rests on multistage mass spectrometry experiments using a Fourier trans-
form ion cyclotron resonance (7T FT-ICR hybrid mass spectrometer Bruker, Apex Qe)
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mass spectrometer [21]. They have been performed at the SMAS (Spectrométrie de Masse,
Analyse et Spectroscopie) facility at the Centre Laser Infrarouge d’Orsay (CLIO) [22]. They
consist of three steps, as depicted in Figure 4.
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different elements.

The first step delivers the protonated molecules from a dilute solution to the gas phase,
thanks to the soft ionization obtained in an electrospray ion source (ESI). The second part
encompasses a linear quadrupole, where the ions are sorted according to their mass-to-
charge ratio m/z, and a linear hexapole ion trap, where they are accumulated for a duration
of 1 s. They undergo collisions with argon, which results in collision-induced dissociation
(CID). CID is a powerful tool that has been widely applied to the structural study of
peptides [23,24]. The collision energy can be varied by modifying the kinetic energy of
the ions. This is performed by tuning the voltage applied on the rods of the ion trap. The
ions are then transferred to the ICR cell, where they are trapped by the combination of
electric and magnetic fields. The latter allows the detection of the CID fragments according
to their m/z.

The dipeptides were obtained from Novopep (China) (98% purity) and used as provided.

2.2. Theoretical Methods–Fragmentation Simulations

The nature of the fragments experimentally observed in CID can be obtained from sim-
ulations, independently from the experiments. This is the so-called theoretical MS/MS [25],
which is based on chemical dynamics simulations and, in particular, on the pioneering
studies of Hase and co-workers [26]. The results obtained can, thereby, be advantageously
compared to the experimental results on peptide fragmentation [23,27–32]. Methods and
applications were recently reviewed by Hase, Spezia, and co-workers [33,34]. There-
fore, here, we will only give the general principles of the methodology we use to under-
stand the fragmentation properties of chiral protonated peptides from chemical dynamics
simulations [10,35].

Each structure was first optimized at the B3LYP/DFT/6-311++g(d,p)/D3 level of the-
ory [36,37], and the vibrational spectra were calculated [38] and compared with IR spectra
obtained by infra-red multiple-photon dissociation (IRMPD) experiments. The calculated
conformer that best reproduced the experiment was chosen as the initial structure used
in the simulations. Next, simulations were run using the RM1-D semi-empirical Hamilto-
nian [39,40], which is a good compromise between computational time and accuracy. Each
ion was then optimized at the RM1-D level of theory and activated through microcanonical
normal mode sampling [41], with given energies in the 367–617 kcal/mol range. These
excess energies are enough for the ion to fragment and react sufficiently in the given simu-
lation time. On the other hand, the energies are not too high, so as to avoid an unphysical
sudden breaking. Therefore, an ensemble of trajectories was propagated for each energy
value, typically between 3000 and 11,000, each 20–25 ps long, depending on the energy and
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the system. Table S1 of the Supplementary Information (SI) summarizes all the simulation
details for c-Tyr-ProH+ and c-Phe-HisH+. Information for c-Gly-GlyH+ can be found in
previously published work [13].

The internally activated system evolves following the Newton equation of motions,
integrated numerically using the velocity Verlet algorithm [42], with a 0.1 fs time step,
ensuring energy conservation. The trajectories are monitored to observe if a reaction has
occurred. It is important to notice that this direct approach does not impose any reaction
product or mechanism; the products obtained in fine result from the simulations, given the
initial conditions and the way energies and forces are calculated (in the present case at the
RM1-D level of theory).

Trajectories are propagated in Cartesian coordinates, and for such complex systems, it
is impossible to know all the possible products in advance. Therefore, we used a graph-
theory-based approach to analyze them automatically [13]. This approach can also identify
the ion–molecule complexes that are often transient structures in CID processes.

Microcanonical rate constants were extracted from the molecular dynamics simula-
tions using the method described previously [13]. Briefly, the primary fragmentation of
the peptides is described by the evolution of three states, namely, the starting point (S),
intermediate (I), and primary fragmentation product (P) states. In this three-stage model,
the intermediate state encapsulates all the possible geometries of the systems before their
fragmentation [13]. This allows for the determination of the effective microcanonical rate
constants, corresponding to the transformation from starting point to intermediate and vice
versa, and from the starting point and intermediate to the final fragmentation state.

The last step consists of extracting the threshold energies using the classical Rice–
Ramsperger–Kassel (RRK) [43] theory from the energy dependence of the effective rate
constants, as follows:

kij(E) = υij

(
1 − Eij

a
E

)s−1

where ν, s, and Ea are the effective frequency, the number of vibrational degrees of freedom
of the reactant, and threshold energy, respectively, with i and j being S, I, or P.

All simulations were performed with the VENUS chemical dynamics software [44],
which is coupled with Mopac5.022 mn [45]. Analyses were performed with our graph
theory code developed in-house [13].

3. Results and Discussion
3.1. Experimental Results on the Fragmentation of Diketopiperazine Peptides

The structure of the protonated dipeptides under study was determined by compar-
ing the vibrational spectra obtained by IRMPD with those simulated for the most stable
calculated structures. In all the systems, but c-Phe-HisH+, the proton is located on the
peptide CO. In c-Gly-GlyH+ or c-Ala-AlaH+, the two CO are equivalent [17,46], which is
not the case in c-Phe-PheH+, despite the identical aromatic substituents. Dissymmetry is
brought upon by the non-equivalent position of the two aromatic rings [5]. Indeed, one of
them is extended, which allows it to interact with the CO, and the other is folded over the
DKP ring (see Figure 3). Due to the different substituents, the two CO are not equivalent in
c Tyr-ProH+ [35]. The previously obtained results indicate that protonation on the oxygen
atom of the Tyr residue is energetically favorable (see Figure 4).

Experimental data are available for the fragmentation of protonated DKPs, such as
c-Gly-GlyH+, c-Ala-AlaH+, and c-Ala-GlyH+, and more complex DKPs, such as c-Tyr-
ProH+, c-Phe-PheH+, and c-Phe-HisH+ [17,46–48]. The role of the stereochemistry of the
residues has been studied for the last three systems. The CO loss is the dominant process in
all systems. The loss of the NH3 neutral fragment is much weaker. It is either not observed
or negligible in all four systems, except c-Phe-HisH+, where it is significant. In what follows,
we will focus on CO loss, which is common to all the DKP-based dipeptides studied so far,
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with, however, very different sensitivity to chirality, depending on the system, as shown in
Figure 5 on the example of c-Tyr-ProH+ and c-Phe-HisH+ [13,35].
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We can distinguish two families. Firstly, c-Tyr-ProH+, where the proton is located on
the amide CO, shows little or no enantioselectivity in its fragmentation patterns [35]. Both
the total fragmentation and CO loss yield are very similar for the LL and LD stereoisomers.
Very little effect of chirality is also observed in the CID of c-Phe-PheH+ [5]. In contrast, c-Phe-
HisH+, for which the proton is located on the imidazole, shows strong enantioselectivity,
which we will rationalize in what follows.

3.2. Sidechain Effect on Primary Fragmentation of Diketopiperazine Peptides

We theoretically evaluated the effect of the residue on the effective microcanonical
rate constant of three diketopiperazine peptides, namely, c-Gly-GlyH+, c-Tyr-ProH+, and
c-Phe-HisH+, for which only the LL diastereomer was considered. The same kinetic
temperature range was used for the three systems to facilitate the comparison. In all cases,
the starting point is the most stable geometry, except for c-Phe-HisH+, where we also
included the structures with the proton on the CO closest to the imidazole group, i.e.,
that of the Phe residue. This choice is justified by the fast proton transfer between the
protonated imidazole and this carbonyl group at ~t = 0. Figure S1 of the SI shows the two
starting points and their evolution as a function of time, illustrating the fast proton transfer
(~1 ps) from the imidazole to the CO sites. After activation of the reagent and a graph-based
analysis of the ensemble of trajectories, the simultaneous fit of the population of the states,
carried out using the three-state model, allows the rate constants depicted in Figure 6 to be
extracted. All the rate constants obtained are summarized in Table S2 of the SI. The model
reproduces the temporal evolution of the three states at their given total energy, as shown
in Figure 6 (top). In all cases, the population of the reagent S monotonically decreases,
while the product P population steadily increases. The population of the intermediate state
I increases to a maximum, and then decreases. The RRK theory accurately reproduces the
effective microcanonical rate constants as a function of the kinetic energy of the starting
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state S, as shown in Figure 6 (bottom). Overall, the rate constants increase with the energy
for the three systems, except for the backward reaction from the intermediate I to the
reagent S. This may be due to the low activation energy required.
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Figure 6. Top: Time evolution of the population of the different states (gray lines) fitted by the
three-state model (colored lines: blue is the reagent S, grey the intermediate I, and red the product
P). Bottom: Microcanonical rate constants (dots) extracted from chemical dynamics simulations
using simultaneous fit approach and the classical RRK fit (solid lines) as a function of the kinetic
temperature, defined as E = n kbT, where n is the number of vibrational degrees of freedom. kIS

(blue squares) is the rate constant for the transformation from the starting point S (reagent) to the
intermediate state I, while kSI (grey triangles) is the rate constant for the reverse transformation. kPI

(red circles) is the rate constant for the transformation from the intermediate state I to the final state P
(product). kPS (green diamonds) is the rate constant for the direct transformation from the reagent to
the product.

Analyzing the different rate constants allows us to obtain a global picture of the reac-
tivity of the three systems investigated here, and to conclude that primary fragmentation
occurs differently for the three systems. For c-Gly-GlyH+, kIS > kPI, which means that
direct reactions are rare; the limiting step for stepwise reactions is the transformation of
intermediate states I to products P. In contrast, for c-Phe-HisH+, kPI > kIS, indicating that
the kinetically limiting step is the isomerization from the reactants S to the intermediate
state I. Finally, kIS~kPI for c-Tyr-ProH+ and their ratio depend on the excess energy. At low
energy, the limiting step is the evolution from intermediate I to the products P. In contrast,
at higher energy, it is the isomerization from the reactants S to the intermediate state I. In
the energy range investigated here, events involving a direct reaction from the reagent S to
the product P are scarce for c-Gly-GlyH+. In contrast, replacing Gly with Tyr, Phe, or His
inherently opens the direct reaction channel, associated with the loss of the side chain, with
no prior isomerization.

The obtained threshold energies for the different ionization steps are summarized in
Figure 7, and are listed in Table S3 of the SI. We can first compare the energy thresholds
for the various processes. The energy threshold for going directly from the reagent to the
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product is always larger than that for going from the reagent to the intermediate state or
the intermediate step to the product, demonstrating that the reaction is mostly stepwise.
We can also compare the different systems. c-Gly-GlyH+ and c-Tyr-ProH+ have similar
energy thresholds for isomerization when going from the reactants to the intermediate
state. This could be related to the fact that the main isomerization events in both systems
consist of the opening of the DKP ring, due to the breaking of the Cα-COH+ bond [10,35].
The energy threshold between the intermediate and final states is 12 kcal/mole lower in
c-Tyr-ProH+ than c-Gly-GlyH+.
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and dotted lines, respectively. The energy thresholds for going from the reagent to the intermediate
(Ea

IS
+), from the intermediate to the product (Ea

PI
+), and directly from the reagent to the products

(Ea
PS

+) are given in blue, red, and green, respectively.

This observation illustrates the influence of the nature of the residues in facilitating
fragmentation from the intermediate state. c-Phe-HisH+ has much lower energy thresholds,
suggesting a different reaction mechanism, in line with what was previously suggested [10].
This difference is related to the different protonation site in c-Phe-HisH+, which is not
on the amide CO as in the other studied systems, but on the imidazole ring. Therefore,
different intermediate states are calculated for c-Phe-HisH+ and the two other systems,
a selection of which are shown in Figure 8. In the paradigm system c-Gly-GlyH+, open
(linear) structures are the main intermediate states. The same is true for c-Tyr-ProH+. In
contrast, cyclic intermediate states exist in c-Phe-HisH+. This has considerable effects on
the dissociation pathways, in particular, their sensitivity to stereochemical factors. The
protonated imidazole ring acts as a proton shuttle to different possible protonation sites,
facilitating isomerization and fragmentation, as illustrated in Figure 8c. This explains the
much lower energy threshold observed in c-Phe-HisH+ and the sensitivity to stereochemical
factors. This can be related to the much larger fragmentation efficiency observed for c-Phe-
HisH+

, as shown in Figure 5.
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3.3. Effect of Symmetry and Chirality

For c-Tyr-ProH+, mainly linear intermediate states, similar to that shown in Figure 8a,
are obtained. The evolution of the system from these intermediate states is the rate-limiting
step at low collision energy, which corresponds to our experimental conditions. Therefore,
the reaction rate kSP is identical for the two diastereomers, because the open intermediate
contains only one stereogenic center, which makes the reaction insensitive to chirality.
For c-Phe-HisH+, the CO loss mechanism involves intermediate states that keep the DKP
ring intact, with two asymmetric carbon atoms. The energy of the cyclic intermediate is,
therefore, different whether the two chiral centers are of identical or opposite handedness,
and so are the kIS reaction rates. As mentioned before, kIS is the rate-limiting step. One,
therefore, expects different fragmentation efficiencies for LL and LD, in agreement with the
experimental results shown in Figure 5. As illustrated in Figure 8c, the proton can shuttle
through two possible pathways (shown here as red and green arrows), and the potential
energy surface is not the same whether the residues are of identical or opposite handedness;
this results in different CID efficiencies. This stereoselective mechanism dominates for CO
loss and explains the stereoselectivity observed.

4. Conclusions

Here, we described the mechanisms of the collision-induced dissociation of proto-
nated DKP dipeptides. The dominant neutral fragment is CO, the production of which
involves the migration of the proton from the most stable protonation site to higher-energy
protonation sites as a first step. The most symmetrical system, i.e., c-Gly-GlyH+, shows
little direct reactivity from the initial to the final state. In this case, the limiting step is the
transformation of intermediate states to products. Indeed, the most frequently encountered
intermediate states are linear forms. The same holds for c-Tyr-ProH+, where disymmetriza-
tion of the system brings minor modifications, except an increase in the direct reaction rate.
c-Phe-PheH+ has not been theoretically studied. However, the similarity between experi-
mental results indicates strong similarity with c-Tyr-ProH+. In the two cases, the systems
show two protonation sites that are similar in nature, which are the amide CO. They thus
show similar CO loss reaction. This holds even when the system is not symmetrical, due to
different conformations of identical substituents, such as in c-Phe-PheH+, or its chemical
nature, such as in c-Tyr-ProH+. Reducing the symmetry of the system, by having different
substituents, does not influence the reaction mechanisms. The change in the chirality of
the residues does not influence the CID of these systems, and differences in the reactivity
that are smaller than 10% are observed between LL and LD. Limited enantioselectivity
is observed when the two residues differ in their chemical nature. In contrast, dramatic
effects are present when the system is disymmetrized, due to the charge distribution, as in



Symmetry 2022, 14, 679 11 of 13

c-Phe-HisH+. The proton location on the imidazole substituent enables a proton shuttling
mechanism, in which the protonated imidazole rotates, in order to explore the different
proton transfer possibilities. Due to stereochemical factors, the accessible conformational
landscape is different for LL and LD. We conclude, from this work, that the dominant
symmetry factor affecting the dependence of CID upon stereochemical factors is not the
chemical dissymmetry induced by the nature of the residues, but the charge dissymmetry
brought about by the proton location on a side chain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym14040679/s1, Figure S1: (a) Starting point definition (S = str1

+ str2) in c-Phe-HisH+ system due to the fast proton transfer detected during the chemical dynamics
simulations. (b) Starting point population at 1276 K decomposed into its components. The inset
highlights the fast proton transfer that takes place within 1 ps; Table S1: Details of the simulation. Λ is
the total integration time, N the number of trajectories, Ev, the initial excess vibrational energy, <K>SP

the average kinetic energy of the starting point state and their corresponding standard deviations
σ<K>. TSP corresponds to the temperature computed from <K>SP. Table S2: Microcanonical rate
constants and their corresponding uncertainty extracted from chemical dynamics simulations by a
simultaneous fit approach using the three-state model. X2

red is the reduced chi-square per degree of
freedom evaluating the quality of the fit. Table S3: Effective frequencies factors (in fs−1) and energy
thresholds (in kcal/mol) extracted from a fit using the RRK model.
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