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Abstract
Generative Adversarial Networks (GANs) have
known a tremendous success for many continu-
ous generation tasks, especially in the field of
image generation. However, for discrete outputs
such as language, optimizing GANs remains an
open problem with many instabilities, as no gra-
dient can be properly back-propagated from the
discriminator output to the generator parameters.
An alternative is to learn the generator network
via reinforcement learning, using the discrimina-
tor signal as a reward, but such a technique suf-
fers from moving rewards and vanishing gradient
problems. Finally, it often falls short compared
to direct maximum-likelihood approaches. In this
paper, we introduce Generative Cooperative Net-
works, in which the discriminator architecture
is cooperatively used along with the generation
policy to output samples of realistic texts for the
task at hand. We give theoretical guarantees of
convergence for our approach, and study various
efficient decoding schemes to empirically achieve
state-of-the-art results in two main NLG tasks.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have known a tremendous success for many
generation tasks. In GANs, a discriminator network is
trained to distinguish real data from fake ones, the latter
being generated via a generator network trained to fool the
discriminator. Both networks are trained as a min-max two-
player game, which is referred to as adversarial training.
Under some strong assumptions, (Goodfellow et al., 2014)
gives theoretical guarantees of convergence of the generator
towards the distribution underlying observed training data.
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Empirically, in continuous domains such as for image gen-
eration, these architectures have shown impressive abilities
to generate realistic – unobserved – data, and have been
extensively studied.

However, for discrete domains such as Natural Lan-
guage Generation (NLG), optimizing GANs remains an
open-problem, as no gradient flow can be properly back-
propagated from the discriminator output to the genera-
tor parameters. Language GANs require to be optimized
via Reinforcement Learning (RL) methods, with rewards
provided by discriminator networks (de Masson d’Autume
et al., 2019). Compared to classical NLG methods, such
approaches have the potential to 1) avoid the well-known ex-
posure bias plaguing the traditional MLE (teacher-forcing)
training mode (Ranzato et al., 2015) and 2) automatically
discover useful metrics to optimize via RL – compared to
manually designed ones (Ranzato et al., 2015; Paulus et al.,
2017; Scialom et al., 2019). Still, GAN-based approaches
suffer from both high variance and non-stationary reward
distributions, leading to many instabilities, and therefore
usually fall short compared to traditional MLE approaches
(Caccia et al., 2020).

Theoretically sound attempts such as (Che et al., 2017) pro-
posed to augment the discriminator scores with maximum-
likelihood signals in order to stabilize rewards, but still
suffer from high variance in practice (Caccia et al., 2020).
Other attempts such as (Scialom et al., 2020a) proposed
to rather pick training samples close to generative distribu-
tion modes to smooth the learning process and thus prevent
abrupt changes in the reward function. However, this ap-
proach, if not employed with a carefully designed learning
rate scheduler, still exhibits high instabilities when training
until convergence – making it harder to adapt the learning
process for new NLG tasks or datasets.

Relying on the assumption that discrimination is easier than
generation, some recent approaches, such as (Deng et al.,
2020), (Scialom et al., 2020b) or (Scialom et al., 2021b),
have proposed to employ a cooperative decoding scheme
where the discriminator network is used along with the gen-
erator to output more realistic samples. (Scialom et al.,
2020b) bias the standard beam search with scores provided
by the discriminator network, to favor sequences that are
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classified as human-like texts. (Scialom et al., 2021b) builds
upon that idea, but updates the generator at each step based
on sequences generated from this augmented beam search
process, in an expert-iteration (Anthony et al., 2017) learn-
ing scheme. However, while such a kind of cooperative
approach to produce accurate imitation learning samples is
appealing, we argue in Section 2 that it may reveal particu-
larly unstable.

To address these shortcomings, we propose to take inspira-
tion from (Norouzi et al., 2016) which introduced Reward-
augmented Maximum Likelihood (RML), where samples
to imitate are produced from a Boltzmann distribution
q(x) ∝ exp(f(x)/τ), where f(x) is an effectiveness met-
ric of a sample x (e.g. the BLEU metric). Adapting this
framework with more flexible and learned quality metrics,
like in GANs, approaches such as (Scialom et al., 2021b)
employ, at each step t of the optimization process, a metric
f mainly depending on the current discriminator Dt(x) for
any sample x. In this paper, we propose to rather consider
f(x) = log(pt−1(x)Dt(x)) with pt−1 the previous genera-
tor distribution and Dt the discriminator at step t (trained
on samples from pt−1), which allows us to avoid instability
issues (notably due to possible catastrophic forgetting) and
to present convergence guarantees under similar assump-
tions as those considered in (Goodfellow et al., 2014) for
the continuous case. Then, we consider various efficient co-
operative decoding approaches, which enable the practical
optimization of such training processes, mainly based on
Monte-Carlo techniques and importance sampling.

Our contribution is threefold:

• We propose a novel formulation of GANs for the dis-
crete setting, which exhibits unpublished theoretical
convergence guarantees;

• We propose practical efficient NLG training algorithms
relying on these theoretical results, based on various
sampling schemes and corresponding re-weightings;

• We present state-of-the-art results for two important
NLG tasks: Abstractive Summarization and Question
Generation.

2. Generative Cooperative Networks
Let pd : Y → [0 ; 1] be a target generative distribution,
and assume we have access to training samples y ∼ pd(y).
The goal is to propose a training algorithm that computes a
sequence of distributions pt(y) converging towards pd(y).
In the following, we note pt : Y → [0; 1] a generator
distribution obtained at iteration t of the algorithm, and
Dt : Y → [0 ; 1] a discriminator that outputs the likelihood
for an outcome y ∈ Y of having been generated from pd
rather than from pt−1.

Based on those definitions, a generic training process is
given in Algorithm 1, where KL stands for the Kullback-
Leibler divergence and h is a composition function that
outputs a sampling distribution qt depending on distribu-
tions given as its arguments. This training process unifies
many different discrete GANs (e.g., MaliGAN, SelfGAN,
ColdGAN), as well as our present work, through the choice
of function h applied to the current discriminator Dt and
the previous generator pt−1. Line 3 aims at finding the
best possible discriminator Dt given distributions pd and
pt−1, according to the classical objective to be maximized
in GANs. Following the RML paradigm introduced by
(Norouzi et al., 2016), line 4 seeks to optimize the genera-
tor distribution pt by considering the minimization of the
KL divergence KL(qt||pt), according to a fixed behavior
distribution qt including feedback scores to be optimized
(in our case, discriminator outputs). For cases where it is
possible to efficiently sample from qt, this is more efficient
than considering a more classical reinforcement learning
objective implying the reversed KL(pt||qt), usually subject
to high variance (e.g., via score function estimators).

Algorithm 1 RML-GAN
1: Input: a generator p0 ∈ G, a discriminator family D.
2: for iteration t from 1 to T do

3: Dt ← argmax
D∈D

 E
y∼pd(y)

[logD(y)] +

E
y∼pt−1(y)

[log(1−D(y))]


4: pt ← argmin

p∈G
KL(qt = h(pt−1, Dt)||p)

5: end for

Let us first consider a setting where qt ≜ h(pt−1, Dt) ∝
exp(Dt), i.e. the sampling distribution only considers out-
puts from the discriminator. This corresponds to a direct
application of the work from (Norouzi et al., 2016) for the
GAN setting. For the sake of analysis, we consider the
case where, at a given step t, the generator distribution is
optimal, i.e. pt = pd over the whole support Y . In the
next step t + 1, the optimal Dt+1 is equal to 0.5 for any
sample from Y . In this case, optimizing KL(qt+1||pt+1)
with qt+1 ∝ exp(Dt+1) makes the generator diverge from
the optimum pd, forgetting all information gathered until
that point. This shows that the direct adaptation of GAN
to discrete outputs is fundamentally unstable. While this
is not exactly what is performed in approaches such as
SelfGAN (Scialom et al., 2021b),1 this extreme setting illus-
trates instabilities that can occur with this family of recent
state-of-the-art approaches. Discrimination cannot be all
you need.

1Since SelfGAN employs a pre-filter based on its generator to
avoid complexity issues.
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Therefore, we rather propose to consider a slightly differ-
ent and yet much smoother optimization scheme, where
both the generator and the discriminator cooperate to form
the target distribution: qt ∝ pt−1Dt. Such a choice for qt
allows us to prove the following theorem, which gives theo-
retical convergence guarantees for our collaborative training
process (proof given in Appendix A.1).

Theorem 2.1. With qt ∝ pt−1Dt, if the generator and
discriminator architectures have enough capacity, and if at
each iteration of Algorithm 1 both optimization problems
reach their respective optimum (i.e., Dt(y) =

pd(y)
pd(y)+pt−1(y)

for any y ∈ Y (line 3) and KL(qt ∝ pt−1Dt||pt) = 0 (line
4)), then, starting from p0 such that p0(y) > 0 whenever
pd(y) > 0, pt converges in distribution to pd when t →
+∞.

As for classic continuous GANs, the neural architectures
used to define generator and discriminator function sets G
and D in practice represent a limited family of distribu-
tions, depending of their depth and width. However, the
given theorem allows us to expect reasonable behavior for
sufficiently powerful architectures. The following theorem
relaxes the constraint on optimal discriminator (proof in
Appendix A.2).

Theorem 2.2. With pt ∝ pt−1Dt, and if the discrim-
inator is sufficiently trained, i.e. we have log η =

min

(
E

y∼pd(y)
[log(Dt(y)], E

y∼pt−1(y)
[log(1−Dt(y))]

)
,

with η ∈] 12 ; 1[, then we have at each iteration of Algorithm
1: ∆t ≜ KL(pd||pt)−KL(pd||pt−1) ≤ log( 1η − 1) < 0.

In other words, it suffices that both parts of the discrimi-
nator objective exceed the random accuracy (i.e., 1/2) in
expectation to make qt ∝ pt−1Dt a useful target to be ap-
proximated at each step. Even with only a few gradient
steps at each iteration, we can reasonably assume that the
parameters space is smooth enough to guarantee the con-
vergence of the algorithm, with almost only useful gradient
steps. We also note that the better discriminator (i.e., higher
η), the more useful is a move from pt−1 to pt (in terms of
KL).

Getting back to Algorithm 1, at line 4, optimization can be
performed via gradient descent steps∇ptKL(qt||pt), which
can be rewritten via Importance Sampling as:

∇ptKL(qt||pt) = − E
y∼qt(y)∝pt−1(y)Dt(y)

[∇pt
log pt(y)] (1)

= − E
y∼pt−1(y)

[
qt(y)

pt−1(y)
∇pt

log pt(y)
]

= − 1
Zt

E
y∼pt−1(y)

[Dt(y)∇pt
log pt(y)] (2)

with Zt =
∑

y∈Y pt−1(y)Dt(y) the partition function of qt.
Note that, to the exception of the partition score Zt that acts

as a scale at each step, the considered gradient is closely
similar to what is optimized in classic discrete GANs via
reinforcement learning (i.e., policy gradient optimization of
pt and the discriminator score as reward, as described for
instance in (Scialom et al., 2020a)), when only one gradient
update is performed at each iteration.

The effect of this scaling factor can be seen when written as
an expectation, i.e. Zt = Ey∼pt−1(y)[Dt(y)]. From this, it
is clear that Zt is maximized when the generator distribution
coincides with Dt, i.e. when pt−1 allocates best probability
mass for samples judged as the most realistic by the current
discriminator. In the absence of such a normalization term,
classic GAN approaches need to set an arbitrary learning
rate scheduling to avoid the explosion of gradient magnitude
as pt gets closer to pd. Our approach, naturally stabilized
by Zt, does not require such a difficult tuning to ensure
convergence – as verified empirically in Section 4.

3. Cooperating for NLG
Many NLG tasks (e.g., translation, summarization, question
generation, etc.) imply a context as input. This section first
presents the extension of Algorithm 1 to this setting, and
then discusses its practical implementation and the sampling
strategies that enable its efficient use in real-world settings.

3.1. Learning algorithm

Let Γ be a training set of N samples (xi, yi) where each
xi ∈ X is a (possibly empty) context (assumed to be sam-
pled from a hidden condition distribution px) and yi ∼
pd(y

i|xi) is the corresponding observation. Algorithm 2
gives the practical implementation of Algorithm 1 for large
scale NLG tasks. It considers parametric distributions pθ
and Dϕ, implemented as deep neural networks,2 with re-
spective parameters θ and ϕ. Thus, pθ : X × Y → [0 ; 1]
is the generative conditional distribution, where pθ(y|x) =∏|y|

j=1 pθ(yj |x, y0:j−1) with pθ(yj |x, y0:j−1) the categori-
cal distribution for token j of sequence y over the vocab-
ulary, given the context x and the sequence history y0:j−1.
Also, Dϕ : X × Y → [0 ; 1] is the conditional discrimina-
tive distribution, where Dϕ(x, y) returns the probability for
sequence y of having been generated from pd rather than pθ
given the context x.

The discriminator is trained at line 5 of Algorithm 2, on
a batch of m samples of contexts, associated with corre-
sponding sequences y from the training set and generated
sequences ŷ from the current generator. Consistently with
(Scialom et al., 2020b), to effectively drive the coopera-
tive decoding process in guided sampling strategies q̂ (see
below), the discriminator is trained, using a classical left-

2Transformer T5 (Raffel et al., 2019) in our experiments
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to-right mask, on every possible starting sub-sequence y1:j
in each sample y (i.e., taken from its start token to its j-th
token), with j ≤ l and l standing for the max length for
any decoded sequence. This enables discriminator predic-
tions for unfinished sequences (allowing to avoid complex
rollouts in MCTS, see below).

Figure 1. Training GANs vs GCNs. Solid arrows stand for sam-
pling, dashed arrows depict dependence between distributions and
dotted ones denote training. (a) Classical discrete GAN where:
1) the generator p samples sequences; 2) the discriminator D is
updated according to these generated sequences and those from
the training set Γ; 3) the scores given by the discriminator D are
used as reward in a policy gradient update of p. (b) Our GCN
approach where q̂ and q respectively stand as the behavior and
target distributions, which are defined by a cooperative scheme
between D and p. After sampling from q̂ in 3), q is used in an
importance sampling weight for the update of p in 4), which cor-
responds to the minimization of KL(q||p). The distribution q is
set as q(x) ∝ p(x)D(x) to ensure convergence, and q̂ can take
various forms, the closer to q the lower the variance.

Line 7 of Algorithm 2 performs a gradient descent step for
the generator, according to samples provided by a sampling
strategy q̂. Ideally, consistently with Eq.(1), training sam-
ples should be provided by qθ,ϕ(y|x) ∝ pθ(y|x)Dϕ(y|x).
However, directly sampling from this distribution is in-
tractable. Various sampling strategies can be considered,
using a weighted importance sampling scheme to unbias gra-
dient estimators in line 7. For the task of unconditional gen-
eration (i.e., empty contexts x) and the case where q̂ = pθ,
we can show that this is equivalent, up to a constant factor, to
the gradient estimator given in Eq. (2), with expectations es-
timated on the current batch, since in that case wi reduces to
Dϕ(x

i, ŷi). However, more efficient sampling strategies q̂
can be employed, as discussed in the following. The process
is illustrated by Figure 1, which compares the architectures
of classical GANs with our GCN approach.

3.2. Efficient Sampling

To minimize the variance of gradient estimators, we need
to sample sequences following a distribution as close as

Algorithm 2 Generative Cooperative Networks
1: Input: generator pθ with parameters θ, discriminator

Dϕ with parameters ϕ, training set Γ, sampling strategy
q̂, batch size m, max sequence length l.

2: for t = 1, . . . , T do
3: Sample {(xi, yi)}mi=1 from Γ

4: ∀i ∈ [[1 ;m]]: Sample ŷi ∼ pθ(ŷ
i|xi);

5: ϕ← ϕ+ ϵϕ
m∑
i=1

l∑
j=1

[
∇ϕ logDϕ(x

i, yi0:j−1)] +
∇ϕ log(1−Dϕ(x

i, ŷi0:j−1))

]
6: ∀i ∈ [[1 ;m]]: Sample ŷi ∼ q̂(ŷi|xi);
7: θ ← θ + ϵθ

[
1∑m

i=1 wi

∑m
i=1 w

i∇θ log pθ(ŷ
i|xi)

]
with wi =

pθ(ŷ
i|xi)Dϕ(x

i,ŷi)
q̂(ŷi|xi)

8: end for

possible to qθ,ϕ(y|x) ∝ pθ(y|x)Dϕ(x, y). While directly
sampling from such a non-parametric distribution is diffi-
cult, and given that rejection-sampling or MCMC methods
are very likely to be particularly inefficient in the huge
associated support domain, it is possible to build on re-
cent advances in guided decoding for providing methods
for sampling informative sequences (Scialom et al., 2020b;
2021b), that are both likely for the generator pθ, and re-
alistic for the discriminator Dϕ. Note that an alternative
would have been to exploit the maximum entropy princi-
ple (Ziebart, 2010) to learn a neural sampling distribution
q̂γ as argmaxq̂γ Ey∼q̂γ(y|x)[log pθ(y|x) + logDϕ(x, y)] +
Hq̂γ(.|x), withHq the entropy of distribution q. This would
however imply a difficult learning problem at each iteration
of Algorithm 2, and a sampling distribution q̂γ that lags far
behind qθ,ϕ if only few optimization steps are performed.

3.2.1. SAMPLING MIXTURES

Before presenting our cooperative decoding strategy, we
consider the use of variance reduction techniques when
sampling from the generator distribution, which can be
long-tailed, thus leading to unreliable sequence samples.
In particular, Nucleus Sampling (Holtzman et al., 2019)
has been shown to produce higher quality texts than more
classic sampling strategies, including beam search and low
temperature-based sampling (Scialom et al., 2020a). Its prin-
ciple is to sample tokens at each decoding step only from
the nucleus V (σ)

p of the considered generative distribution
p, containing a specified amount σ of the probability mass.
More precisely, let V (σ)

p be the minimal set of tokens from
the vocabulary V whose total probability mass is greater than
or equal to σ (i.e., V (σ)

p = argminV⊆V,
∑

w∈V p(w)≥σ |V |).
We denote in the following pnucleus=σ the truncation of
distribution p on the set of tokens V (σ)

p .

Using this technique for defining q̂ in our Algorithm 2 could
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allow to avoid usual text degeneration issues (Holtzman
et al., 2019), which would benefit to our generative learning
process by providing better formed sequences to the dis-
criminator. However, Importance Sampling (IS) demands
that q̂(y) > 0 for any y ∈ Y such that q(y) > 0. A di-
rect use of nucleus sampling as q̂ = pnucleus=σ, or even
more a classic beam search, cannot guarantee this property,
which might involve ignoring many useful parts of Y in the
gradient estimation, hence implying biases.

To cope with this, we propose to follow (Scialom et al.,
2020a), which considers sampling distributions q̂ as mix-
tures, ensuring that both properties, i.e. IS consistency and
high quality samples, are verified. Formally, we use

q̂θ(y|x) = ϵpθ(y|x) + (1− ϵ)pnucleus=σ
θ (y|x) (3)

where ϵ stands for a small probability for sampling from
the true generator distribution rather than using a nucleus
decoding (ϵ = 0.1 and σ = 0.1 in our experiments), thus en-
suring the validity of our IS estimator. Please also note that,
using such mixture trick, each IS weight is upper-bounded
by Dϕ(y|x)/ϵ, which greatly limits gradient explosion is-
sues usually associated with the use of IS in RL (or over-
weighting of unlikely sequences in weighted IS).

3.2.2. GUIDED SAMPLING

Next, we propose to consider cooperative decoding strate-
gies to get a sampling distribution closer to qθ,ϕ. More
specifically, we propose to employ a Monte Carlo Tree
Search strategy (MCTS), as recently considered for NLG in
(Scialom et al., 2021b; Leblond et al., 2021; Chaffin et al.,
2021). Using left-to-right decoding strategies, it can happen
that all sequence candidates are judged as unrealistic by the
discriminator, avoiding any useful learning signal for the
generator. MCTS allows to deal with this strong limitation
of myopic decoding, by anticipating the final utility of the
successive decisions. In MCTS, a tree is built throughout
decoding by repeating the four following steps: selection,
expansion, evaluation, and back-propagation.

Step 1: Selection corresponds to following a path in a
tree of already explored decisions for future tokens, from
its root located at the current state of the sequence to be
decoded, to a leaf s of the tree, for which a value V (s) has
not been set yet. At each node s of the tree, the child node
s′ is selected following the PUCT algorithm (Rosin, 2011;
Silver et al., 2017):

s′ = argmax
ŝ∈child(s)

(
V (ŝ) + cpuctpθ(ŝ | s)

√
N(s)

1 +N(ŝ)

)
where pθ(ŝ | s) corresponds to the conditional probability
of sampling the next token to form sequence of ŝ from the
sequence corresponding to node s, according to the current

generator probability. For children nodes ŝ that have never
been selected yet, their value V (ŝ) equals 0. cpuct is an
hyper-parameter that controls the exploitation/exploration
trade-off of the selection process, with N(s) standing for
the number of times node s has been selected in simulations.

Step 2: Expansion corresponds to the creation of child
nodes for the identified leaf s, if s is not terminal (end-of-
sentence token). This is done in our case by restricting to
tokens from the nucleus V

(σ)
pθ of pθ, as presented above.

This allows to restrict the width of the tree to the most likely
tokens, hence improving efficiency.

Step 3: Evaluation of the selected leaf s is usually done
in MCTS via a direct sampling (rollout) from s to a terminal
node. In our case, this is likely to imply a high variance. We
thus replace rollouts by the evaluation of the corresponding
unfinished sequence (i.e., V (s)← Dϕ(s)).

Step 4: Back-propagation consists in updating values
of parent nodes of s, to favor most promising nodes in the
following selection steps of the process. Consistently with
(Scialom et al., 2021b), the value of each parent node s̃ of
s is updated as the maximal score back-propagated to s̃:
V (s̃)← max(V (s̃), Dϕ(s)). This led to better results than
using the more classic average score from children.

At the end of the N rounds of these four steps (N = 50
in our experiments) from a given root r, the next token
n is selected as the root’s child that was the most visited
(i.e., argmaxs∈child(r) N(s)). Note that, for unconditional
text generation, where no context x is given to the decoder,
we rather sample a child proportionally to its number of
visits to maintain enough diversity during learning. This
process is repeated using n as the new root until reaching a
terminal token or the maximum sequence length (512 in our
experiments).

Cooperative Learning with MCTS To use this MTCS
process to guide the generator decoding toward sequences
of high discriminator scores, in our learning Algorithm 2,
we re-use the same mixture trick as for Nucleus Sampling
discussed above:

q̂θ(y|x) = ϵpθ(y|x) + (1− ϵ)pmcts
θ (y|x) (4)

where pmcts
θ (y|x) is a Dirac centered on the decoded se-

quence from the MCTS process in the conditional case
(when contexts x are available), and the MCTS sampling dis-
tribution (according to number of visits, as described in the
MCTS decoding process) in the unconditional case. Again,
q̂θ(y|x) > 0 whenever y ∈ Y such that qθ,ϕ(y|x) > 0, and
the IS weights are upper-bounded by Dϕ(y|x)/ϵ.
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4. Experiments
4.1. Experimental Setting

To evaluate the framework, we experiment on standard com-
plementary unconditional and conditional NLG tasks, with
the following datasets:

Unconditional NLG – Following the same setup as in many
related studies (e.g. (Scialom et al., 2020a; Caccia et al.,
2020)), we first compare our approaches with NLG base-
lines on the task of unconditional text generation, where the
aim is to reproduce a given unknown generative distribution
of texts from samples, on the EMNLP2017 News dataset.

Question Generation – The task consists in generating the
question corresponding to a given text and answer. For this
task, we use the SQuAD dataset (Rajpurkar et al., 2016),
composed of 100K triplets of Wikipedia paragraphs, factual
questions, and their answers.

Abstractive Summarization – The aim of this standard
sequence-to-sequence task is to produce an abstract given
an input text. We use the CNN/Daily Mail dataset (CN-
NDM) (Nallapati et al., 2016), composed of 300K news
article/summaries pairs. Target summaries consist of of mul-
tiple sentences, allowing us to evaluate models on longer
texts than for the Question Generation task.

To compare the models, we consider the standard BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004) metrics.
They both are defined as an overlap ratio between n-grams
from the generated text and the ground truth. BLEU is
precision oriented, while ROUGE is recall oriented.

For the task of unconditional NLG, where diversity is of
crucial importance, we follow (Caccia et al., 2020), who pro-
posed to plot results as curves of BLEU (i.e., with samples
classically compared to ground truth references, measuring
accuracy) vs. self-BLEU (i.e., with generated samples com-
pared to themselves, measuring diversity). This is done by
sampling texts for various temperature settings (i.e. temper-
ature of the softmax on top of the generator).

We compare our models with the following baselines:

MLE – We naturally consider as an important baseline the
T5 model trained via Teacher Forcing. It is furthermore
used as a starting point for all models (unless specified).

ColdGAN – This model was one of the first GANs to out-
perform MLE for NLG tasks (Scialom et al., 2020a). Its
main contribution was to introduce the use of a sampling
strategy with lowered softmax temperature during training,
with the objective of stabilizing the training process. We use
its best reported version, which considers a mixture with
Nucleus Sampling.

SelfGAN – The work presented in (Scialom et al., 2021b)

uses an expert-iteration algorithm in combination with var-
ious different cooperative decoding strategies. In the fol-
lowing, we report results from its version using a MCTS
process, which recently obtained state-of-the-art results on
the three considered NLG tasks.

GCN – Our Generative Cooperative Networks which we
introduce in this paper. Three versions of Algorithm 2
are considered in the experiments: GCNq̂=p, which corre-
sponds to a classic GAN with implicit dynamic scheduler
induced by partition zt =

∑
i w

i, GCNq̂=Nucleus, which
considers a mixture with Nucleus Sampling as defined in
Eq. (3), and GCNq̂=MCTS , which considers a mixture with
a discriminator-guided MCTS, as defined by Eq. (4).

GAN – For ablation study purposes, we also consider sim-
ilar versions of our implementation of Algorithm 2 but
without the use of a normalization, respectively called
GANq̂=p, GANq̂=Nucleus and GANq̂=MCTS . The normal-
ization is replaced by a linear learning rate scheduler tuned
on a validation set for GANq̂=p

+scheduler, GANq̂=Nucleus
+scheduler and

GANq̂=MCTS
+scheduler.

For each model, any decoding method could be applied at
inference time, independently of the training scheme. In
the following, unless specified otherwise, we report results
obtained with a classic Beam Search decoding (with a beam
size of 3) for all the experiments.

In all our experiments, our models are initialized with the
seq2seq T5 model (Raffel et al., 2019), trained via Teacher
Forcing. Unless specified otherwise, we use the T5-small
architecture (60M parameters), as implemented in the Hug-
gingFace library (Wolf et al., 2019). For our best setup,
we also report the results using T5-large (3 billion parame-
ters), denoted as T5-3B. Using 4 Nvidia V100 SXM2 GPUs,
GCN q̂=MCTS training took 32 hours for summarization,
and 8 hours for QG. This is comparable to the state-of-the-
art SelfGAN model. GCN q̂=Nucleus only required 8 hours
for training on summarization, and 2 hours for QG.

4.2. Results and Discussion

Unconditional Text Generation Figure 2 reports results
for the unconditional NLG task. First, we observe the cru-
cial importance of the scheduler for the GAN baselines:
all of its versions without scheduler (and any normaliza-
tion as in vanilla discrete GANs) strongly diverge since the
first training epoch, obtaining significantly weaker results
than MLE (which is the starting point of all curves from
the left graph). However, we see that our GCNs are natu-
rally implicitly scheduled, with results comparable to the
scheduled version of GANs, thanks to its self-normalized
IS. This is an important result, since tuning the rate sched-
uler from a validation set is tricky and resource consuming.
We also note the significantly better and comparable be-
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havior of GCNq̂=Nucleus and GCNq̂=MCTS compared to
GCNq̂=p. This validates that the use of smarter sampling
helps training, although the space of correct sequences is too
large to fully benefit from the MCTS guided sampling. The
right graph from Figure 2 plots accuracy vs diversity curves.
Here again, we observe the significant impact of scheduling,
which is naturally implied in our GCN approach, not only
for the sample quality, but also on the coverage of the in-
duced distribution. For completeness, the graph also reports
curves for previous GAN approaches, including (Che et al.,
2017; Yu et al., 2017), as given by (de Masson d’Autume
et al., 2019) for the same setting. While they are not directly
comparable since they do not use the same generative ar-
chitecture, they all have been shown to fall short compared
to their respective MLE counter-part (refer for instance to
(Caccia et al., 2020), Figures 3 and 4), which is clearly not
the case with our cooperative approach. Note also that Seq-
GAN with T5 is very similar to GANq̂=p, using the same
kind of incremental discriminator.

Conditional Text Generation More important are the re-
sults for conditional text generation, for which applications
are numerous. On both considered tasks, we observe from
Figure 3 the same trends as for unconditional NLG, with a
dramatic divergence of classic GAN approaches. We note a
significant improvement of our GCN approaches compared
to their GAN scheduled counterparts on both tasks, with a
clear advantage for GCNq̂=MCTS on summarization, where
the discriminator guided sampling process obtains very sta-
ble results, significantly greater than those of other consid-
ered approaches. This result confirms that using MCTS to
sample during the learning process is key to produce long
texts of better quality.

These trends on the BLEU metrics are confirmed by nu-
merical results from Table 1, where GCNq̂=MCTS obtains
the best results on both tasks over three metrics, with more
than 2 ROUGE-L points gained over the very recent state-
of-the-art approach SelfGAN (which also uses MCTS sam-
pling) on QG3. Note that these results were obtained with-
out the complex variance reduction techniques that other
RL-based GAN approaches require for obtaining results
comparable to MLE, which underlines further the inter-
est of our approach. For completeness, we also report
results using MCTS for decoding at test time, denoted
as GCNq̂=MCTS

decod=MCTS , which shows some further improve-
ments, consistently with (Scialom et al., 2021b).

Finally, our experiment on scaling GCN q̂=MCTS to a

3Note that, while curves in Figures 2 and 3 use the MLE pre-
train from (Scialom et al., 2021a) as base model, we report here
results obtained starting from the best performing MLE model that
is used in (Scialom et al., 2021b), to obtain results comparable
with this paper (results from the former MLE pre-trained model
can be found in Appendix A.5).

QG Summarization

B R-1 R-L B R-1 R-L
MLE 19.7 45.2 41.1 15.9 42.3 40.4
ColdGAN 19.9 45.2 41.4 16.3 42.8 40.7
SelfGAN 20.5 46.6 42.6 17.0 42.8 41.5

GANq̂=p
+scheduler 19.3 45.3 41.2 15.5 40.0 38.8

GANq̂=p 11.2 26.3 23.9 9.8 23.3 22.5
GCNq̂=p 19.7 46.2 42.0 15.9 40.8 39.5

GANq̂=Nucleus
+scheduler 20.1 47.3 43.0 16.0 41.8 40.4

GANq̂=Nucleus 11.3 26.6 24.1 10.2 23.5 22.7
GCNq̂=Nucleus 20.9 47.7 44.5 16.6 43.2 41.8

GANq̂=MCTS
+scheduler 20.4 47.9 43.5 16.4 42.2 40.9

GANq̂=MCTS 11.7 27.5 25.0 11.7 24.3 23.4

GCNq̂=MCTS 21.5 48.3 44.7 17.1 43.4 42.0

GCNq̂=MCTS
decod=mcts 21.6 48.7 45.2 17.6 43.7 42.3

GCNq̂=MCTS
T5−3B 21.8 49.8 45.9 19.2 44.2 43.8

Table 1. Final results on QG and Summarization test sets, in
terms of BLEU-4 (B), ROUGE-1 (R-1) and ROUGE-L (R-L).
Scores in bold are significantly different from the best baseline
(GANq̂=MCTS

+scheduler) according to a 95%-Student-t-test.

larger model (i.e. T5 3B instead of T5 Small) allows us
to further improve the results, indicating the scaling poten-
tial for GCN, and establishing a new state-of-the-art for
QG and summarization. Please note that, consistently with
ColdGAN and SelfGAN, we used a beam-search of size
b = 3 and no length penalty α = 0 (which are set to b = 4
and α = 0.6 in the original paper T5 paper (Raffel et al.,
2019)). Despite these lighter decoding settings, we observe
that our GCN q̂=MCTS

T5−3B significantly outperforms T5 3B
and 11B from the original paper, without any specific tuning.

To summarize, we observe that GCN always obtains signifi-
cantly better results than its GAN counterparts, regardless
of the sampling distribution used, in both considered con-
ditional NLG tasks. Moreover, the required tuning of the
training scheduler for text GANs is a very difficult task,
that implies a very costly grid search process (more than 10
trials required for each setting of GANs in our experiments),
which is not needed in our approach. While the approach
requires however to re-sample sequences twice per iteration
(cf. line 4 and 6 of Algorithm 2), this additional cost is
clearly counterbalanced by the ease of deployment and the
important accuracy gains. At last, this additional cost can
be removed by re-using samples from line 4 at line 7, with
an appropriate IS term (no significant accuracy difference
in our experiments).

5. Related Work
Under the most popular paradigm, sequence generative
models (Sutskever et al., 2014) are usually trained with
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Figure 3. Evolution of performance on the test set w.r.t. training epochs (in term of BLEU, the higher the better), for conditioned NLG
tasks. Left: Question Generation, Right: Summarization.

Maximum Likelihood Estimation (MLE), via Teacher Forc-
ing (Williams & Zipser, 1989). Though MLE has lots of
attractive properties, it is however prone to overfitting for
auto-regressive generative models, due to a too strong ex-
position to the somehow limited ground-truth data. More
importantly, MLE suffers from the mismatch between learn-
ing and simulation conditions, i.e. the well known exposure
bias (Ranzato et al., 2015; Bengio et al., 2015). Namely, at
inference, the model is conditioned on sequences of previ-
ously generated tokens which may have never been observed
at training time. MLE also lacks a sequence-level loss to
accurately optimize sequence probabilities (Welleck et al.,
2019; Negrinho et al., 2018), resulting in often degenerated
texts (e.g., prone to repetition) (Holtzman et al., 2019) .

To overcome the above shortcomings of MLE, recently,
many sequential GANs for discrete outputs have been pro-
posed in the literature (Yu et al., 2017; Guo et al., 2018), in
which generators are typically trained to fool a learned dis-
criminator via reinforcement learning (e.g., Policy Gradient
such as the REINFORCE algorithm). While these methods
allow to fill the learning-simulation gap, they usually suffer
from high variance, partly due to the non-stationarity of
their reward distribution. Until recently with some advances
on smoother sampling techniques and the use of control
variates (Scialom et al., 2020a), GAN approaches usually

under-performed MLE training in most real-world tasks
(Caccia et al., 2020), with resulting sharp distributions that
often sacrifice diversity for quality. Recent works based on
cooperative decoding (Scialom et al., 2021b; 2020b) opened
the way for more efficient approaches, that rely on the dis-
criminator not only as reward, but also for sampling, as we
do in this work. However, these approaches exhibit insta-
bilities, as discussed in Section 2, which we dealt with in
this paper, leveraging a more theoretically sound framework.
Finally, approaches such as (Zhou et al., 2020) attempted
to cope with reward sparsity and mode collapse issues of
text-GANs, by employing specific discriminators (e.g., com-
parative classifiers in (Zhou et al., 2020)), but this usually
prevents the theoretic study of convergence behavior, conver-
gence of non-Bernoulli GANs remaining an open problem.

While not arising from the same perspective, our work on
GANs for discrete outputs is strongly related to the Mali-
GAN approach, proposed in (Che et al., 2017). Like ours,
this approach relies on the work of (Norouzi et al., 2016) that
unified reinforcement learning and maximum likelihood, by
considering a KL divergence loss between a reward-derived
distribution q and the learned distribution pt.

It extends this framework for the GAN setting by substitut-
ing to q a distribution based on a learned discriminator, to
gain in flexibility compared to hand-defined metrics con-
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sidered in (Norouzi et al., 2016). However, rather than
iteratively driving the learning process towards the data dis-
tribution pd as in this paper, (Che et al., 2017) attempts to
directly model it with the assumption that the discriminator
is close enough to the optimum. The approach consists
in defining a reward function derived from the usual prop-
erty of optimal discriminators in classic GANs, namely that
D∗(y) = pd(y)/(pd(y) + pgen(y)), to weight sequences
(with IS) according to the unknown target distribution pd.
Note that this can be seen as a specific instance of our Algo-
rithm 1, with h(pt−1, Dt) defined as pt−1Dt/(1−Dt).

However, the optimality of the discriminator is far from be-
ing guaranteed at each step: in (Scialom et al., 2020a), dis-
criminators are shown to be strongly specialized for the cur-
rent generator distribution, with possibly many sequences
out of that distribution being greatly over-estimated . We
argue that as (Che et al., 2017) intrinsically relies on this
optimality, it is exposed to a high variance of its IS estimator,
as acknowledged by the many variance reduction techniques
the authors employed. Note that even doing so, they obtain
comparable results to our simple GCNq̂=p (using a pure
sampling approach) for conditional NLG tasks.

In this paper, we only rely on the optimal discriminator
property in our proof of convergence, similarly to continu-
ous GANs (Goodfellow et al., 2014), and show that even a
decent discriminator drives the convergence process in the
right direction. As a further improvement over (Che et al.,
2017), we experimentally show, consistently with (Scialom
et al., 2021b; Deng et al., 2020; Scialom et al., 2020b), that
a more sophisticated discriminator-guided sampling pro-
cess is highly beneficial. At last, we note the interesting
Boundary Seeking GANs proposed in (Hjelm et al., 2017),
which stands as a generalization of MALIGAN for various
f-measures, but whose direct application for conditioned
sequential generation looks difficult.

Finally, we note that the sampling distribution qt we intro-
duce in this work (i.e., qt ∝ pt−1Dt) is quite similar to the
energy-based generative model considered in (Bakhtin et al.,
2021), which also deals with cooperative decoding for NLG
but aims to transform sequence distributions from a con-
stant generative language model pϕ, using an energy func-
tion learned by noise contrastive estimation (Ma & Collins,
2018). In theory, the resulting model should match the target
data distribution pd, but relies on the strong assumption that
the base language model is accurate enough in the domain
of pd, residual learning always carrying strong liability to
its base model. Moreover, the negative sampling considered
is performed independently from the learned distribution,
which might be particularly inefficient for long tailed distri-
butions, with a strong divergence from the target pd. Our
work suggests that using cooperative sampling could be
valuable in such a setting.

6. Discussion
The work presented in this paper sheds new light on dis-
crete GAN approaches, and in particular on theoretically-
sound approaches such as MaliGAN (Che et al., 2017). We
give a new perspective for this approach, and introduce a
slightly modified algorithm, with strong theoretical guar-
antees, which can be combined with cooperative sampling
strategies to obtain state-of-the-art results on various NLG
tasks, and focused on GAN-like approaches, based on a
learned discriminator to drive the generator.

This work can also be seen as an unification of SelfGAN
(Scialom et al., 2021b) and ColdGAN (Scialom et al., 2020a)
in a same theoretical framework. ColdGAN proposed to
consider mixtures of behavioral policies, allowing the use of
specific - e.g. deterministic - decoding strategies while en-
suring that importance sampling holds. SelfGAN proposed
to employ an expert-iteration learning scheme, that uses dis-
criminator scores to guide the expert decoding strategy (e.g.,
MCTS). We borrow both of these ideas that we combine
to leverage their benefits (in terms of sample efficiency),
while alleviating their drawbacks regarding instability is-
sues, in a theoretically well-sounded framework. The key
differences with these approaches are: 1) the use of Reward-
augmented MLE rather than Expert-Iteration, that allows
avoiding the biased gradient estimation of SelfGAN while
keeping its sample efficiency; 2) the introduction of a target
distribution, based on discriminator scores, which ensures
theoretical convergence guarantees, which were impossi-
ble to obtain for both previous approaches. Our approach
leverages MCTS to drive the sampling distribution with a
well-adapted normalization term. We claim that this is a
very important contribution with strong implications on the
stability of learning.

Now, it would be interesting to study how our cooperative
mechanisms could apply in the context of approaches based
on density ratio estimators, such as promising ones proposed
in (Lu et al., 2019; Song et al., 2020). Hybrid approaches,
based on ratio estimators between current densities and ex-
pected ones, that can be derived from our theoretical results
in optimal GAN conditions, also constitute a promising
research perspective, for measuring model drift and discov-
ering new regularization objectives. We believe our work
paves the way for new formulations of GANs for discrete
settings. Notably, our assumption in Theorem 2.2 suggests
possibly effective modifications for the discriminator loss,
to gain in learning stability.
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A. Appendix
A.1. Proof for Theorem 2.1

Let pd the data distribution that we seek at approximating, and p0 be the initial generator, of same support Y as pd and
which is not null everywhere pd is not null.

As considered in Algorithm 1, let consider each step t the learning the following discriminator optimization:

Dt ← argmax
D∈D

E
y∼pd(y)

[logD(y)] + E
y∼pt−1(y)

[log(1−D(y))]

Thus, following the proof in (Goodfellow et al., 2014), if D has enough capacity, Dt(y) =
pd(y)

pd(y) + pt−1(y)
for every

y ∈ Y .

Also, at each step t of Algorithm 1, we set:
pt ← argmin

p∈G
KL(qt||p)

With qt(y) ≜
Dt(y)pt−1(y)

zt
for each t > 0 and all y ∈ Y , where zt is the partition function of distribution qt.

Thus, if G has enough capacity and pt is sufficiently trained, we have for every y ∈ Y and every t ≥ 1:

pt(y) ∝ Dt(y)pt−1(y) =
pd(y)pt−1(y)

pd(y) + pt−1(y)
=

pd(y)

(pd(y)/pt−1(y)) + 1
≜ p̃t(y) (5)

With zt ≜
∑
y∈Y

p̃t(y), we have pt(y) =
p̃t(y)

zt
.

In the following, we consider, for all y ∈ Y , the sequence ẑt(y) defined as:

ẑt(y) =

{
pd(y)/p0(y), if t = 0;

zt(ẑt−1(y) + 1), ∀t ≥ 1.

Lemma A.1. At every step t of Algorithm 1, we have for all y ∈ Y:

p̃t+1(y) =
pd(y)

ẑt(y) + 1

Proof. Let consider a proof by induction.

First consider the base case where t = 0. From eq.(5), we have p̃1(y) =
pd(y)

(pd(y)/p0(y)) + 1
and thus, p̃1(y) =

pd(y)

ẑ0(y) + 1
.

Let now assume that p̃t(y) =
pd(y)

ẑt−1(y) + 1
is true at any step t > 0. We need to show that this relation still holds for t+ 1

to prove the lemma.

Under this assumption, starting from Eq.(5), we have:

p̃t+1 =
pd(y)pt(y)

pd(y) + pt(y)
=

pd(y)p̃t(y)

pd(y)zt + p̃t(y)
=

pd(y)p̃t(y)

pd(y)zt + pd(y)/(ẑt−1(y) + 1)

=
p̃t(y)(ẑt−1(y) + 1)

zt(ẑt−1(y) + 1) + 1
=

pd(y)

zt(ẑt−1(y) + 1) + 1
=

pd(y)

ẑt(y) + 1

Lemma A.2. For every step t > 1 of Algorithm 1, zt < 1.
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Proof. For every step t > 0, using lemma A.1 on the second and fourth equality (below), we have:

zt+1 =
∑
y∈Y

p̃t+1(y) =
∑
y∈Y

pd(y)

ẑt(y) + 1
=
∑
y∈Y

pd(y)

ẑt−1(y) + 1

ẑt−1(y) + 1

ẑt(y) + 1
=
∑
y∈Y

p̃t(y)
ẑt−1(y) + 1

ẑt(y) + 1

=
∑
y∈Y

pt(y)
zt(ẑt−1(y) + 1)

ẑt(y) + 1
=
∑
y∈Y

pt(y)
ẑt(y)

ẑt(y) + 1
= Ey∼pt(y)

[
ẑt(y)

ẑt(y) + 1

]
Thus, since ẑt(y) ≥ 0 for all y ∈ Y and all t ≥ 0, zt+1 < 1 for all t > 0.

Then, to prove theorem 1 (convergence of pt to pd in law), let us rewrite ẑt (using its definition for t > 0) as:

ẑt(y) = zt(ẑt−1(y) + 1) =

t∏
s=1

zs(
pd(y)

p0(y)
) +

t∑
s=1

t∏
s′=s

zs

For any pair (y, y′) ∈ Y2, we thus have:

ẑt(y)− ẑt(y
′) = (

pd(y)

p0(y)
− pd(y

′)

p0(y′)
)

t∏
s=1

zs

Since from Lemma A.2 we know that zt < 1 for any t > 1, we have: limt→+∞
∏t

s=1 zs = 0 and thus, ẑt(y) − ẑt(y
′)

converges to 0 for any pair (y, y′) ∈ Y2, ensuring that ẑt(y) converges to a constant K, which shows that

p̃t(y) →
+∞

pd(y)

1 +K

which in turn implies our final conclusion, i.e. that pt converges in distribution to pd.

A.2. Proof for Theorem 2.2

Let us consider the case of pt ∝ pt−1Dt, and a discriminator sufficiently trained such that, i.e. such that for

log η = min

(
E

y∼pd(y)
[log(Dt(y)], E

y∼pt−1(y)
[log(1−Dt(y))]

)
(6)

we have η ∈] 12 ; 1[

The difference of KL divergences of the target distribution pd from the generator distribution taken at two successive steps is
given as:

∆t ≜ KL(pd||pt)−KL(pd||pt−1)

= E
y∼pd(y)

[log(pt−1(y))− log(pt(y))]

= E
y∼pd(y)

[log(pt−1(y))− log(pt−1(y)Dt(y))] + log(
∑
y′∈Y

pt−1(y)Dt(y))

= E
y∼pd(y)

[− log(Dt(y))] + log(
∑
y∈Y

pt−1(y)Dt(y))

= log( E
y∼pt−1(y)

[Dt(y)])− E
y∼pd(y)

[log(Dt(y))]

From the assumption given in Eq.(6), we have:

log η ≤ E
y∼pt−1(y)

[log(1−Dt(y))]

≤ log( E
y∼pt−1(y)

[1−Dt(y)])
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where the second inequality is obtained with the Jensen inequality on expectations of concave functions.

This equivalent to:

log(1− E
y∼pt−1(y)

[1−Dt(y)]) ≤ log(1− η)

And thus:
log( E

y∼pt−1(y)
[Dt(y)]) ≤ log(1− η)

From assumption of Eq.6, we also know that E
y∼pd(y)

[log(Dt(y))] ≥ log(η).

Thus, we have:

∆t ≤ log(1− η)− log(η) = log(
1

η
− 1) < 0

which concludes the proof.

A.3. Implementation Details

Our experimental settings are similar to those used in the SelfGAN paper (Scialom et al., 2021b). In all our experiments, we
used the T5-small (Raffel et al., 2019) generator,4 in which the positional embedding is relative. For the discriminators,
we frame the classification task as a text2text task where the model has to generate either the token human or machine.
This allows to use again T5-small for all experiments, removing possible bias from architecture differences between the
generator and the discriminator. We start by training via Teacher Forcing a model corresponding to the MLE baseline. All
our GANs are initialized from this MLE model. During this pre-training, we used a learning rate fixed to 5e-6 for both the
discriminator and the generator, and a number of epochs set to 5.

In MCTS, sequence lengths are not aligned as in a standard left-to-right decoding algorithm. Therefore, we used a simple
trick to enable efficient batching of sequences, that can be applied to any Language Model benefiting from a relative
positional embedding (Shaw et al., 2018). We used a custom left padding that shifts the start of each sequences from a batch,
so that all of their last tokens are aligned.

We tested on a validation set different values for our hyper parameter Cpuct ∈ {1.0, 2.0, 3.0, 4.0} and found that 3.0 gives
the best results. We thus only report the results with Cpuct = 3.0. For the budget allocated to the MCTS we tested different
number of simulations per token for the MLE model with n ∈ {5, 10, 25, 50, 100} and observed no significant improvement
between 50 and 100. We hence used n = 50 for all our experiments.

A.4. Variance and Samples of our State-of-the-art Approach

QG Summarization

B R-1 R-L B R-1 R-L
GCNq̂=MCTS

T5−3B 21.8 (0.06) 49.7 (0.16) 45.1 (0.09) 19.2 (0.04) 44.1 (0.1) 43.8 (0.09)

Table 2. Results with standard-deviation (in brackets) for our state-of-the-art GCNq̂=MCTS
T5−3B approach.

Table 2 gives standard deviation of our state of the art approach over three seeds. This shows very stable results.

We report below some QG samples from this model for the following input text:

Input:
Super Bowl 50 was an American football game to determine the champion of the National

Football League (NFL) for the 2015 season. The American Football Conference (AFC)
champion Denver Broncos defeated the National Football Conference (NFC) champion
Carolina Panthers 24 euros 10 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa

4As implemented in HuggingFace transformers (Wolf et al., 2019).
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Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden
anniversary" with various gold-themed initiatives, as well as temporarily suspending
the tradition of naming each Super Bowl game with Roman numerals

Conditioned Answer: Super Bowl
MLE: What was the name of the game that would have been known as "Super Bowl
GCN: How is called the American football game which determines the NFL champion?

Conditioned Answer: golden anniversary
GCN: As this was the 50th Super Bowl, what was emphasized by the league?

Conditioned Answer: 50th Super Bowl
GCN: The league emphasized the "golden anniversary" during what Super Bowl?

A.5. Results with Former MLE baseline

As mentioned in section 4, results reported in table 1 are not using the same base model as for figures 2 and 3. For
completeness, we report here results obtained using this former model used for the figures, which has the same architecture
but uses a learning rate of 1e− 3 during 2 training epochs, while the new one used for table 1 uses a learning rate of 1e− 4
during 5 training epochs (which is slower but more accurate).

QG Summarization

B R-1 R-L B R-1 R-L
MLE 16.5 43.9 40 11.5 36.8 34.9
ColdGAN 16.9 44.2 40.3 11.6 37.8 36.4
SelfGAN 17.2 44.3 40.6 12.3 38.6 36.7

GANq̂=p
+scheduler 16.2 43.1 39.3 11.2 36.1 34.3

GANq̂=p 9.4 25.0 22.8 7.1 21.0 19.9
GCNq̂=p 16.5 43.9 40.0 11.5 36.8 34.9

GANq̂=Nucleus
+scheduler 16.9 45.0 41.0 11.6 37.7 35.7

GANq̂=Nucleus 9.5 25.3 23.0 7.4 21.2 20.1
GCNq̂=Nucleus 17.5 45.3 42.4 12 39.0 37.0

GANq̂=MCTS
+scheduler 17.1 45.5 41.5 11.9 38.1 36.2

GANq̂=MCTS 9.8 26.1 23.8 8.5 21.9 20.7

GCNq̂=MCTS 18 45.9 42.6 12.4 39.1 37.1

GCNq̂=MCTS
decod=mcts 18.4 46.3 43.1 12.7 39.4 37.4

GCNq̂=MCTS
T5−3B 21.8 49.8 45.9 19.2 44.2 43.8

Table 3. Final results on QG and Summarization test sets, in terms of BLEU-4 (B), ROUGE-1 (R-1) and ROUGE-L (R-L), using the
same base model as used in (Scialom et al., 2021a).


