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Considering an n-dimensional Riemannian manifold M whose sectional curvature is bounded above by κ ≤ 0 and the Ricci curvature is bounded below by (n -1)K, we obtain an upper bound for the harmonic mean of the first (n -1) non-zero Steklov eigenvalues for domains contained in M . This can be viewed as certain isoparametric inequality and generalizes the results on comparing the first non-zero Steklov eigenvalues for such domains ([Li-Wang-Wu 2020, 

Introduction

Let (M n , g) be an n(≥ 2)-dimensional complete Riemannian manifold. For a bounded domain Ω ⊂ M with smooth boundary ∂Ω, the Steklov problem is to find the real numbers σ such that there exists a non-zero function u on Ω satisfying (1.1) ∆u = 0, in Ω; ∂u ∂ν = σu, on ∂Ω, where ν is the outward normal on ∂Ω. We call such σ is a Steklov eigenvalue and u is the Steklov eigenfunction corresponding to σ. This problem can be traced back to the turn of the 20th century, when Steklov studied liquid sloshing [START_REF] Stekloff | Sur les problèmes fondamentaux de la physique mathématique[END_REF][START_REF]Sur les problèmes fondamentaux de la physique mathématique (suite et fin)[END_REF]. The Steklov spectrum plays a fundamental role in the mathematical analysis of photonic crystals, and it has been intensively studied. We refer the readers to [START_REF] Kuznetsov | The legacy of Vladimir Andreevich Steklov[END_REF] for the history and a recent survey [START_REF] Girouard | Spectral geometry of the Steklov problem (survey article)[END_REF] for researches in this area. For the very recent developments and various results, see [14-16, 35, 37-39].

The Steklov eigenvalues can be interpreted as the eigenvalues of the Dirichlet-to-Neumann operator, and they are discrete and satisfies (cf. [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF]Sect. 2])

0 = σ 0 < σ 1 ≤ σ 2 ≤ • • • → +∞. For a round ball B R with radius R in R n , σ 1 (B R ) = • • • = σ n (B R ) = 1 R .
Like Dirichlet and Neumann problems, there are isoperimetric inequalities for the first Steklov eigenvalue. For a simply connected domain Ω ⊂ R 2 , Weinstock [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF] in 1954 showed that (1.2)

σ 1 (Ω) ≤ 2π |∂Ω| = |∂B R | |∂Ω| σ 1 (B R )
which equality if and only if Ω is a round ball. Here B R is a ball of radius R. This implies

(1.3) σ 1 (Ω) ≤ π |Ω| 1/2 = σ 1 (Ω * )
with equality if and only if Ω = Ω * by using the classical isoperimetric inequality. Here where Ω * is a round disk of R 2 with the same volume of Ω.

Fraser and Schoen [START_REF] Fraser | The first Steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF] generalized (1.2) and proved σ 1 (Ω) ≤ 2π(γ+k)

|∂Ω|

for any compact Riemannian surfaces of genus γ with k boundary components. In higher dimensions, Bucur et al. [START_REF] Bucur | Weinstock inequality in higher dimensions[END_REF] proved a version of (1.2)

(1.4) σ 1 (Ω) ≤ |∂B R | |∂Ω| 1 n-1 σ 1 (B R ) for bounded open convex set Ω ⊂ R n . Note that (1.2) is not true in general when n ≥ 3.
Very recently, Fraser and Schoen [START_REF]Shape optimization for the Steklov problem in higher dimensions[END_REF] showed that have shown that there is a contractible domain For higher order eigenvalues, Hersch and Payne [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF] noticed that Weinstock's proof [START_REF] Hersch | Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff's type[END_REF] actually yields the sharper isoperimetric result

Ω with |∂Ω| = |∂B 1 | but σ 1 (Ω) > σ 1 (B
(1.5) 1 σ 1 (Ω) + 1 σ 2 (Ω) ≥ 2|∂Ω| |∂B R | σ 1 (B R ),
for the simply connected domain Ω in R 2 , which implies

(1.6) 1 σ 1 (Ω) + 1 σ 2 (Ω) ≥ 2 σ 1 (Ω * )
.

The inequality (1.3) and (1.6) can be generalized to the higher dimensions. In 2001, Brock [START_REF] Brock | An isoperimetric inequality for eigenvalues of the Stekloff problem[END_REF] proved

(1.7) 1 σ 1 (Ω) + • • • + 1 σ n (Ω) ≥ n σ 1 (Ω * )
for any bounded domain Ω in R n , from which one can easily obtain

(1.8) σ 1 (Ω) ≤ σ 1 (Ω * ).
Here Ω * is a ball in R n satisfying |Ω * | = |Ω|. Note that there are no restrictions on topology or dimension in Brock's results. Recently, Shi and Yu [START_REF] Shi | Trace and inverse trace of Steklov eigenvalues[END_REF][START_REF]Rigidity of a trace estimate for Steklov eigenvalues[END_REF] gave an upper bound of the sum of the first n non-zero Steklov eigenvalues of Ω in R n ([27, Corollary 1.1]):

(1.9)

σ 1 (Ω) + • • • + σ n (Ω) ≤ |∂Ω| |Ω|
with equality if and only if Ω is a round ball. This derives a weaker estimate than (1.7)

(1.10) 1 σ 1 (Ω) + • • • + 1 σ n (Ω) ≥ n 2 |Ω| |∂Ω| .
The Brock-Weinstock inequality (1.8) is analogous to the Faber-Krahn inequality for the 1st Dirichlet eigenvalue, and the Szegö-Weinberger inequality for the 1st nonzero Neumann eigenvalue. The Faber-Krahn inequality holds in any Riemannian manifold where the isoperimetric inequality holds (cf. [11, Chapter IV]), while the Szegö-Weinberger inequality holds for domains in the hemisphere and in the hyperbolic space (cf. [START_REF]Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature[END_REF]). A natural question is whether (1.8) holds when M is a space form or a general Riemannian manifold. There have been a few of results, for example, (1.8) holds when Quantitative versions of (1.8) were also obtained by Brasco-De Philippis-Ruffini [START_REF] Brasco | Spectral optimization for the Stekloff-Laplacian: the stability issue[END_REF] for the Euclidean space and by Castillon-Ruffini [START_REF] Castillon | A spectral characterization of geodesic balls in non-compact rank one symmetric spaces[END_REF] for the non-compact rank one symmetric spaces.

In Riemannian geometry, there are a mount of comparison theorems, including comparisons for the Dirichlet and Neumann eigenvalues. Similarly, One can consider the comparison for the 1st Steklov eigenvalues of two domains Ω ⊂ M and Ω * κ ⊂ M n κ , where Ω * κ is a geodesic ball in the space form M n κ with |Ω * κ | = |Ω|. Escobar [START_REF]A comparison theorem for the first non-zero Steklov eigenvalue[END_REF] showed that σ 1 (Ω) ≤ σ 1 (Ω * κ ) holds for Ω = B(p, r) being a geodesic ball in M when n = 2, 3 and the radius r is less than the injectivity radius at the center p under the assumption that the radial curvatures are bounded above by κ. Binoy-Santhanam [START_REF] Binoy | Sharp upperbound and a comparison theorem for the first nonzero Steklov eigenvalue[END_REF] proved

σ 1 (Ω) ≤ C 1 σ 1 (Ω * κ ) when Sect M ≤ κ ≤ 0, where C 1 ≥ 1 is
a constant which depends only on κ, the dimension n, and the volume of Ω.

Since the classical Bishop-Gromve volume comparison requires a lower bound of the Ricci curvature, we can consider a Riemannian manifold M satisfying the following settings.

Settings: Let M n be an n-dimensional, complete, simply connected Riemannian manifold, whose sectional curvature and Ricci curvature satisfy Sect M ≤ κ and Ric M ≥ (n -1)K, respectively. Let Ω be a bounded domain with smooth boundary in M . If κ ≤ 0, then Ω has a closed geodesic convex hull, written as hull(Ω), satisfying diam(Ω) = diam(hull Ω). If κ > 0, we assume additionally that Ω is contained in certain strongly convex closed set hull(Ω) satisfying the following two conditions:

(A) diam(Ω) = diam(hull(Ω)) < min{ π 2 √ κ , injectivity radius of M }; (B) | hull(Ω)| M ≤ |M n κ | M n κ 2
.

Edelen [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF] and Wang [START_REF] Wang | An upper bound for the second Neumann eigenvalue on Riemannian manifolds[END_REF] obtained the comparisons for the 1st Dirichlet eigenvalue and the 1st nonzero Neumann eigenvalue under the above settings, respectively. For the 1st Steklov nonzero eigenvalue, Li-Wang-Wu [START_REF] Li | An upper bound for the first nonzero steklov eigenvalue[END_REF] proved

Theorem 1.1 ([25, Theorem 1.1]). Let M and Ω satisfy the above settings with K ≤ κ ≤ 0. Then (1.11) σ 1 (Ω) ≤ C 2 σ 1 (Ω * κ ) with (1.12) C = sn K (diam(Ω)) sn κ (diam(Ω)) n-1 .
Here

Ω * κ is the geodesic ball in M n κ with |Ω * κ | = |Ω|.
In this paper, we consider the first (n -1) nonzero eigenvalues and prove the following theorem.

Theorem 1.2. Settings as in Theorem 1.1 (with K ≤ k < 0). Then we have

(1.13) 1 σ 1 (Ω) + • • • 1 σ n-1 (Ω) ≥ 1 C 2 n -1 σ 1 (Ω * κ )
, where C is given by (1.12), and

Ω * κ is the geodesic ball in M n κ with |Ω * κ | = |Ω|.
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For Cartan-Hadamard manifolds, we have a more explicit estimate.

Corollary 1.3. Suppose k = 0, and Ω is a bounded domain in M n so that Ric ≥ (n -1)K on hull(Ω) for some K < 0. Then

(1.14) 1 σ 1 (Ω) + • • • + 1 σ n-1 (Ω) ≥ √ -K × diam(Ω) sinh( √ -K diam(Ω)) 2n-2 n -1 σ 1 (Ω * ) ,
where

Ω * is a ball in R n such that |Ω * | = |Ω|.
Noting that C ≡ 1 for the space forms, we easily conclude

Corollary 1.4. Let M = R n or H n .
For a bounded domain Ω with smooth boundary in M , we have

(1.15) 1 σ 1 (Ω) + • • • + 1 σ n-1 (Ω) ≥ n -1 σ 1 (Ω * ) ,
where 

Ω
1 σ i ≥ 1 n 1≤i≤n 1 σ i .
For the Neumann eigenvalues, we know that there is an analogue of (1.6) (n = 2), which is usually called the Szegö-Weinberger inequality (cf. [START_REF] Szegö | Inequalities for certain eigenvalues of a membrane of given area[END_REF][START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF]) and the topological restriction was removed by Ashbaugh-Benguria [START_REF]Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF]. But in the higher dimension, an analogue of (1.7) is still unsolved in general, which is usually called the Ashbaugh-Benguria conjecture [START_REF]More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions[END_REF].

For the Dirichlet eigenvalues, Ashbaugh-Benguria [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF] settled the long-standing Payne-Pólya-Weinberger conjecture on the ratio of the first two eigenvalues. But an analogue of (1.7) involved the first (n + 1) Dirichlet eigenvalues is unsolved as well in general, which is also called the Ashbaugh-Benguria conjecture; it is closely related to a second conjecture of Payne-Pólya-Weinberger, see [START_REF]More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions[END_REF] for details.

Very recently, Wang-Xia [START_REF] Wang | On the Ashbaugh-Benguria conjecture about lower-order Dirichlet eigenvalues of the Laplacian[END_REF] showed an estimate on the first n Dirichlet eigenvalues for domains in the Euclidean space. Xia-Wang [START_REF] Xia | On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian[END_REF] obtained a lower bound of the harmonic means of the first (n -1) nonzero Neumann eigenvalues for domains in the Euclidean space and the hyperbolic space, and then Benguria-Brandolini-Chiacchio [START_REF] Benguria | A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere[END_REF] extended it to the hemisphere. The author [START_REF] Chen | An estimate of the Dirichlet eigenvalues in curved spaces[END_REF][START_REF]The upper bound of the harmonic mean of the Neumann eigenvalues in curved spaces[END_REF] generalized these results to the manifold satisfies the above settings. Theorem 1.2 and Corollary 1.4 can be viewed as analogues for the Steklov eigenvalues.

Preliminaries

In this section, we introduce some notations and recall some well-known facts. Although most of them can be found in previous literatures, we still list them (and give the sketch of the proofs if needed) for the convenience of the readers and the integrity of the article. 

ψ i (θ) = x i r under the normal coordinate (x 1 , • • • , x n ) at p.
For the space form M n K , the volume element d vol K is a radial function and does not depend on the choice of the point p. Precisely, and can be written as

d vol K = A K dt ∧ dθ (when K > 0, generally t < π/ √ K is required), where sn K (t) =      1 √ K sin( √ Kt), for K > 0; t, for K = 0; 1 √ -K sinh( √ -Kt), for K < 0.
We list the following notations used throughout the paper.

• B(p, r): the geodesic ball of radius r centered at p in M .

• |B(p, r)|

M : the n-dimensional volume in M . • B κ (q κ , r): the geodesic ball of radius r centered at q κ in M n κ . • m K (r) = |B κ (q κ , r)| M n κ : the volume of B κ (q κ , r) in M n κ ,
which is an increasing function of r and don't depend on the center q κ .

• Ω * κ = B κ (q κ , R κ ): the geodesic ball in M n κ with the same volume as Ω. Since we always calculate the volume of a domain by using the corresponding volume form of the manifold which contains the domain, we will omit the subscript of the volume functional | • | except that we want to emphasize it.

Eigenfunctions on space forms.

According to the Sect 2.1, q κ and R κ denote the center and the radius of Ω * κ = B κ (q κ , R κ ) in M n κ , respectively. For the Steklov eigenvalues, the multiplicity of σ 1 (Ω * κ ) is also n, and the eigenfunctions on Ω * κ corresponding to σ 1 (Ω * κ ) are given by (cf.

[25]) (2.2) v i (r, θ) = F (r)ψ i (θ), 1 ≤ i ≤ n,
where F (r) satisfies the following second order differential equation with the initial values

(2.3)    F ′′ (r) + (n -1) sn ′ κ (r) sn κ (r) F ′ (r) - n -1 sn 2 κ (r)
F (r) = 0, ∀r ∈ (0, +∞);

F (0) = 0, F ′ (0) = 1.
One can check that F > 0 on (0, +∞),

F ′ > 0 on (0, π √ κ ) (we treat π √ κ as +∞ when κ ≤ 0), and σ 1 (Ω * κ ) = F ′ (R κ )/F (R κ ). Moreover, [25, Proposition 4.4] tells us (2.4) σ 1 (Ω * κ ) = ´Ω * κ F ′2 (r) + (n-1)F 2 (r) sn 2 κ (r) ´Ω * κ (F 2 ) ′ (r) + (n-1) sn ′ κ (r) snκ(r) F 2 (r)
.

Lemma 2.1 ([25, Proposition 2.1]).

Let F be the solution to (2.3), then we have [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF] 

(F 2 (r)) ′ + (n-1) sn ′ κ (r) snκ(r)
F 2 (r) is non-negative and increasing on [0, +∞) for all κ ∈ R;

(2) F ′ (r) 2 + (n-1)F 2 (r) sn 2 κ (r)
are decreasing on [0, +∞) provided κ ≤ 0.

Lemma 2.2. When κ ≤ 0, we have

(2.5) F ′ (t) 2 - F 2 (t) sn 2 κ (t) ≤ 0, ∀t > 0.
Proof. When κ = 0, we know that F (r) = r is the solution to (2.3), so (2.5) holds.

When κ < 0, for simplicity, we write h(t) = sn κ (t). Since F , F ′ and h are positive on (0, +∞), it is sufficient to prove

(2.6) ϕ(t) = F (t) -F ′ (t)h(t) ≥ 0.
By taking the derivative of ϕ and using (2.3), we have

ϕ ′ = F ′ -F ′ h ′ -F ′′ h = F ′ -F ′ h ′ + (n -1)h ′ F ′ - n -1 h F = F ′ + (n -2)h ′ F ′ - n -1 h (F -F ′ h) -(n -1)F ′ = (n -2)(h ′ -1)F ′ - n -1 h ϕ.
This implies ϕ ′ (t) > 0 for any t > 0 such that ϕ(t) < 0 since h ′ (t) = cosh( √ -κt) > 1. Now we suppose ϕ(t 1 ) < 0 for some t 1 > 0. We will derive a contradiction.

We can find t 2 > t 1 such that ϕ(t 2 ) > ϕ(t 1 ) by ϕ(t 1 ) > 0. Since ϕ(0) = 0, there exists

t 0 ∈ (0, t 2 ) such that (2.7) ϕ(t 0 ) = min t∈[0,t 2 ]
ϕ(t) < 0.

Hence, we have ϕ ′ (t 0 ) = 0, which contradicts ϕ ′ (t 0 ) > 0.

□ 2.3. Spherical symmetrization. For any non-negative real function f (x) defined on Ω, denote

(2.8) m f (t) = |x ∈ Ω : f (x) ≥ t| M .
The spherical symmetrization of f are defined as follows.

Definition 2.3 (cf. [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF][START_REF] Wang | An upper bound for the second Neumann eigenvalue on Riemannian manifolds[END_REF]). Let |x| be the distance from

q κ to x ∈ Ω * κ . Define f * : Ω * κ → R, (2.9) f * (x) = m -1 f |B κ (q κ , |x|)| ; (2.10) f * : Ω * κ → R, (2.11) f * (x) = m -1 f |Ω * κ | -|B κ (q κ , |x|)| . (2.12)
We call f * and f * the spherical decreasing and increasing symmetrization of f , respectively. By using the Fubini's theorem, it is not hard to show that Proposition 2.4 (cf. [17, Proposition 2.2] and [31, Proposition 2.1]). For any s ≥ 1, we have

(2.13) ∥f ∥ L s (Ω) = ∥f * ∥ L s (Ω * κ ) = ∥f * ∥ L s (Ω * κ ) .
Now we define a function η p by (2.14) B(q κ , η p (r))

M n κ = B(p, r) M , that is, η p (r) = m -1 κ (|B(p, r)| M ).
We sometimes write η p as η for short.

Remark 2.5. The function η p is defined by B(q κ , η p (r))

M n κ = B(p, r) ∩ hull Ω M in [17]
(where it is denoted by σ p ). Here we modify it slightly in order to ensure

(2.15) η p (r) ≥ r
by the volume comparison theorem since Sect M ≤ κ. Almost all the properties for σ p in [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF] (e.g., Lemma 2.6, Lemma 3.1 and (3.2)) still hold for our η p via the same approaches of the proofs.

For spherical symmetrization of monotone radial functions, we have the following comparisons (cf. [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]Proposition 2.3] and [31, Lemma 3.1]).

Lemma 2.6. If g(t) : R → R + is decreasing in t, then (2.16) g • η p • r p * (x) ≤ g(r qκ (x)) for x ∈ Ω * κ = B(q κ , R κ ). If g(t) : R → R + is increasing in t, then (2.17) g • η p • r p * (x) ≥ g(r qκ (x)) for x ∈ Ω * κ = B(q κ , R κ ).
Proof. When g is decreasing, since η p is increasing, it follows from the definitions of η p and spherical symmetrization that

g • η p • r p * (x) = g(η p (r 1 )),
where r 1 satisfies B(q κ , r qκ (x))

M n κ = B(p, r 1 ) ∩ Ω M . Since B(p, r 1 ) ∩ Ω M ≤ B(p, r 1 ) M = B(q κ , η p (r 1 )) M n κ ,
we derive η p (r 1 ) ≥ r qκ (x), which implies

g • η p • r p * (x) = g(η p (r 1 )) ≤ g(r qκ (x)).
The inequality (2.17) is obtained from an analogous discussion, and we omit the details. □

Later, we will write r qκ (x) as r for short when there is no ambiguity. We will apply Lemma 2.6 to the functions in Lemma 2.1.

Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Test functions.

Recall that the variational characterization of σ i (Ω)(i ≥ 1) (cf. [START_REF]Optimal estimates for Steklov eigenvalue gaps and ratios on warped product manifolds[END_REF][START_REF]On the spectra of three Steklov eigenvalue problems on warped product manifolds[END_REF])

(3.1) σ i (Ω) = inf u∈H 1 (Ω)\{0} u| ∂Ω ̸ =0 ´Ω |∇u| 2 ´∂Ω u 2 ˆ∂Ω uv j = 0, j = 0, • • • , i -1 ,
where {v i } i≥0 is an orthonormal set of Steklov eigenfunctions. We will write σ i (Ω) as σ i for short without confusion.

For a given p ∈ hull Ω, define P p : hull Ω → T p M by

P p = exp -1 p (x) r p F (η p (r p (x))).
Here F is the solution to (2.3), and η p is given by (2.14).

Now by using a standard argument involved the Brouwer fixed point theorem (see [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]Lemma 4.1] and [START_REF] Li | An upper bound for the first nonzero steklov eigenvalue[END_REF]Lemma 3.1]), there exist a point p ∈ hull Ω such that (3.2)

ˆ∂Ω P p = 0.
For any orthonormal basis {e i } of T p M , we define P i = e i • P p (x). Eq. (3.2) means that P i is L 2 -orthogonal to the first eigenfunction v 0 (a constant) of Ω.

We claim that we can adjust the orthonormal basis {e i } such that (3.3)

ˆ∂Ω P i v j = 0, for 1 ≤ j < i ≤ n.
To see this, we just need to use the QR-decomposition of A = (a ij ) n×n via the Gram-Schmidt process, where (3.4)

a ij = ˆ∂Ω P i v j = 0, for 1 ≤ i, j ≤ n. Now we have A = QR, where Q = (q ij ) ∈ O(n) and R is an upper triangular matrix. This is equivalent to R = Q T A. Hence, if we take (e ′ 1 , • • • , e ′ n ) = (e 1 , • • • , e n )Q T , then (3.5) 
ˆ∂Ω (e ′ i • P p (x))v j = 0, for 1 ≤ j < i ≤ n.
3.2. Proof of Theorem 1.2. We take 

P i = F (η(r p ))ψ i (θ)(1 ≤ i ≤ n) in Sect. 3.
σ i ˆ∂Ω P 2 i ≤ ˆΩ |∇P i | 2 for 1 ≤ i ≤ n.
Notice that Sect M ≤ κ, by the comparison theorem for the Jacobi fields (see [17, pp. 860-861] for details), we have

ˆΩ |∇P i | 2 = ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + F 2 (η(r p ))|∇ Σr ψ i (θ)| 2 ≤ ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + F 2 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 . (3.7) Since n i=1 ψ 2 i (θ) = 1, from (3.6) and (3.7) we obtain ˆ∂Ω F (η(r p )) 2 = n i=1 ˆ∂Ω P 2 i ≤ n i=1 1 σ i ˆΩ |∇P i | 2 ≤ n i=1 1 σ i ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + n i=1 1 σ i ˆΩ F 2 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 . (3.8)
Next, we estimate the terms in the last inequalities. (3.9)

max η ′ p (r p ), sn κ (η p (r p )) sn κ (r p ) ≤ C,
where C is given by (1.12).

Recall 

ϕ i = x i r , one has (3.10) |∇ S n-1 ψ i (θ)| 2 = 1 -ψ 2 i . By denoting s = η(r p ), we obtain ˆ∂Ω F (s) 2 ≤ n i=1 1 σ i ˆΩ |∇P i | 2 ≤C 2 n i=1 1 σ i ˆΩ F ′ (s) 2 ψ 2 i (θ) + C 2 n i=1 1 σ i ˆΩ F 2 (s) sn 2 κ (s) (1 -ψ i (θ) 2 ) =C 2 n i=1 1 σ i ˆΩ F ′ (s) 2 - F 2 (s) sn 2 κ (s) ψ 2 i (θ) + C 2 n i=1
ψ 2 i = n-1 i=1 1 σ i F ′ (s) 2 - F 2 (s) sn 2 κ (s)
ψ 2 i + 1 σ n F ′ (s) 2 - F 2 (s) sn 2 κ (s) (1 - n-1 i=1 ψ 2 i ) = n-1 i=1 1 σ i - 1 σ n F ′ (s) 2 - F 2 (s) sn 2 κ (s)
ψ 2 i + 1 σ n F ′ (s) 2 - F 2 (s) sn 2 κ (s) ≤ 1 n -1 n-1 i=1 1 σ i F ′ (s) 2 - 1 σ n F 2 (
1 σ i (Ω) ≥ n -1 C 2 ´Ω * κ (F 2 ) ′ (r) + (n-1) sn ′ κ (r) snκ(r) F 2 (r) ´Ω * κ F ′ (r) 2 + (n-1)F 2 (r) sn 2 κ (r) = 1 C 2 n -1 σ 1 (Ω * κ )
, where we used (2.4) in the last equality.

Proof of Corollary 1.4. We only explain the equality case. Note that η p (r) = r from (2.14). If Ω is not a geodesic ball, then the inequality must be strict from the proof of Lemma 2.6. □

2. 1 .

 1 Notations. Let M be an n-dimensional Riemannian manifold. For a fixed point p ∈ M , let r(x) = d(p, x) be the distance function. Using exponential polar coordinate (t, θ) around p, we denote the volume element on M by d vol = A(t, θ)dt ∧ dθ. Let ψ i (θ) are the restrictions of the linear coordinate functions on S n-1 , precisely,(2.1) 

Lemma 3 . 1 (

 31 [START_REF] Li | An upper bound for the first nonzero steklov eigenvalue[END_REF] Lemma 3.4]).

  where we use Proposition 2.4 and Lemma 2.6 in the last inequality since the monotonicity of the function in item (2) of Lemma 2.1. Now by a direct computation (cf. (4.7) in [25]), we have ˆ∂Ω F (η(r p )) 2 ≥ where we use Proposition 2.4 and Lemma 2.6 in the last inequality since the monotonicity of the function in item (1) of Lemma 2.1.

				≥	ˆΩ ˆΩ * κ	(F 2 ) ′ + (F 2 ) ′ (r) + (n -1) sn ′ κ sn κ (n -1) sn ′ F 2 • η • r p κ (r) sn κ (r) F 2 (r) ,
	Hence, we obtain							
		n-1							
	(3.14)								
		i=1							
							s) κ (s) sn 2	.
	Putting this into (3.11), we obtain				
	(3.12)	ˆ∂Ω	F (s) 2 ≤	C 2 n -1	n-1 i=1	1 σ i	ˆΩ	F ′ (s) 2 + (n -1)	F 2 (s) sn 2 κ (s)
	(3.13)		≤	C 2 n -1	n-1 i=1	1 σ i ˆΩ *	F 2 (r) sn 2 κ (r)	,

κ F ′ (r) 2 + (n -1)