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Considering an n-dimensional Riemannian manifold M whose sectional curvature is bounded above by κ and the Ricci curvature is bounded below by (n -1)K, we obtain an upper bound for the harmonic mean of the first (n -1) non-zero Neumann eigenvalues of the Laplace operator for domains contained in M . This can be viewed as certain isoparametric inequality and generalizes the results for domains in the space forms ([Xia-Wang 2022; Benguria-Brandolini-Chiacchio 2020]).

The comparisons of the eigenvalues have been widely studied. When M n is the Euclidean space R n , the famous Szegö-Weinberger inequality says that (1.2)

µ 1 (Ω) ≤ µ 1 (Ω * ),
where Ω * κ is a geodesic ball of R n with the same volume of Ω. This result was proved by Szegö [START_REF] Szegö | Inequalities for certain eigenvalues of a membrane of given area[END_REF] for n = 2 (requiring that Ω is simply connected as well)and Weinberger [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF] for general n without the assumption of simply connectedness. Later, Ashbaugh and Benguria [START_REF]Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature[END_REF] showed that (1.2) holds for a domain in the hyperbolic space H n or a hemisphere S n + . Some analogous comparisons were obtained by Aithal-Santhanam [START_REF] Aithal | Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-1 symmetric spaces[END_REF] for the rank-1 symmetric spaces.

In fact, it had been noticed by Szegö and Weinberger that Szegö's approach can gave a stronger estimate

(1.3) 1 µ 1 (Ω) + 1 µ 2 (Ω) ≥ 2 µ 1 (Ω * )
for simply connected domains in R 2 , and Ashbaugh and Benguria [START_REF] Ashbaugh | Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF] removed the assumption of simply connectedness. In the same paper [START_REF] Ashbaugh | Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF], the authors naturally proposed the following conjecture.

Conjecture 1.1 ([2, Eq (1.21)]). For any bounded domain Ω with smooth boundary in

M n = R n , we have (1.4) 1 µ 1 (Ω) + • • • + 1 µ n (Ω) ≥ n µ 1 (Ω * ) ,
where Ω * is a geodesic ball in R n such that |Ω * | = |Ω|. Moreover, the equality holds if and only if Ω is isometric to Ω * .

A non-optimal lower bound of the left side of (1.4) was obtained in [START_REF] Ashbaugh | Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF]. Recently, Xia and Wang [START_REF] Xia | On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian[END_REF] gave a lower bound of the harmonic mean of the first (n -1) nonzero Neumann eigenvalues, which supports Conjecture 1.1. They also conjecture that, (1.4) holds for M n = H n or S n + . Theorem 1.2 ([14, Theorems 1.1 and 1.2]). Let Ω a bounded domain with smooth boundary in

M n = R n or H n . Let Ω * be a geodesic ball in M such that |Ω * | = |Ω|. Then we have (1.5) 1 µ 1 (Ω) + • • • + 1 µ n-1 (Ω) ≥ n -1 µ 1 (Ω * ) .
Moreover, the equality holds if and only if Ω is isometric to Ω * .

Later, Benguria-Brandolini-Chiacchio [START_REF] Benguria | A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere[END_REF] proved that Theorem 1.2 holds for M n is a hemisphere.

In this paper, we consider a Riemannian manifold M with certain bounded curvatures instead of the space form M n κ with the constant curvature κ. Precisely, we consider the following setting throughout this paper.

Settings: Let M n be an n-dimensional, complete, simply connected Riemannian manifold, whose sectional curvature and Ricci curvature satisfy Sect M ≤ κ and Ric M ≥ (n -1)K, respectively. Let Ω be a bounded domain with smooth boundary in M . If κ ≤ 0, then Ω has a closed geodesic convex hull, written as hull(Ω), satisfying diam(Ω) = diam(hull Ω). If κ > 0, we assume additionally that Ω is contained in certain strongly convex closed set hull(Ω) satisfying the following two conditions:

(A) diam(Ω) = diam(hull(Ω)) < min{ π 2 √ κ , injectivity radius of M }; (B) | hull(Ω)| M ≤ |M n κ | M n κ 2 .
Recently, Wang [START_REF] Wang | An upper bound for the second Neumann eigenvalue on Riemannian manifolds[END_REF] compared the first nonzero eigenvalues and proved

Theorem 1.3 ([12, Theorem 1.1]
). Let M and Ω satisfy the above settings. Then

(1.6) µ 1 (Ω) ≤ C 2 µ 1 (Ω * κ ) with (1.7) C = sn K (diam(Ω)) sn κ (diam(Ω)) n-1 .
Here

Ω * κ is the geodesic ball in M n κ with |Ω * κ | = |Ω|.
In this paper, we consider the first (n -1) nonzero eigenvalues and prove the following theorem.

Theorem 1.4. Settings as in Theorem 1.3. Then we have

(1.8) 1 µ 1 (Ω) + • • • 1 µ n-1 (Ω) ≥ 1 C 2 n -1 µ 1 (Ω * κ )
, where C is given by (1.7), and But for Ω in a hemisphere, the diameter is bounded from above by π rather than π/2. Precisely, Ω may not be contained in the hemisphere B(p, π 2 ), where p is the center of mass of Ω (see Sect. 3.1). This makes the proof invalid since we cannot use Lemma 2.1. Fortunately, due to the symmetry of the sphere, we can modify the definition of F (r) in Sect. 2.2 such that F (r) is defined on [0, π] and symmetric with respect to r = π/2. Then we can consider a new domain

Ω * κ is the geodesic ball in M n κ with |Ω * κ | = |Ω|.
Ω = Ω ∩ B(p, π 2 ) ∪ (-Ω) ∩ B(p, π 2 ) which is contained in B(p, π
2 ), and the corresponding integrals over Ω are the same as the integrals over Ω. Hence, we can prove Theorem 1.2 hold for domains in a hemisphere ( [START_REF] Benguria | A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere[END_REF]Theorem 1.1]) by this approach. More details can be found in [START_REF]Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature[END_REF]Sect. 5], [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF]Sect. 6] and [START_REF] Chen | An estimate of the Dirichlet eigenvalues in curved spaces[END_REF]Sect. 3]. 

Preliminaries

ψ i (θ) = x i r under the normal coordinate (x 1 , • • • , x n ) at p.
For the space form M n K , the volume element d vol K is a radial function and does not depend on the choice of the point p. Precisely, and can be written as

d vol K = A K dt ∧ dθ (when K > 0, generally t < π/ √ K is required), where A K (t) = A K (t, •) = sn n-1 K (t), sn K (t) =      1 √ K sin( √ Kt), for K > 0; t, for K = 0; 1 √ -K sinh( √ -Kt), for K < 0.
We list the following notations used throughout the paper.

• B(p, r): the geodesic ball of radius r centered at p in M .

• |B(p, r)| M : the n-dimensional volume in M . • B κ (q κ , r): the geodesic ball of radius r centered at q κ in M n κ . • m K (r) = |B κ (q κ , r)| M n κ : the volume of B κ (q κ , r) in M n κ ,
which is an increasing function of r and don't depend on the center q κ .

• Ω * κ = B κ (q κ , R κ ): the geodesic ball in M n κ with the same volume as Ω. Since we always calculate the volume of a domain by using the corresponding volume form of the manifold which contains the domain, we will omit the subscript of the volume functional | • | except that we want to emphasize it.

Eigenfunctions on space forms.

According to Sect 2.1, q κ and R κ denote the center and the radius of

Ω * κ = B κ (q κ , R κ ) in M n κ , respectively.
It is well-known that (cf. [6, Chapter II.5]) the multiplicity of µ 1 (Ω * κ ) is n, and the eigenfunctions on Ω * κ corresponding to µ 1 (Ω * κ ) are given by (2.2)

u i (r, θ) = F (r)ψ i (θ), 1 ≤ i ≤ n,
where F (r) satisfies the following second order differential equation

(2.3)    F ′′ (r) + (n -1) sn ′ κ (r) sn κ (r) F ′ (r) + µ 1 (Ω * κ ) - n -1 sn 2 κ (r) F (r) = 0, ∀r ∈ (0, R κ ); F (0) = 0, F ′ (R κ ) = 0.
For convenience, we will extend F (r) to [0, +∞) by letting F (r) = F (R κ ) for r > R κ , and still denote it by F (r).

It is not hard to check that

(2.4) µ 1 (Ω * κ ) ˆΩ * κ F 2 (r) = ˆΩ * κ F ′2 (r) + n -1 sn 2 κ (r) F 2 (r) .
We also have Lemma 2.1. F (r) is increasing, and

F 2 (r) sn 2 κ (r) is decreasing.
Proof. The monotonicity of F (r) can be seen in [START_REF] Aithal | Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-1 symmetric spaces[END_REF][START_REF]Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature[END_REF][START_REF] Xia | On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian[END_REF] for details.

The monotonicity of F 2 (r) sn 2 κ (r) is from Lemma 2.2 in [START_REF] Xia | On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian[END_REF], Lemma 3.2 in [START_REF] Xia | On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann laplacian[END_REF] and Lemma 2.1 in [START_REF] Benguria | A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere[END_REF] for κ = 0, κ > 0 and κ < 0, respectively. □ 2.3. Spherical symmetrization. For any non-negative real function f (x) defined on Ω, denote

(2.5) m f (t) = |x ∈ Ω : f (x) ≥ t| M .
The spherical symmetrization of f are defined as follows.

Definition 2.2 (cf. [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF][START_REF] Wang | An upper bound for the second Neumann eigenvalue on Riemannian manifolds[END_REF]). Let |x| be the distance from

q κ to x ∈ Ω * κ . Define f * : Ω * κ → R, (2.6) f * (x) = m -1 f |B κ (q κ , |x|)| ; (2.7) f * : Ω * κ → R, (2.8) f * (x) = m -1 f |Ω * κ | -|B κ (q κ , |x|)| . (2.9)
We call f * and f * the spherical decreasing and increasing symmetrization of f , respectively. By using the Fubini's theorem, it is not hard to show that Proposition 2.3 (cf. [8, Proposition 2.2] and [12, Proposition 2.1]). For any s ≥ 1, we have

(2.10) ∥f ∥ L s (Ω) = ∥f * ∥ L s (Ω * κ ) = ∥f * ∥ L s (Ω * κ ) .
Now we define a function η p by (2.11) B(q κ , η p (r))

M n κ = B(p, r) M , that is, η p (r) = m -1 κ (|B(p, r)| M ).
We sometimes write η p as η for short.

Remark 2.4. The function η p is defined by B(q κ , η p (r))

M n κ = B(p, r) ∩ hull Ω M in [8]
(where it is denoted by σ p ). Here we modify it slightly in order to ensure 

(
(2.13) g • η p • r p * (x) ≤ g(r qκ (x)) for x ∈ Ω * κ = B(q κ , R κ ). If g(t) : R → R + is increasing in t, then (2.14) g • η p • r p * (x) ≥ g(r qκ (x)) for x ∈ Ω * κ = B(q κ , R κ ).
Proof. When g is decreasing, since η p is increasing, it follows from the definitions of η p and spherical symmetrization that

g • η p • r p * (x) = g(η p (r 1 )),
where r 1 satisfies B(q κ , r qκ (x))

M n κ = B(p, r 1 ) ∩ Ω M . Since B(p, r 1 ) ∩ Ω M ≤ B(p, r 1 ) M = B(q κ , η p (r 1 )) M n κ ,
we derive η p (r 1 ) ≥ r qκ (x), which implies

g • η p • r p * (x) = g(η p (r 1 )) ≤ g(r qκ (x)).
The inequality (2.14) is obtained from an analogous discussion, and we omit the details. □

Later, we will write r qκ (x) as r for short when there is no ambiguity. We will apply Lemma 2.5 to the functions in Lemma 2.1.

Proof of Theorem 1.4

In this section, we prove Theorem 1.4. First, we make some preparations.

Test functions. Recall that the variational characterization of µ

i (Ω)(i ≥ 1) (cf. [9, Chapter 3]) (3.1) µ i (Ω) = inf u∈H 1 (Ω)\{0} ´Ω |∇u| 2 ´Ω u 2 ˆΩ uu j = 0, j = 0, • • • , i -1 ,
where {u i } i≥0 is an orthonormal set of eigenfunctions satisfying ∆u i = -µ i u i with the Neumann boundary condition. We will write µ i (Ω) as µ i for short without confusion.

For a given p ∈ hull Ω, define P p : hull Ω → T p M by

P p = exp -1 p (x) r p F (η p (r p (x))).
Here F is the solution to (2.3), and η p is given by (2.11).

Now we can claim that there exist p ∈ hull Ω such that (3.2)

ˆΩ P p = 0.
This follows from a standard argument by using the Brouwer fixed point theorem, and the readers can refer [8, Lemma 4.1] for details. We also remark that such p is usually called the center of mass of Ω.

For any orthonormal basis {e i } of T p M , we define P i = e i • P p (x). Eq. (3.2) means that P i is L 2 -orthogonal to the first eigenfunction u 0 (a constant) of Ω.

We claim that we can adjust the orthonormal basis {e i } such that

(3.3) ˆΩ P i u j = 0, for 1 ≤ j < i ≤ n.
To see this, we just need to use the QR-decomposition of A = (a ij ) n×n via the Gram-Schmidt process, where

(3.4) a ij = ˆΩ P i u j = 0, for 1 ≤ i, j ≤ n.
Now we have A = QR, where Q = (q ij ) ∈ O(n) and R is an upper triangular matrix. This is equivalent to

R = Q T A. Hence, if we take (e ′ 1 , • • • , e ′ n ) = (e 1 , • • • , e n )Q T , then (3.5) 
ˆΩ(e ′ i • P p (x))u j = 0, for 1 ≤ j < i ≤ n.

3.2. Proof of Theorem 1.4. We take 

P i = F (η(r p ))ψ i (θ)(1 ≤ i ≤ n) in Sect. 3.
µ i ˆΩ P 2 i ≤ ˆΩ |∇P i | 2 for 1 ≤ i ≤ n.
Notice that Sect M ≤ κ, by the Rauch comparison theorem (see [8, pp. 860-861] for details), we have

ˆΩ |∇P i | 2 = ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + F 2 (η(r p ))|∇ Σr ψ i (θ)| 2 ≤ ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + F 2 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 . (3.7) Since n i=1 ψ 2 i (θ) = 1, from (3.6) and (3.7) we obtain ˆΩ F (η(r p )) 2 = n i=1 ˆΩ P 2 i ≤ n i=1 1 µ i ˆΩ |∇P i | 2 ≤ n i=1 1 µ i ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) + n i=1 1 µ i ˆΩ F 2 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 . (3.8)
Next, we estimate the two terms in the last inequalities, respectively. Lemma 3.1.

(3.9) max η ′ p (r p ), sn κ (η p (r p )) sn κ (r p ) ≤ C,
where C is given by (1.7).

Proof. Considering Remark 2.4, this has been proven in [8, pp. 863-865] (also see [START_REF] Wang | An upper bound for the second Neumann eigenvalue on Riemannian manifolds[END_REF]Lemma 3.2]). □ Lemma 3.2.

For each i = 1, • • • , n, ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) ≤ C 2 n ˆΩ * κ F ′2 (r).
Proof. We can assume that Ω ⊂ B(p, R) for some R ≤ diam(hull(Ω)) = diam(Ω).

We recall some facts. 

(c) sn K (t) sn k (t) is increasing on (0, diam(Ω)] when K ≤ k, so A K (t) Aκ(t) ≤ C for t ≤ diam(Ω). (d) η(t) ≥ t (Remark 2.4). (e) F ′ (t) = 0 when t ≥ R κ by the extension of F . Now we have ˆΩ |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) = ˆΩ∩B(p,R) |F ′ (η(r p ))η ′ (r p )| 2 ψ 2 i (θ) ≤C ˆB(p,R) F ′ (η(r p )) 2 η ′ (r p )ψ 2 i (θ) =C ˆR 0 ˆSn-1 F ′ (η(t)) 2 ψ 2 i (θ)A(t, θ)dθdη(t) ≤C ˆR 0 ˆSn-1 F ′ (η(t)) 2 ψ 2 i (θ)A K (t)dθdη(t) ≤C ˆR 0 ˆSn-1 F ′ (η(t)) 2 ψ 2 i (θ)A K (η(t))dθdη(t) =C ˆR 0 ˆSn-1 F ′ (s) 2 ψ 2 i (θ)A K (s)dθds =C ˆR 0 ˆSn-1 F ′ (s) 2 ψ 2 i (θ) A K (s) A κ (s) A κ (s)dθds ≤C 2 ˆR 0 ˆSn-1 F ′ (s) 2 ψ 2 i (θ)A κ (s)dθds =C 2 ˆBκ(qκ,Rκ) |F ′ (r qκ (x))| 2 ψ 2 i (θ) = C 2 n ˆΩ * κ |F ′ (r qκ (x))| 2 .
We complete the proof.

□ Lemma 3.3. n i=1 1 µ i ˆΩ F 2 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 ≤ C 2 n-1 i=1 1 µ i (Ω) ˆΩ * κ F 2 (r) sn 2 κ (r) . Proof. Since |∇ S n-1 ψ i (θ)| ≤ 1, n i=1 |∇ S n-1 ψ i (θ)| 2 = n -1, we have n i=1 1 µ i |∇ S n-1 ψ i (θ)| 2 = n-1 i=1 1 µ i |∇ S n-1 ψ i (θ)| 2 + 1 µ n n-1 i=1 (1 -|∇ S n-1 ψ i (θ)| 2 ) ≤ n-1 i=1 1 µ i |∇ S n-1 ψ i (θ)| 2 + n-1 i=1 1 µ i (1 -|∇ S n-1 ψ i (θ)| 2 ) = n-1 i=1 1 µ i (Ω)
. Hence, we obtain (3.13)

n-1 i=1 1 µ i (Ω) ≥ n -1 C 2 ´Ω * κ F (r) 2 ´Ω * κ F ′2 (r) + (n-1)F 2 (r) sn 2 κ (r) = 1 C 2 n -1 µ 1 (Ω * κ )
, where we used (2.4) in the last equality. □

1 .

 1 IntroductionLet (M n , g) be an n(≥ 2)-dimensional complete Riemannian manifold. For a bounded domain Ω ⊂ M with smooth boundary ∂Ω, one can consider the Neumann eigenvalues of the Laplacian ∆ on Ω, which are determined by the eigenvalue equation with the Neumann boundary condition (1.1) ∆u = -µu, in Ω; ∂u ∂ν = 0, on ∂Ω, where ν is the outward normal on ∂Ω. It is well known that the Neumann eigenvalues are discrete and satisfies 0 = µ 0 < µ 1 ≤ µ 2 ≤ • • • → +∞.

Remark 1 . 5 .Remark 1 . 6 .

 1516 Verma [11, Theorem 3.1] improved the constant C in Theorem 1.3 to a smaller constant (in some cases) C ′ by using more geometrical arguments; one can replace C by C ′ via the same approaches. Notice that C ≡ 1 when K = κ, so Theorem 1.4 recovers Theorem 1.2.

2. 1 .

 1 Notations. Let M be an n-dimensional Riemannian manifold. For a fixed point p ∈ M , let r(x) = d(p, x) be the distance function. Using exponential polar coordinate (t, θ) around p, we denote the volume element on M by d vol = A(t, θ)dt ∧ dθ. Let ψ i (θ) are the restrictions of the linear coordinate functions on S n-1 , precisely, (2.1)

  (a) A(t, θ) ≤ A K (t) when Ric M ≥ (n -1)K by the comparison for the volume elements. (b) A K (t) = sn n-1 K (t) is increasing on (0, diam(Ω)], even for K > 0 since the condition (A) of Settings in Sect. 1.

Hence, by using Lemma 3 .1 we obtain n i=1 1 µ i ˆΩ F 2 2 ≤ 2 •F sn κ 2 ( 2 . □ Proof of Theorem 1 . 4 . 1 (FF

 322222141 (η(r p )) 1 sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| η p • r p * ≤C 2 n-1 i=1 1 µ i (Ω) ˆΩ * κ r qκ (x)).Here we also used Proposition 2.3 and Lemma 2.5 for F snκ By using Lemmas 3.2 and 3.3 and noting that 1 µn(Ω) ≤ n-1 i=1 n-1)µ i (Ω) , it follows from (3.8) that ˆΩ F (η(r p )) Lemma 2.5 to F 2 , we have(3.12) ˆΩ F (η p (r p )) 2 = ˆΩ * κ (η p (r p )) (r qκ (x)) 2 .

  If g(t) : R → R + is decreasing in t, then

	2.12)	η p (r) ≥ r
	by the volume comparison theorem since Sect M ≤ κ. Almost all the properties for σ p in
	[8] (e.g., Lemma 2.5, Lemma 3.1 and (3.2)) still hold for our η p via the same approaches
	of the proofs.	
	For spherical symmetrization of monotone radial functions, we have the following com-
	parisons (cf. [8, Proposition 2.3] and [12, Lemma 3.1]).
	Lemma 2.5.	
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