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) to the curved manifold, including the hemisphere and the hyperbolic space.

Introduction

Let (M n , g) be an n(≥ 2)-dimensional complete Riemannian manifold. For a bounded domain Ω ⊂ M with smooth boundary ∂Ω, one can consider the Dirichlet eigenvalues of the Laplacian ∆ on Ω, which are determined by the eigenvalue equation with the Dirichlet boundary condition (1.1) ∆u = -λu, in Ω; u = 0, on ∂Ω.

It is well known that the Dirichlet eigenvalues are discrete and satisfies

0 < λ 1 < λ 2 ≤ λ 3 ≤ • • • → +∞.
The study of the Dirichlet eigenvalues has a long history, and it is closely related to some isoperimetric inequalities. For the unit ball B n in the Euclidean space R n , it is well known that

λ 1 (B n ) = j 2 n 2 -1,1 , λ 2 (B n ) = • • • = λ n+1 (B n ) = j 2 n 2 ,1
, where j p,k denotes the k-th positive zero of the Bessel function J p of the first kind of order p. Noting that λ has the dimensions of a length to the power -2, the celebrated Faber-Krahn inequality ( [START_REF] Faber | dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt[END_REF][START_REF] Krahn | Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises[END_REF]) says that

(1.2) λ 1 (Ω) ≥ |B n | |Ω| 2 n λ 1 (B 2 ) = λ 1 (Ω * ),
with the equation if and only if Ω = Ω * , where Ω * is a geodesic ball of R n with the same volume of Ω.

For the second eigenvalue, after a series of work by many mathematicians (e.g., [START_REF] Brands | Bounds for the ratios of the first three membrane eigenvalues[END_REF][START_REF] Chiti | A bound for the ratio of the first two eigenvalues of a membrane[END_REF][START_REF] De Vries | On the upper bound for the ratio of the first two membrane eigenvalues[END_REF][START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF][START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF][START_REF] Payne | Sur le quotient de deux fréquences propres consécutives[END_REF][START_REF] Thompson | On the ratio of consecutive eigenvalues in N -dimensions[END_REF]), Ashbaugh and Benguria [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF] settled the long-standing Payne-Pólya-Weinberger (PPW) Conjecture ( [START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF][START_REF] Payne | Sur le quotient de deux fréquences propres consécutives[END_REF][START_REF] Thompson | On the ratio of consecutive eigenvalues in N -dimensions[END_REF]), which says

(1.3) λ 2 (Ω) λ 1 (Ω) ≤ λ 2 (Ω * ) λ 1 (Ω * ) ,
with equality if and only if Ω = Ω * .

Noting that (1.3) is equivalent to

(1.4) λ 1 (Ω) λ 2 (Ω) -λ 1 (Ω) ≥ λ 1 (Ω * ) λ 2 (Ω * ) -λ 1 (Ω * ) ,
Ashbaugh and Benguria [START_REF]More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions[END_REF][START_REF]Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF] proposed the following conjecture.

Conjecture 1.1. For any bounded domain Ω with smooth boundary in R n , we have

(1.5) λ 1 (Ω) λ 2 (Ω) -λ 1 (Ω) + • • • + λ 1 (Ω) λ n+1 (Ω) -λ 1 (Ω) ≥ nλ 1 (Ω * ) λ 2 (Ω * ) -λ 1 (Ω * ) ,
where

Ω * is a geodesic ball in R n such that |Ω * | = |Ω|. Moreover, the equality holds if and only if Ω is isometric to Ω * .
In [START_REF]More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions[END_REF] the authors proved the left side of (1.5) is not less than

2j 2 n 2 -1,1 +n(n-4) 6
, which is very close to the right side of (1.5) by the asymptotic analysis. Conjecture 1.1 would be true if the following conjecture (also called PPW conjecture) were to hold:

Conjecture 1.2. λ 2 (Ω) + • • • + λ n+1 (Ω) λ 1 (Ω) ≤ n λ 2 (Ω * ) λ 1 (Ω * ) with the equality holds if and only if Ω is isometric to Ω * .
Conjecture 1.2 is still unsolved completely, and some non-optimal upper bounds have been obtained, see [START_REF] Brands | Bounds for the ratios of the first three membrane eigenvalues[END_REF][START_REF] Chen | Bounds for ratios of the membrane eigenvalues[END_REF][START_REF] Hile | Inequalities for eigenvalues of the Laplacian[END_REF][START_REF] Marcellini | Bounds for the third membrane eigenvalue[END_REF][START_REF] Payne | On the ratio of consecutive eigenvalues[END_REF] for n = 2 and [START_REF]More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions[END_REF][START_REF] Thompson | On the ratio of consecutive eigenvalues in N -dimensions[END_REF] for general n ≥ 2.

Recently, Wang and Xia [START_REF] Wang | On the Ashbaugh-Benguria conjecture about lower-order Dirichlet eigenvalues of the Laplacian[END_REF] considered the first n Dirichlet eigenvalues and proved the following result, which makes an important step toward the proof of Conjecture 1.1.

Theorem 1.3 ([22, Theorem 1.1]).

Let Ω a bounded domain with smooth boundary in R n . Let Ω * be a geodesic ball in R n such that |Ω * | = |Ω|. Then we have

(1.6) λ 1 (Ω) λ 2 (Ω) -λ 1 (Ω) + • • • + λ 1 (Ω) λ n (Ω) -λ 1 (Ω) ≥ (n -1)λ 1 (Ω * ) λ 2 (Ω * ) -λ 1 (Ω * ) .
Moreover, the equality holds if and only if Ω is isometric to Ω * .

Considering the space forms instead of R n , (1.3) has been extended to the hemisphere S n + by Ashbaugh-Benguria [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF] and hyperbolic space H n by Benguria-Linde [START_REF] Benguria | A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space[END_REF], respectively.

Theorem 1.4 ([4, Theorem 1.1], [5, Theorem 1.1]). Let M = S n + or H n . For a bounded domain Ω with smooth boundary in M , let Ω * λ be a geodesic ball in M such that λ 1 (Ω) = λ 1 (Ω * λ ). Then λ 2 (Ω) ≤ λ 2 (Ω * λ ) with equality if and only if Ω is itself a geodesic ball in M .
We remark that, a normalization of the geodesic ball by λ 1 is required in curved spaces, which is different from R n , where the ratio λ 2 λ 1 is scale-invariant. In this paper, we consider a Riemannian manifold M with certain bounded curvatures. Precisely, we consider the following setting throughout this paper.

Settings: Let M n be an n-dimensional, complete, simply connected Riemannian manifold, whose sectional curvature and Ricci curvature satisfy Sect M ≤ κ and Ric M ≥ (n -1)K, respectively. Let Ω be a bounded domain with smooth boundary in M . If κ ≤ 0, then Ω has a closed geodesic convex hull, written as hull(Ω), satisfying diam(Ω) = diam(hull Ω).

If κ > 0, we assume additionally that Ω is contained in certain strongly convex closed set hull(Ω) satisfying the following two conditions:

(A) diam(Ω) = diam(hull(Ω)) < min{ π 2 √ κ , injectivity radius of M }; (B) | hull(Ω)| M ≤ |M n κ | M n κ 2
.

We briefly introduce the motivation to consider the above settings. We know that Faber-Krahn inequality holds for any Riemannian manifold where the isoperimetric inequality exists (cf. [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF]Chpater IV]). For any bounded domain Ω ⊂ M n κ , we have the isoperimetric inequality (cf. [START_REF] Schmidt | Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl[END_REF])

(1.7)
|∂Ω| ≥ A n,κ |Ω|, with equality if and only if Ω is a geodesic ball. The constant A n,κ is usually called the isoperimetric profile.

Generally, for a manifold M with Sect M ≤ κ, there exists some α ≤ 1 such that

(1.8) |∂Ω| ≥ αA n,κ |Ω| for any bounded domain Ω ⊂ M .
When κ > 0, Conditions (A) and (B) makes us work in a hemisphere, which is crucial for the monotonicity of some functions.

On the other hand, when the Ricci curvatures have a lower bound, we have the volume comparison theorem. This makes us to estimate some geometric quantities.

Recently, Edelen [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF] gave an upper bound of λ 2 -λ 1 for domains in M . 

* α ) = α -2 λ 1 (Ω). Then (1.9) λ 2 (Ω) -λ 1 (Ω) ≤ C 2 λ 2 (Ω * α ) -λ 1 (Ω * α ) with (1.10) C = sn K (diam(Ω)) sn κ (diam(Ω)) n-1
.

In this paper, we prove the following theorem.

Theorem 1.6. Settings as in Theorem 1.5. Then we have

(1.11) 1 λ 2 (Ω) -λ 1 (Ω) + • • • 1 λ n (Ω) -λ 1 (Ω) ≥ 1 C 2 n -1 λ 2 (Ω * α ) -λ 1 (Ω * α )
, where C is given by (1.10).

Remark 1.7. To ensure Theorem 1.5 and Theorem 1.6 hold, we just need Ric ≥ (n -1)K on hull(Ω) rather than Ric ≥ (n -1)K on the whole M (cf. [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]).

For Cartan-Hadamard manifolds, we have a more explicit estimate.

Corollary 1.8. Suppose k = 0, and Ω is a bounded domain in M n so that Ric ≥ (n -1)K on hull(Ω) for some K < 0. Then

λ 1 (Ω) λ 2 (Ω) -λ 1 (Ω) + • • • + λ 1 (Ω) λ n (Ω) -λ 1 (Ω) ≥ α 2 √ -K × diam(Ω) sinh( √ -K diam(Ω)) 2n-2 n -1 λ 2 (B n ) λ 1 (B n ) -1 .
Noting that C ≡ 1 for the space forms, we can prove Theorem 1.9. Let M = S n + or H n . For a bounded domain Ω with smooth boundary in M , let Ω * λ be the geodesic ball in M satisfying λ 1 (Ω * λ ) = λ 1 (Ω). Then we have

(1.12) 1 λ 2 (Ω) -λ 1 (Ω) + • • • + 1 λ n (Ω) -λ 1 (Ω) ≥ n -1 λ 2 (Ω * λ ) -λ 1 (Ω * λ )
.

Moreover, the equality only holds for the geodesic balls.

Preliminaries

In this section, we introduce some notations and recall some well-known facts. Although most of them can be found in previous literatures, we still list them (and give the sketch of the proofs if needed) for the convenience of the readers and the integrity of the article. 

ψ i (θ) = x i r under the normal coordinate (x 1 , • • • , x n ) at p.
For the space form M n K , the volume element d vol K is a radial function and does not depend on the choice of the point p. Precisely, and can be written as

d vol K = A K dt ∧ dθ (when K > 0, generally t < π/ √ K is required), where A K (t) = A K (t, •) = sn n-1 K (t), sn K (t) =      1 √ K sin( √ Kt), for K > 0; t, for K = 0; 1 √ -K sinh( √ -Kt), for K < 0.
We list the following notations used throughout the paper.

• B(p, r): the geodesic ball of radius r centered at p in M .

• |B(p, r)| M : the n-dimensional volume in M . • B κ (q κ , r): the geodesic ball of radius r centered at q κ in M n κ . • m K (r) = |B κ (q κ , r)| M n κ : the volume of B κ (q κ , r) in M n κ ,
which is an increasing function of r and don't depend on the center q κ .

• Ω * κ = B κ (q κ , R κ ): the geodesic ball in M n κ with the same volume as Ω.

• Ω * α = B κ (q κ , R α ): the geodesic ball in M n κ such that λ 1 (Ω * α ) = α -2 λ 1 (Ω).
Since we always calculate the volume of a domain by using the corresponding volume form of the manifold which contains the domain, we will omit the subscript of the volume functional | • | except that we want to emphasize it.

2.2. Eigenfunctions on space forms. According to Sect 2.1, q κ and R α denote the center and the radius of 

Ω * α = B κ (q κ , R α ) in M n κ ,
∥u 1 ∥ L 2 (Ω) = ∥z∥ L 2 (Ω * α ) .
Let J = J(r) be the radial component of the second Dirichlet eigenfunction of Ω * α , and then we define (cf. Eq. (2.11) of [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF], Sect. 3 of [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF], Sect. 3 of [START_REF] Benguria | A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space[END_REF])

h(t) = J(t) z(t) , for 0 ≤ t < R α ; lim s→R - α h(s), for t ≥ R α .
(2.3)

F (t) = h ′ (t) 2 + (n -1) h 2 (t) sn 2 κ (t) . (2.4) Lemma 2.1. h(t) is increasing while F (t) is decreasing.
Proof. See Corollary 3.4 in [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF], Theorem 4.1 in [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF] and Lemma 7.1 in [START_REF] Benguria | A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space[END_REF] for κ = 0, κ > 0 and κ < 0, respectively. □ Lemma 2.2.

h ′ (t) 2 - h 2 (t) sn 2 κ (t) ≤ 0.
Proof. See Theorem 3.3 in [START_REF] Ashbaugh | A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions[END_REF], Theorem 4.1 in [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF] and Eq. ( 40) in [START_REF] Benguria | A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space[END_REF] for κ = 0, κ > 0 and κ < 0, respectively. □ 2.3. Spherical symmetrization. For any non-negative real function f (x) defined on Ω, denote

(2.5) m f (t) = |x ∈ Ω : f (x) ≥ t| M .
The spherical symmetrization of f are defined as follows.

Definition 2.3 (cf. [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]). Let |x| be the distance from q κ to x ∈ Ω * κ . Define

f * : Ω * κ → R, (2.6) f * (x) = m -1 f |B κ (q κ , |x|)| ; (2.7) f * : Ω * κ → R, (2.8) f * (x) = m -1 f |Ω * κ | -|B κ (q κ , |x|)| . (2.9)
We call f * and f * the spherical decreasing and increasing symmetrization of f , respectively. By using the Fubini's theorem, it is not hard to show that Proposition 2.4 ([12, Proposition 2.2]). For any s ≥ 1, we have

(2.10) ∥f ∥ L s (Ω) = ∥f * ∥ L s (Ω * κ ) = ∥f * ∥ L s (Ω * κ ) . Proposition 2.5 ([12, Proposition 2.4]). For functions f, g : D → R + , we have (2.11) ˆΩ * κ f * g * ≤ ˆD f g ≤ ˆΩ * κ f * g * .
2.4. Tools for the proof. We recall some inequalities which will used in the proof. The details of the proofs can be found in [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]; we mention the ideas of the proof. 

∥u 1 ∥ L 2 (Ω) = ∥v 1 ∥ L 2 (Ω * κ ) = ∥z∥ L 2 (Ω * α ) . Then we have (1) λ 1 (Ω) ≥ α 2 λ 1 (Ω * κ ),

with equality if and only if u

* 1 ≡ v 1 . (2) there is an r 0 ∈ (0, R α ) such that (2.12) z ≥ u * 1 on [0, r 0 ], z ≤ u * 1 on [r 0 , R α ].
We give some comments on this theorem. Assert (1) can be viewed as a weak version of Faber-Krahn inequality. The proof depends on the isoperimetric inequalities (1.8); the computation involves the co-area formula. λ 1 is introduced by using Stokes' formula since the Dirichlet boundary condition; the equality can be contained by using the fact that the 1st eigenvalue is simple. Moreover, by the monotonicity of eigenvalues for geodesic balls, the inequality implies

Ω * α ⊂ Ω * κ , equivalently, R α ≤ R κ . If Ω * α = Ω * κ , then we must have z = v 1 = u * 1 .
For this reason, we can extend z by zero to [R α , R κ ]. Assert (2) theorem is a weak version of Chiti's theorem. It can be proven by contradiction. The normalization condition is necessary in the proof. The other version of Chiti was obtained in the author's recent paper [START_REF] Chen | Chiti-type reverse Hölder inequality and torsional rigidity under integral Ricci curvature condition[END_REF], where the arguments can be used in this theorem.

Combining with Proposition 2.4, the weak Chiti (2.12) implies the following

Corollary 2.7 ([12, Corollary 3.3]). If g : Ω * κ → R + is a radial decreasing function, then ˆΩ * κ (u * 1 ) 2 g ≤ ˆΩ * α z 2 g. If g : Ω * κ → R + is a radial increasing function, then ˆΩ * κ (u * 1 ) 2 g ≥ ˆΩ * α z 2 g.

Proof of Theorem 1.6

In this section, we prove Theorem 1.6. First, we make some preparations.

Test functions. Recall that the variational characterization of λ

i+1 (Ω)(i ≥ 1) (cf. [20, Chapter 3]) (3.1) λ i+1 (Ω) = inf u∈H 1 0 (Ω)\{0} ´Ω |∇u| 2 ´Ω u 2 ˆΩ uu j = 0, j = 1, • • • , i ,
where {u i } i≥1 is an orthonormal set of eigenfunctions satisfying ∆u i = -λ i u i with the Neumann boundary condition. We will write λ i (Ω) as λ i for short without confusion.

For a given p ∈ hull Ω, define P p : hull Ω → T p M by

P p = exp -1 p (x) r p h(σ p (r p (x))).
Here h is defined by (2.3), and σ p is a function defined by

(3.2) B(q κ , σ p (r)) M n κ = B(p, r) ∩ hull Ω M , that is, σ p (r) = m -1 κ (|B(p, r) ∩ hull Ω| M ).
We also write σ p as σ for short. Now there exist p ∈ hull Ω such that

(3.3) ˆΩ P p u 2 1 = 0,
and such p is usually called the center of mass of Ω (see [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF]Lemma 4.1] for details).

(3.4) ˆΩ(P i u 1 )u j+1 = 0, for 1 ≤ j < i ≤ n.

To see this, we consider the QR-decomposition of A = (a ij ) n×n via the Gram-Schmidt process, where

(3.5) a ij = ˆΩ(P i u 1 )u j+1 = 0, for 1 ≤ i, j ≤ n. Now we have A = QR, where Q = (q ij ) ∈ O(n) and R is an upper triangular matrix. This is equivalent to R = Q T A. Hence, if we take (e ′ 1 , • • • , e ′ n ) = (e 1 , • • • , e n )Q T , then (3.6) 
ˆΩ(e

′ i • P p (x))u j+1 = 0, for 1 ≤ j < i ≤ n.
3.2. Proof of Theorem 1.6. We take

P i = h(σ(r p ))ψ i (θ)u 1 (1 ≤ i ≤ n) in Sect.
3.1 as the test functions, which satisfy Eqs. (

. For simplicity, we denote

Q i = h(σ(r p ))ψ i (θ). By the variational characterization (3.1), for each i = 1, • • • , n, we have λ i+1 ˆΩ Q 2 i u 2 1 =λ i+1 ˆΩ P 2 i ≤ ˆΩ |∇P i | 2 = -ˆΩ(Q i u 1 )∆(Q i u 1 ) = -ˆΩ(Q i u 2 1 )∆Q i -ˆΩ(Q 2 i u 1 )∆u 1 -ˆΩ 2(Q i u 1 )⟨∇Q i , ∇u 1 ⟩ = ˆΩ⟨∇(Q i u 2 1 ), ∇Q i ⟩ + λ 1 ˆΩ Q 2 i u 2 1 -ˆΩ 2(Q i u 1 )⟨∇Q i , ∇u 1 ⟩ = ˆΩ |∇Q i | 2 u 2 1 + λ 1 ˆΩ Q 2 i u 2 1 , that is, (3.7) ˆΩ Q 2 i u 2 1 ≤ 1 λ i+1 -λ 1 ˆΩ |∇Q i | 2 u 2 1 .
Notice that Sect M ≤ κ, by the Rauch comparison theorem (see [12, pp. 860-861] for details), we have

|∇Q i | 2 =|h ′ (σ(r p ))σ ′ (r p )| 2 ψ 2 i (θ) + h 2 (σ(r p ))|∇ Σr ψ i (θ)| 2 ≤|h ′ (σ(r p ))σ ′ (r p )| 2 ψ 2 i (θ) + h 2 (σ(r p )) sn 2 κ (r p ) |∇ S n-1 ψ i (θ)| 2 . (3.8) Recall ψ i = x i
r , one has (3.9)

|∇ S n-1 ψ i (θ)| 2 = 1 -ψ 2 i .
We also have (cf. [12, pp. 863 

≤ n i=1 1 λ i+1 -λ 1 ˆΩ |∇Q i | 2 u 2 1 ≤C 2 n i=1 1 λ i+1 -λ 1 ˆΩ h ′ (s) 2 ψ 2 i (θ)u 2 1 + C 2 n i=1 1 λ i+1 -λ 1 ˆΩ h 2 (s) sn 2 κ (s) (1 -ψ i (θ) 2 )u 2 1 =C 2 n i=1 1 λ i+1 -λ 1 ˆΩ h ′ (s) 2 - h 2 (s) sn 2 κ (s)
ψ 2 i (θ)u 2 1 + C 2 n i=1 1 λ i+1 -λ 1 ˆΩ h 2 (s) sn 2 κ (s) u 2 1 . (3.11)
Considering Lemma 2.2, we have

n i=1 1 λ i+1 -λ 1 h ′ (s) 2 - h 2 (s) sn 2 κ (s)
ψ 2 i = n-1 i=1 1 λ i+1 -λ 1 h ′ (s) 2 - h 2 (s) sn 2 κ (s)
ψ 2 i + 1 λ n+1 -λ 1 h ′ (s) 2 - h 2 (s) sn 2 κ (s) (1 - n-1 i=1 ψ 2 i ) = n-1 i=1 1 λ i+1 -λ 1 - 1 λ n+1 -λ 1 h ′ (s) 2 - h 2 (s) sn 2 κ (s)
ψ 2 i + 1 λ n+1 -λ 1 h ′ (s) 2 - h 2 (s) sn 2 κ (s) ≤ 1 n -1 n-1 i=1 1 λ i+1 -λ 1 h ′ (s) 2 - 1 λ n+1 -λ 1 h 2 (s) sn 2 κ (s)
.

Putting this into (3.11), we obtain ˆΩ h(s

) 2 u 2 1 ≤ C 2 n -1 n-1 i=1 1 λ i+1 -λ 1 ˆΩ h ′ (s) 2 + (n -1) h 2 (s) sn 2 κ (s) u 2 1 . (3.12)
Proof of Theorem 1.6. Considering the monotonicity in Lemma 2.1, we apply Corollary 2.7 combining with Proposition 2.5 for h(t) and F (t), respectively.

ˆΩ h(σ p (r p )) 2 u 2 1 ≥ ˆΩ * κ (h 2 (σ p (r p )) * (u 2 1 ) * = ˆΩ * κ h 2 (r)(u * 1 ) 2 ≥ ˆΩ * α h 2 (r)z 2 . Similarly, 1 ˆΩ h ′ (σ p (r p )) 2 + (n -1) h 2 (σ(r p )) sn 2 κ (σ(r p )) u 2 1 ≤ ˆΩ * κ F 2 (σ p (r p )) * (u 2 1 ) * = ˆΩ * κ F 2 (r)(u * 1 ) 2 ≤ ˆΩ * α h ′ (r) 2 + (n -1) h 2 (r) sn 2 κ (r) z 2 .
1 Precisely, one should consider the symmetrization on hull Ω after extending u1 by zero to hull Ω, see [12, pp. 862].

Combining these with (3.12), we derive

(3.13) n-1 i=1 1 λ i (Ω) -λ 1 (Ω) ≥ n -1 C 2 ´Ω * α h(r) 2 ´Ω * α h ′2 (r) + (n-1)h 2 (r) sn 2 κ (r) = 1 C 2 n -1 λ 2 (Ω * α ) -λ 1 (Ω * α )
.

We complete the proof. □

Proof of Theorem 1.9. For H n , it is a direct corollary from Theorem 1.6, and the equality can follow from the equalities in Theorem 2.6 and Corollary 2.7.

However, Theorem 1.6 implies that the inequality holds for M ⊂ S n being a spherical cap of geodesic radius less than π/4 rather than a hemisphere S n + . In order to show that it is valid for S n + , we need to modify the proof of Theorem 1.6. First, we remark that the test functions in Sect. 3.1 remain valid for Ω ⊂ S n which is contained in a hemisphere. By choosing Cartesian coordinates (y 1 , • • • , y n+1 ) of R n+1 , we can assume S n is centered at the origin, and the center of mass p of Ω is the north pole. Now σ p (r(x)) = r(x), x ∈ Ω, where r is the geodesic distance function from p. But it is possible that r(x) ≥ π/2 for some x ∈ Ω, since we cannot ensure that Ω is contained in the northern hemisphere S n + = {y ∈ S n | y n+1 > 0}. To overcome this issue, we use the argument in [START_REF]A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n[END_REF]Sect. 6].

We modify h(t) and F (t) such that both h and F are symmetric with respect to t = π 2 . 

h(t) =      J(
1 λ i+1 -λ 1 ˆΩ |∇Q i | 2 u 2 1 = n i=1 1 λ i+1 -λ 1 ˆΩ h ′ (r) 2 ψ 2 i (θ)u 2 1 + n i=1 1 λ i+1 -λ 1 ˆΩ h 2 (r) sin 2 (r) (1 -ψ i (θ) 2 )u 2 1 = n i=1 1 λ i+1 -λ 1 ˆΩ h ′ (r) 2 - h 2 (r) sin 2 (r) ψ 2 i (θ)u 2 1 + n i=1 1 λ i+1 -λ 1 ˆΩ h 2 (r) sin 2 (r) u 2 1 ≤ 1 n -1 n-1 i=1 1 λ i+1 -λ 1 ˆΩ h ′ (r) 2 + (n -1) h 2 (r) sin 2 (r) u 2 1 = 1 n -1 n-1 i=1 1 λ i+1 -λ 1 ˆΩ F (r)u 2 1 .
Clearly, -Ω ⊂ S n \Ω since Ω is contained is a hemisphere. Define Ω ± = {x ∈ Ω | ±y n+1 (x) > 0}, then we have (-Ω -) ∩ Ω + = ∅.

Due to the symmetry of h(t) and F (t), if we transplant u 1 along with Ω -to -Ω -, and denote by ũ1 the transplanted function of u 1 to Ω, then we have ˆΩ h(r) 2 ũ2 1 = ˆΩ h(r) 2 u 2 1 , ˆΩ F (r)ũ 2 1 = ˆΩ F (r)u 2 1 .

We have moved the whole problem to the domain Ω which is contained in the northern hemisphere. Then we can complete the proof by using the monotonicity of h and F on [0, π/2], and the rearrangements inequalities. □

Theorem 1 . 5 (

 15 [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF] Theorem 1.4]). Let M and Ω satisfy the above settings. Let Ω * α be the geodesic ball in M n κ satisfying λ 1 (Ω

2. 1 .

 1 Notations. Let M be an n-dimensional Riemannian manifold. For a fixed point p ∈ M , let r(x) = d(p, x) be the distance function. Using exponential polar coordinate (t, θ) around p, we denote the volume element on M by d vol = A(t, θ)dt ∧ dθ. Let ψ i (θ) are the restrictions of the linear coordinate functions on S n-1 , precisely, (2.1)

  respectively. By the simplicity of the first Dirichlet eigenvalue, we know that the first eigenfunction on Ω * α is a radial function and strictly decreasing to 0 on [0, R α ]. Let u 1 and z = z(r) denote the first Dirichlet eigenfunction on Ω and Ω * α , respectively, which are normalized such that (2.2)

Theorem 2 . 6 (

 26 [START_REF] Edelen | The PPW conjecture in curved spaces[END_REF] Theorems 3.1 and 3.2]). For a bounded Ω in M , let u 1 , v 1 and z = z(r) denote the first Dirichlet eigenfunction on Ω, Ω * κ and Ω * α , respectively, satisfying the normalization condition
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