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NONPARAMETRIC DRIFT ESTIMATION FROM DIFFUSIONS WITH
CORRELATED BROWNIAN MOTIONS

FABIENNE COMTE† AND NICOLAS MARIE�

Abstract. In the present paper, we consider that N diffusion processes X1, . . . , XN are observed on
[0, T ], where T is fixed and N grows to infinity. Contrary to most of the recent works, we no longer
assume that the processes are independent. The dependency is modeled through correlations between
the Brownian motions driving the diffusion processes. A nonparametric estimator of the drift function,
which does not use the knowledge of the correlation matrix, is proposed and studied. Its integrated
mean squared risk is bounded and an adaptive procedure is proposed. Few theoretical tools to handle
this kind of dependency are available, and this makes our results new. Numerical experiments show that
the procedure works in practice.
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1. Introduction

We start by describing our model. Consider the diffusion process X = (Xt)t∈[0,T ], defined by

(1) Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs ; t ∈ [0, T ],

where x0 ∈ R, B = (Bt)t∈[0,T ] is a Brownian motion, b : R → R is a Lipschitz continuous function, and
σ : R → R is a bounded Lipschitz continuous function. Now, let B1, . . . , BN be N ∈ N/{0} copies of B
such that

(2) E(BisB
k
t ) = Ri,k(s ∧ t) ; ∀i, k ∈ {1, . . . , N}, ∀s, t ∈ [0, T ],

where R = (Ri,k)i,k is a correlation matrix. Note that, thanks to the (stochastic) integration by
parts formula, the dependence condition (2) on B1, . . . , BN implies that, for every i, k ∈ {1, . . . , N},
d〈Bi, Bk〉t = Ri,kdt, with Ri,i = 1. Finally, consider Xi := I(x0, B

i) for every i ∈ {1, . . . , N}, where
I(.) is the Itô map associated to Equation (1). In the present paper, we consider that these N diffusion

Key words and phrases. Correlated Brownian motions; Diffusion processes; Model selection; Projection least squares
estimator.
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processes X1, . . . , XN are observed on [0, T ], where T is fixed and N grows to infinity, and our aim is to
estimate nonparametrically the drift function b(.).

In the case of independent Brownian motions, that is R = IN (the N × N identity matrix), projec-
tion least squares estimator have been studied in Comte and Genon-Catalot [7] for continuous time
observations, in Denis el al. [14] for discrete time (with small step) observations with a classification
purpose in the parametric setting, and in Denis et al. [15] in the nonparametric context, for instance.
Marie and Rosier [19] propose a kernel based Nadaraya-Watson estimator of the drift function b, with
bandwidth selection relying on the Penalization Comparison to Overfitting (PCO) criterion recently in-
troduced by Lacour et al. [18]. Still in the case R = IN , Comte and Marie [12] investigate the properties
of the projection least squares estimator of the drift when B is a fractional Brownian motion.
Dependency is often encountered in recent works in the context of stochastic systems of N interacting
particles, with recent nonparametric drift estimators proposals in Della Maestra and Hoffmann [13], Be-
lomestny et al. [3] or Comte and Genon-Catalot [9]. These kinds of models are related to physics. We
rather have in mind economic or financial models. For instance, in Duellmann et al. [16], the authors
consider a portfolio of N homogenous firms such that the asset value Xi

t at time t of the i-th firm is
modeled by Merton’s model (see [20]) dXi

t = µXi
tdt+ σXi

tdB
i
t with Xi

0 = X0, which corresponds to (1)
with b(x) = µx and σ(x) = σx. Intending to capture the dependency between the firms, they also assume
that dBit =

√
ρdWt +

√
1− ρdW i

t , where W is a common systematic risk factor, W i is a firm-specific
risk factor and ρ ∈ [0, 1]. This corresponds to a particular matrix R, precisely Ri,k = ρ for i 6= k (and
Ri,i = 1), so that one single parameter ρ represents the so-called asset correlation. This model has
been considered in e.g. Bush et al. [4], for the more mathematical purpose of studying the limit of the
empirical distribution of the Xi

t ’s (see also references therein). Our extension from specific geometric
Brownian motion to general nonparametric diffusion (1), and from one single correlation parameter to a
general matrix representation, is therefore standard in both respects. This context has nevertheless never
been considered before up to our knowledge. Let us emphasize that our aim is not to estimate R, but to
exhibit conditions on it such that b(.) can be estimated with performance near of the independent setting.

In our framework, T is fixed, and N is large. Our results are nonasymptotic, but the idea is that N
grows to infinity. We fix a subset I of R and build a collection of projection least squares estimators of
bI = b1I where I is compact or not. The estimators are defined by their coefficients on an orthonormal
basis of L2(I), ϕ1, . . . , ϕm, resulting from a standard least squares computation. Precisely, we consider
the estimator of the drift function b minimizing the objective function γN (τ)

(3) τ 7−→ γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

τ(Xi
s)

2ds− 2

∫ T

0

τ(Xi
s)dX

i
s

)
on the m-dimensional function space Sm = span{ϕ1, . . . , ϕm}. Note that the first part of γN (τ) involves
a quantity

‖τ‖2N :=
1

NT

N∑
i=1

∫ T

0

τ(Xi
s)

2ds,

which is considered as the squared empirical norm of the function τ . These estimators are the same as
in Comte and Genon-Catalot [7], but their study is made significantly more difficult by the dependency
context. We do not have at our disposal any coupling method nor any transformation leading to a sim-
pler system; in particular, applying R−1/2 to the system does not bring any simplification because of a
"widespreading" of the components of the process. Tropp’s deviation inequalities used in the indepen-
dent context (see Tropp [22], Matrix Chernov Inequality, Theorem 1.1 and Matrix Bernstein Inequality,
Theorem 1.4), which allow to consider the empirical norm and its expectation (an integral norm, thus)
as equivalent with high probability, no longer apply. Martingale properties still are useful, and we turn
to Azuma’s matrix deviation inequality (see Tropp [22], Theorem 7.1), which however requires to set
sparsity conditions on R (see Assumption 3.4). This equivalence property is the key of the rigorous study
of the risk of the drift estimator, and the correlation matrix is therefore at the heart of the proofs.
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The plan of the paper is the following. A first parametric example motivates the model and the way of
estimating a drift parameter in Section 2. The general nonparametric drift estimator is defined in Section
3 and a risk bound on a fixed projection space is proved. Adaptive estimation is studied in Section 4
and the whole procedure is illustrated through simulations in Section 5. Lastly, proofs are gathered in
Section 6.

2. Preliminary motivation and example in the parametric framework

This preliminary section deals with the geometric model described in the introduction, in the para-
metric framework, in order to motivate our investigations. Similarly to Duellmann et al. [16], consider N
risky assets of same nature and of prices processes X1, . . . , XN observed on the time interval [0, T ]. Since
these assets are of same nature, to model their prices by dXi

t = µXi
tdt+ σXi

tdB
i
t with µ ∈ R and σ > 0

not depending on i ∈ {1, . . . , N} is realistic, but it is also very realistic to consider that B1, . . . , BN may
be dependent, through the correlation matrix described above. Let us compute the quadratic risk of the
least squares estimator θ̂N of θ = µ− σ2/2 in this special case. Since we can write that Xi

t = x0 exp(Y it )
with Y it = θt+ σBit for every i ∈ {1, . . . , N} and t ∈ [0, T ], we set

θ̂N =
1

NT

N∑
i=1

Y iT = θ +
σ

NT

N∑
i=1

BiT .

Then,

E(|θ̂N − θ|2) =
σ2

N2T 2

 N∑
i=1

E(|BiT |2) +
∑
i 6=k

E(BiTB
k
T )


=

σ2

NT
+

σ2

N2T

∑
i 6=k

Ri,k =
σ2

NT

1 +
1

N

∑
i 6=k

Ri,k

 .

This means that the rate of convergence of θ̂N is of order

V :=
1

N
+

1

N2

∑
i 6=k

Ri,k.

We note that if Ri,k = ρ for all i 6= k, then the estimator is not consistent. This would be the same if all
the coefficients of R were positive and only bounded by a constant ρ > 0. However, if we set a sparsity
condition by saying that R is block-diagonal with blocks of size (less than) k0, and if we assume that
all nonzero coefficients are equal to (or bounded by) ρ, then

∑
i 6=k Ri,k 6 k0ρN . So, k0ρ is the loss in

risk due to dependency, while the rate remains O(1/N). Referring to the firms model of Duellmann et
al. [16] and Bush et al.[4], this means for instance that for a large N , dependent firms have to be grouped
as several independent sets aggregated in the global model. Another way to model the dependency with
few parameters is to assume that dBit =

√
adW i

t +
√

1− adW i+1
t , where W i, . . . ,WN+1 are independent

Brownian motions and a ∈ [0, 1]. This is a way of saying that each firm is correlated to the following one
in the list. In that case,

Ri,i+1 = Ri,i−1 =
√
a(1− a), Ri,i = 1, Ri,k = 0 for |k − i| > 1;

and then

V =
1

N

(
1 + 2

(
1− 1

N

)√
a(1− a)

)
has order O(1/N). Note that this matrix is sparse in the sense of Assumption 3.4 below.
Our purpose is to show that, at least for some special dependence schemes on B1, . . . , BN , the variance
term of the projection (nonparametric) least squares estimator of b(.) introduced in the following section
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is at most of order
1

N

1 +
1

N

∑
i 6=k

|Ri,k|

 .

It is noteworthy that the estimator θ̂N is the maximum likelihood estimator (MLE) when X1, . . . , XN

are independent, while the MLE in our dependent setting would involve – and thus require the complete
knowledge of – the matrix R (more specifically, its inverse). In the present strategy, the knowledge of R
is not required, which is interesting and may justify a loss of efficiency.

3. A projection least squares estimator of the drift function

3.1. The objective function. Let fT be the density function defined by

fT (x) :=
1

T

∫ T

0

ps(x0, x)ds ; ∀x ∈ R,

where ps(x0, .) is the density with respect to Lebesgue’s measure of the probability distribution of Xs for
every s ∈ (0, T ]. Let us consider the projection space Sm := span{ϕ1, . . . , ϕm}, where ϕ1, . . . , ϕNT

are
continuous functions from I into R such that (ϕ1, . . . , ϕNT

) is an orthonormal family in L2(I, dx), and
I ⊂ R is a non-empty interval. We recall now that the objective function τ ∈ Sm 7→ γN (τ) is defined
by (3), where m ∈ {1, . . . , NT } and NT := [NT ] + 1. We choose a contrast which is the same as in
the independent case. Note that for the nonparametric estimation of the drift function from N observed
paths, even in the independent case, least squares and maximum likelihood strategies do not match.
Indeed, the likelihood would involve weights σ(Xi

s)
−2 inside all integrals. In the dependent case, there

would also be the matrix R−1 to take into account. Even if both σ(.) and R can be considered as known,
it is interesting not to need them to compute the drift estimator. In particular, the step to discrete time
high frequency data is then much simpler. Since the strategy works in the independent case, we can hope
that if the correlations are not too strong, then the strategy remains relevant.

Remark. For any τ ∈ Sm,

E(γN (τ)) =
1

T

∫ T

0

E(|τ(Xs)− b(Xs)|2)ds− 1

T

∫ T

0

E(b(Xs)
2)ds

=

∫ ∞
−∞

(τ(x)− b(x))2fT (x)dx−
∫ ∞
−∞

b(x)2fT (x)dx.

Then, the more τ is close to b, the more E(γN (τ)) is small. For this reason, the estimator of b minimizing
γN (.) is studied in this paper.

3.2. The projection least squares estimator and some related matrices. In this section, m is a
fixed integer in {1, . . . , NT }. We consider the estimator

(4) b̂m := arg min
τ∈Sm

γN (τ)

of b, if it exists and is unique. Since Sm = span{ϕ1, . . . , ϕm}, there exist m square integrable random
variables θ̂1, . . . , θ̂m such that

b̂m =

m∑
j=1

θ̂jϕj .

Then,

∇γN (̂bm) =

(
1

NT

N∑
i=1

(
2

m∑
`=1

θ̂`

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds− 2

∫ T

0

ϕj(X
i
s)dX

i
s

))
j∈{1,...,m}

.

Let

Ψ̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds

)
j,`∈{1,...,m}
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and

X̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)dX

i
s

)
j∈{1,...,m}

.

Therefore, by (4) and if Ψ̂m is invertible, necessarily

Θ̂m := (θ̂1, . . . , θ̂m)∗ = Ψ̂−1
m X̂m,

where M∗ denotes the transpose of the matrix M.

Remarks:
(1) We can write Ψ̂m = (〈ϕj , ϕ`〉N )j,`, where

〈ϕ,ψ〉N :=
1

NT

N∑
i=1

∫ T

0

ϕ(Xi
s)ψ(Xi

s)ds

for every measurable functions ϕ and ψ from R into itself.
(2) The following useful decomposition holds: X̂m = (〈b, ϕj〉N )∗j + Êm, where

Êm :=

(
1

NT

N∑
i=1

∫ T

0

σ(Xi
s)ϕj(X

i
s)dB

i
s

)∗
j∈{1,...,m}

.

Let us introduce the two following deterministic matrices related to the previous random ones:
• Ψm := E(Ψ̂m) = (〈ϕj , ϕ`〉fT )j,`, where 〈., .〉fT is the scalar product in L2(I, fT (x)dx).
• Ψm,σ := NTE(ÊmÊ∗m).

Note that under the following assumption, Comte and Genon-Catalot established in [7] (see Lemma 1)
that Ψm is invertible.

Assumption 3.1. The ϕj’s satisfy the three following conditions:
(1) (ϕ1, . . . , ϕm) is an orthonormal family of L2(I, dx).
(2) The ϕj’s are bounded, continuously derivable, and of bounded derivatives.
(3) There exist x1, . . . , xm ∈ I such that det[(ϕj(x`))j,`] 6= 0.

Let us conclude this section with the following suitable bound on the trace of Ψ
−1/2
m Ψm,σΨ

−1/2
m . To that

aim, we define the following quantity associated with the basis:

L(m) := 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 .

Lemma 3.2. Under Assumption 3.1, for σ belonging to L2(R, fT (x)dx) but possibly unbounded,

(5) trace(Ψ−1/2
m Ψm,σΨ−1/2

m ) 6 c3.2L(m)‖Ψ−1
m ‖op

1 +
1

N

∑
i6=k

|Ri,k|


with

c3.2 =

∫ ∞
−∞

σ(x)2fT (x)dx.

If in addition σ is bounded, then

(6) trace(Ψ−1/2
m Ψm,σΨ−1/2

m ) 6 m‖σ‖2∞

1 +
1

N

∑
i 6=k

|Ri,k|

 .

The two previous bounds on the trace compete. In some contexts, they can have the same order m. This
occurs if both following conditions hold (this setting is referred to as "compact setting" below):

• I is a compact set and L(m) = m, as in the case of a trigonometric basis.
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• fT is lower bounded on I by f0 > 0. Indeed, then ‖Ψ−1
m ‖op 6 1/f0 (see [7]).

However, the bound (5) is not relevant for a non compactly supported basis. For instance, for the Hermite
basis described below, L(m) is of order

√
m, but ‖Ψ−1

m ‖op is increasing with m and can be checked to be
numerically very large. So, for the Hermite basis, the second bound (6) must be preferred if σ is bounded,
and is used in the sequel.
Finally, note that N−1

∑
i,k |Ri,k| can be replaced by ‖R‖op in the bounds (5) and (6), and it holds that

1

N

∣∣∣∣∣∣
N∑

i,k=1

Ri,k

∣∣∣∣∣∣ 6 ‖R‖op.

Therefore, if the coefficients of the matrix R are nonnegative, as in the examples of Section 2 or in the
simulation Section 5, then N−1

∑
i,k |Ri,k| is better than ‖R‖op.

3.3. Risk bound on the projection least squares estimator. This section deals, for a given model
m, with a risk bound on the truncated estimator

b̃m := b̂m1Λm
,

where

Λm :=

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) 6 cT (p)
NT

log(NT )

}
with

cT (p) =
1

512T (1 + p/2)
, p > 12.

On the event Λm, Ψ̂m is invertible because

inf{sp(Ψ̂m)} > L(m)

cT (p)
· log(NT )

NT
> 0,

and then b̃m is well-defined. Consider

IN := {i ∈ {2, . . . , N} : ∃k ∈ {1, . . . , i− 1} such that Ri,k 6= 0}.
In the sequel, m fulfills the following assumption, related to the stability condition introduced in Cohen
et al. [5] and also used in Comte and Genon-Catalot [7]. Due to dependency, it has to be reinforced by
undesirable squares.

Assumption 3.3. [L(m)(‖Ψ−1
m ‖op ∨ 1)]2 6

cT (p)

2
· NT

log(NT )
.

Note that in the so-called compact setting defined above, this condition reduces to

m .

√
NT

log(NT )
,

which is similar to the constraint obtained in Baraud [1] (see the condition Nn 6 K−1
√
n/ log(n)3 in his

Theorem 1.1). However, this last condition can be improved in the independent case.

Moreover, a sparsity condition has to be set on |IN |, and this is again in order to handle dependency.

Assumption 3.4. There exists a deterministic constant c3.4 > 0, not depending on m and N , such that

|IN | 6 c3.4N
1
2−

6
p .

Remarks:
(1) The dependence condition (2) on B1, . . . , BN ensures that

IN = {i ∈ {1, . . . , N} : Bi is not independent of Fi−1},
where F0 := F and Fi := σ(B1, . . . , Bi) for every i ∈ {1, . . . , N}. This is crucial in the proof of
Theorem 3.5.
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(2) The condition on |IN | in Assumption 3.4 can be understood as a sparsity type condition on the
correlation matrix R. Note that under Assumption 3.4, for N large enough,

(7)
|IN |p

Np/2 log(NT )p/2
6

c3.4(p)

N6
with c3.4(p) = cp3.4.

Note that p is also involved in Assumption 3.3 through cT (p). Therefore, the larger p, the larger
IN , but the smaller the authorized choices of m. For Theorem 3.5, the constraint p > 12 may be
lightened into p > 4 and Assumption 3.4 into

|IN | 6 c3.4N
1
2−

2
p .

However, Theorem 4.3 is more demanding.

Theorem 3.5. Under Assumptions 3.1, 3.3 and 3.4, there exists a deterministic constant c3.5 > 0, not
depending on m and N , such that

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖τ − bI‖2fT +
c3.5m

NT

1 +
1

N

∑
i6=k

|Ri,k|

+
c3.5
N

.

As usual for a nonparametric estimator, the risk bound involves a bias term

min
τ∈Sm

‖τ − bI‖2fT ,

and a variance term of order m/(NT ) if
1

N

N∑
i,k=1

|Ri,k|

is bounded by a constant which does not depend on N . The last term is of order 1/N and gathers all
negligible quantities. The largerm, the better the approximation of bI in Sm and the smaller the bias. On
the opposite, the variance increases with m. This is why a compromise must be done, either theoretically
as in Section 2.4 of Comte and Genon-Catalot [7] from which consistency follows, or by a model selection
procedure, as described hereafter.

4. Model selection

Throughout this section, (ϕ1, . . . , ϕNT
) and the Ri,k’s fulfill the following additional assumptions.

Assumption 4.1. The ϕ′js satisfy the two following (additional) condition:
(1) There exists a deterministic constant cϕ > 1, not depending on N , such that for every m ∈
{1, . . . , NT },

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 6 c2ϕm.

(2) For every m,m′ ∈ {1, . . . , NT }, if m > m′, then Sm′ ⊂ Sm.

Assumption 4.2. There exists a deterministic constant m4.2 > 0, not depending on N , such that

‖R‖op 6 m4.2.

Let us consider
m̂ = arg min

m∈M̂N

{−‖b̂m‖2N + pen(m)},

where

pen(m) := ccal
m

NT

1 +
1

N

∑
i6=k

|Ri,k|

 ; ∀m ∈ {1, . . . , NT },

ccal > 0 is a deterministic constant to calibrate,

M̂N :=

{
m ∈ {1, . . . , NT } : [c2ϕm(‖Ψ̂−1

m ‖op ∨ 1)]2 6 dT (p)
NT

log(NT )

}
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and
dT (p) :=

1

512c4ϕT (1 + p/2)
.

Consider also the theoretical counterpart

MN :=

{
m ∈ {1, . . . , NT } : [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 6
dT (p)

4
· NT

log(NT )

}
of M̂N .

Theorem 4.3. Under Assumptions 3.1, 3.4, 4.1 and 4.2, there exists a deterministic constant c4.3 > 0,
not depending on N , such that

E(‖b̂m̂ − bI‖2N ) 6 c4.3 min
m∈MN

min
τ∈Sm

‖τ − bI‖2fT +
m

NT

1 +
1

N

∑
i 6=k

|Ri,k|

+
c4.3
N

.

It follows from Theorem 4.3 that the adaptive estimator b̂m̂ automatically reaches a squared bias-variance
compromise on the collectionMN .

5. Numerical experiments

In this section, we study the influence of dependency on the performance of the adaptive estimator.
We consider two bases:

• The cosine basis on I = [a, b], defined by ϕ1(x) := (b − a)−1/21[a,b](x), ϕj(x) := (2/(b −
a))1/2 cos(πj(x − a)/(b − a))1[a,b](x) for j > 2. The interval [a, b] is chosen different for each
model. The basis is orthonormal and fulfills

∑m
j=1 ϕ

2
j (x) 6 2m.

• The Hermite basis on I = R, defined from the Hermite polynomials Hj and given by

Hj(x) := (−1)jex
2 dj

dxj
(e−x

2

), ϕj(x) := cj−1Hj−1(x)e−x
2/2, cj =

(
2jj!
√
π
)−1/2

.

The sequence (ϕj)j>0 is an orthonormal bounded basis of L2(R, dx) with |ϕj(x)| 6 1/π1/4 (see
Indritz [17]). It is proved in Comte and Lacour [11] (see Lemma 1) that L(m) 6 K

√
m for some

constant K.
We experiment five models, where I is the chosen domain of representation for the Hermite basis, and
the basis support for the cosine basis:

(1) Hyperbolic diffusion, b1(x) = −θx and σ1(x) = γ
√

1 + x2, with θ = 2 and γ =
√

1/2, I1 =
[−0.9, 0.8].

(2) Hyperbolic tangent of an Ornstein-Uhlenbeck,

b2(x) = (1− x2)

(
−r

2
atanh(x)− γ2

4
x

)
, σ2(x) =

γ

2
(1− x2), r = 2, γ = 2, I2 = [−0.9, 0.9].

(3) Exponential of an Ornstein-Ulhenbeck,

b3(x) = x

(
−r

2
log(x+) +

γ2

8

)
, σ3(x) =

γ

2
x+, r = 1, γ = 2, I3 = [0.44, 2].

(4) Xt = G1(ξt) with dξt = α(ξt)dt+ dWt, α(x) = −θx/
√

1 + c2x2, G1(x) = asinh(cξt), θ = 3, c = 2,
I4 = [−1.15, 1.15], leading to

b4(x) = −
(
θ +

c2

2 cosh(x)

)
sinh(x)

cosh2(x)
, σ4(x) =

c

cosh(x)
.

(5) Xt = G2(ξt) with ξ as previously and G2(x) = asinh(x− 5) + asinh(x+ 5), leading to

b5(x) = G′2(H(x))α(H(x)) +
1

2
G′′2(H(x)), σ5(x) =

1√
1 + (H(x)− 5)2

+
1√

1 + (H(x) + 5)2
,

where θ = 1, c = 10 (in the definition of α), I5 = [−4, 4] and

H(x) = G−1
2 (x) =

1√
2 sinh(x)

[
(49 + cosh(x)) sinh(x)2 + 100(1− cosh(x)

]1/2
.
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Figure 1. Example 3. True functions in bold red and beam of 25 estimated drift b3
with Hermite (left) and cosine (right) bases, ρ = 0.5. The MISE×100 are 0.12, 0.33 and
the mean of selected dimensions are 8.4, 4.3.
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-1 -0.5 0 0.5 1

-1
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0
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Figure 2. Example 4. True functions in bold red and beam of 25 estimated drift b4
with Hermite (left) and cosine (right) bases, ρ = 0.5. The MISE×100 are 0.36, 0.26 and
the mean of selected dimensions are 4.4, 6.0.

Models 1, 4, 5 are simulated by Euler scheme with step ∆, directly for X in example 1 or for ξ in examples
4 and 5, with transformations G1 and G2 in a second stage. The underlying Ornstein-Uhlenbeck processes
in models 2 and 3 are generated by exact autoregressive scheme with step ∆. Details can be found in
Comte and Genon-Catalot [8] for examples 1, 2, 3 and in Comte al al. [10] for examples 4 and 5. The
dependency is contained in the Toeplitz variance matrix1 R(ρ) := (ρ|i−j|)16i,j6N for different values of ρ.
The choice ρ = 0 corresponds to the independent case, and we also experiment ρ = 0.5 (mild dependency)
and ρ = 0.9 (strong correlations). Assumption 3.4 is not fulfilled but we can consider that the coefficients
are in fact null when |i − j| is large enough. The orders of some quantities related to R(ρ) are given
in Table 1, and clearly,

∑
i,k R(ρ)i,k/N and ‖R(ρ)‖op are very close. The penalty term is computed as

in Comte and Genon-Catalot [7], by an empirical version which directly takes dependence into account

1This matrix is indeed a coreelation matrix as it is the variance of a stationary AR(1) process, Xt = ρXt−1 + εt, for
i.i.d. centered εt’s.
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Figure 3. Example 5. True functions in bold red and beam of 25 estimated drift b5
with Hermite basis for ρ = 0 (left) and ρ = 0.9 (right). The MISE×100 are 0.87, 1.67
and the mean of selected dimensions are 12.5 in both cases.

ρ = 0 ρ = 0.5 ρ = 0.9
N−1

∑
i,j Ri,j(ρ) 1 2.96 17.2

‖R(ρ)‖op 1 2.99 17.9

Table 1. Order of different quantities associated to the matrix R(ρ).

without requiring any information on R:

p̂en(m) := κ
m

NT
‖Ψ̂−1

m Ψ̂m,σ‖op with Ψ̂m,σ = (〈σϕj , σϕ`〉N )j,`

and κ = 2 for both bases. Then, the model m̂ is chosen as the minimizer of −‖b̂m‖2N +p̂en(m) for m 6 10
(resp. m 6 20) for the Hermite basis, except in example 5, where we set m 6 15 because otherwise the
selected dimension was systematically the maximal one (resp. for the cosine basis), such that

m‖Ψ̂−1
m ‖1/4op 6 NT (empirical collection of models).

We present illustrations of the estimation procedure obtained from simulated paths in Figures 1, 2, 3
for examples 3, 4 and 5. Figures 1 and 2 allow the comparison of the results obtained for Hermite (left
pictures) and cosine (right pictures) bases, for ρ = 0.5. Figure 3 shows the difference of estimation in the
Hermite basis when ρ = 0 (left picture) and when ρ = 0.9 (right picture). The scenario is the same in
the three figures: N = 200 and T = 100 (with 1000 observations with step ∆ = 0.1 for each path). The
MISE over the 25 repetitions are given, together with the mean of the selected dimensions. We can see
that the examples are quite different, and that the estimation method works in a convincing way, even
for strong dependency (ρ = 0.9).
We also illustrate on the scenario N = 100 and T = 100 (with 1000 observations with step ∆ = 0.1) for
each path, which was a middle scenario in Comte and Genon-Catalot [7], the influence of the value of
ρ on the MISE computed over 200 repetitions: the results are given in Table 2. We see that the MISE
increases when ρ increases, slightly from ρ = 0 to ρ = 0.5 and much more importantly from ρ = 0.5 to
ρ = 0.9. On the contrary, the selected dimensions for each basis are rather unchanged in these different
cases. This suggests that bias and variance increase simultaneously and proportionally. The Hermite
basis gives lower MISEs for examples 1 to 3, and the cosine basis wins for examples 4 and 5.
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ρ = 0 ρ = 0.5 ρ = 0.9
Ex. Hermite Cosine Herm Cos Herm Cos
Ex. 1 MISE 0.11(0.08) 0.80(0.24) 0.13(0.10) 0.83(0.29) 0.63(0.54) 1.38(6.29)

Dim 6.2(0.8) 6.2(1.5) 6.1(0.5) 6.2(1.5) 6.3(1.1) 6.3(1.2)

Ex. 2 MISE 0.78(0.18) 0.95(0.19) 0.78(0.18) 0.94(0.18) 1.02(0.47) 1.18(0.49)

Dim 6.1(0.5) 10.3(1.9) 6.1(0.5) 10.4(2.0) 6.1(0.5) 10.3(2.0)

Ex. 3 MISE 0.22(0.16) 0.34(0.11) 0.21(0.16) 0.37(0.14) 0.44(0.41) 0.55(0.43)

Dim 7.8(0.7) 4.1(0.4) 7.7(0.7) 4.1(0.4) 7.8(0.8) 4.2(0.6)

Ex. 4 MISE 0.41(0.18) 0.35(0.15) 0.46(0.21) 0.39(0.18) 1.06(0.66) 1.02(0.60)

Dim 4.4(0.8) 5.1(1.4) 4.4(0.8) 5.2(1.3) 4.9(1.3) 5.6(1.5)

Ex. 5 MISE 1.55(0.85) 1.49(0.61) 1.81(0.97) 1.58(0.62) 4.14(4.22) 3.15(3.55)

Dim 11.2(1.3) 6.3(0.8) 11.4(1.4) 6.2(0.6) 11.5(1.5) 6.3(0.8)

Table 2. 100 MISE (with 100 StD in parenthesis) and mean selected dimensions (with
StD in parenthesis) for the examples 1 to 5, N = 100 and T = 100, for Hermite and
cosine bases and 3 values of ρ (0 for independence, ρ = 0.9 for strong dependency).

6. Proofs

6.1. Proof of Lemma 3.2. First of all, let us show that the symmetric matrix Ψm,σ is nonnegative.
Indeed, for every y ∈ Rm,

y∗Ψm,σy =
1

NT

m∑
j,`=1

yjy`

N∑
i,k=1

E

((∫ T

0

σ(Xi
s)ϕj(X

i
s)dB

i
s

)(∫ T

0

σ(Xk
s )ϕ`(X

k
s )dBks

))

=
1

NT
E

( N∑
i=1

∫ T

0

σ(Xi
s)τy(Xi

s)dB
i
s

)2
 > 0 with τy(.) :=

m∑
j=1

yjϕj(.).

On the one hand, since Ψm,σ is a nonnegative matrix, since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈
{1, . . . , N}, and by the stochastic integration by parts formula,

trace(Ψ−1
m Ψm,σ) 6 ‖Ψ−1

m ‖optrace(Ψm,σ) =
1

NT
‖Ψ−1

m ‖op

m∑
j=1

E

( N∑
i=1

∫ T

0

σ(Xi
s)ϕj(X

i
s)dB

i
s

)2


=
1

NT
‖Ψ−1

m ‖op

m∑
j=1

N∑
i,k=1

∫ T

0

Ri,kE(σ(Xi
s)ϕj(X

i
s)σ(Xk

s )ϕj(X
k
s ))ds

6
1

N
‖Ψ−1

m ‖op

N +
∑
i 6=k

|Ri,k|

 m∑
j=1

∫ ∞
−∞

σ(x)2ϕj(x)2fT (x)dx

6 c1‖Ψ−1
m ‖opL(m)

1 +
1

N

∑
i6=k

|Ri,k|

 with c1 =

∫ ∞
−∞

σ(x)2fT (x)dx.
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On the other hand, assume now that σ is bounded. Again, since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈
{1, . . . , N}, and by the stochastic integration by parts formula, for every y ∈ Rm,

y∗Ψm,σy =
1

NT
E

( N∑
i=1

∫ T

0

σ(Xi
s)τy(Xi

s)dB
i
s

)2


6
1

T

1 +
1

N

∑
i6=k

|Ri,k|

∫ T

0

E(σ(Xs)
2τy(Xs)

2)ds

6

1 +
1

N

∑
i6=k

|Ri,k|

∫ ∞
−∞

σ(x)2

 m∑
j=1

yjϕj(x)

2

fT (x)dx

6 ‖σ‖2∞

1 +
1

N

∑
i 6=k

|Ri,k|

 ‖Ψ1/2
m y‖22,m.(8)

Thus, since Ψm,σ is nonnegative, and by Inequality (8),

trace(Ψ−1/2
m Ψm,σΨ−1/2

m ) 6 m‖Ψ−1/2
m Ψm,σΨ−1/2

m ‖op

= m · sup{y∗Ψm,σy ; y ∈ Rm and ‖Ψ1/2
m y‖2,m = 1}

6 m‖σ‖2∞

1 +
1

N

∑
i6=k

|Ri,k|

 .

6.2. Proof of Theorem 3.5. The proof of Theorem 3.5 relies on the two following lemmas.

Lemma 6.1. There exists a deterministic constant c6.1 > 0, not depending on m and N , such that

E(|Ê∗mÊm|2) 6 c6.1
mL(m)2

N2

1 +

 1

N

∑
i6=k

|Ri,k|

2
 .

Lemma 6.2. Consider the event

Ωm :=

{
sup
τ∈Sm

∣∣∣∣∣ ‖τ‖2N‖τ‖2fT
− 1

∣∣∣∣∣ 6 1

2

}
.

Under Assumptions 3.1, 3.3 and 3.4, there exists a deterministic constant c6.2 > 0, not depending on m
and N , such that

P(Ωcm) 6
c6.2
N6

and P(Λcm) 6
c6.2
N6

.

6.2.1. Steps of the proof. First of all,

‖b̃m − bI‖2N = ‖bI‖2N1Λc
m

+ ‖b̂m − bI‖2N1Λm

= U1 + U2 + U3(9)

where U1 := ‖bI‖2N1Λc
m
,

U2 := ‖b̂m − bI‖2N1Λm∩Ωm and U3 := ‖b̂m − bI‖2N1Λm∩Ωc
m
.

Let us find suitable bounds on E(U1), E(U2) and E(U3).
• Bound on E(U1). By Cauchy-Schwarz’s inequality,

E(U1) 6 E(‖bI‖4N )1/2P(Λcm)1/2 6 E

(
1

T

∫ T

0

bI(Xt)
4dt

)1/2

P(Λcm)1/2

6 c1P(Λcm)1/2 <∞ with c1 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

<∞.
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• Bound on E(U2). Let ΠN,m(.) be the orthogonal projection from L2(I, fT (x)dx) onto Sm with
respect to the empirical scalar product 〈., .〉N . Then,

(10) ‖b̂m − bI‖2N = ‖b̂m −ΠN,m(bI)‖2N + min
τ∈Sm

‖bI − τ‖2N .

As in the proof of Comte and Genon-Catalot [7], Proposition 2.1, on Ωm,

‖b̂m −ΠN,m(bI)‖2N = Ê∗mΨ̂−1
m Êm 6 2Ê∗mΨ−1

m Êm.

So,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωm
) 6 2E

 m∑
j,`=1

[Êm]j [Êm]`Ψ
−1
m (j, `)


=

2

NT

m∑
j,`=1

Ψm,σ(j, `)Ψ−1
m (j, `) =

2

NT
trace(Ψ−1

m Ψm,σ)

=
2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m ).

Then, by Equality (10) and Lemma 3.2,

E(U2) 6 E
(

min
τ∈Sm

‖bI − τ‖2N
)

+
2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m )

6 min
τ∈Sm

‖bI − τ‖2fT +
2m

NT
‖σ‖2∞

1 +
1

N

∑
i6=k

|Ri,k|

 .

• Bound on E(U3). By the definition of the event Λm and by Lemma 6.1,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) = E[(Ê∗mΨ̂−1
m Êm)1Λm∩Ωc

m
]

6 E(‖Ψ̂−1
m ‖op|Ê∗mÊm|1Λm∩Ωc

m
)

6
cT (p)

L(m)
· NT

log(NT )
E(|Ê∗mÊm|2)1/2P(Ωcm)1/2

6
c2m

1/2

log(NT )

1 +
1

N

∑
i 6=k

|Ri,k|

P(Ωcm)1/2

where c2 > 0 is a deterministic constant not depending on m and N . Then,

E(U3) 6 E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) + E(‖bI‖2N1Λm∩Ωc
m

)

6
c2m

1/2

log(NT )

1 +
1

N

∑
i 6=k

|Ri,k|

P(Ωcm)1/2 + c1P(Ωcm)1/2.

So,

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT

+

[
2m

NT
‖σ‖2∞ + c2

√
mP(Ωcm)

log(NT )

]1 +
1

N

∑
i6=k

|Ri,k|

+ c1(P(Λcm)1/2 + P(Ωcm)1/2).

Therefore, by Lemma 6.2, there exists a deterministic constant c3 > 0, not depending on m and N , such
that

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT +
c3m

NT

1 +
1

N

∑
i 6=k

|Ri,k|

+
c3
N
.
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6.2.2. Proof of Lemma 6.1. By Jensen’s inequality, by Burkholder-Davis-Gundy’s inequality, and since
d〈Bi, Bk〉t = Ri,kdt for every i, k ∈ {1, . . . , N}, there exists a deterministic constant c1 > 0, not depending
on m and N , such that

E(|Ê∗mÊm|2) 6 m

m∑
j=1

E(Êm(j)4) 6
c1m

N4T 4

m∑
j=1

E

〈 N∑
i=1

∫ T

0

σ(Xi
s)ϕj(X

i
s)dB

i
s

〉2

T


6

2c1m

N4T 4

m∑
j=1

(E(D2
j ) + E(A2

j )),

where

Dj :=

N∑
i=1

∫ T

0

σ(Xi
s)

2ϕj(X
i
s)

2ds and Aj :=
∑
i 6=k

Ri,k

∫ T

0

σ(Xi
s)ϕj(X

i
s)σ(Xk

s )ϕj(X
k
s )ds

for every j ∈ {1, . . . ,m}. On the one hand, by Jensen’s inequality,

m∑
j=1

E(D2
j ) 6 NT

m∑
j=1

N∑
i=1

∫ T

0

E(σ(Xi
s)

4ϕj(X
i
s)

4)ds

6 N2TL(m)2

∫ T

0

E(σ(Xs)
4)ds = N2T 2L(m)2

∫ ∞
−∞

σ(x)4fT (x)dx.

On the other hand, by Jensen’s inequality and Cauchy-Schwarz’s inequality,

m∑
j=1

E(A2
j ) 6 T

∑
i 6=k

|Ri,k|

 m∑
j=1

∑
i 6=k

|Ri,k|
∫ T

0

E(σ(Xi
s)

2ϕj(X
i
s)

2σ(Xk
s )2ϕj(X

k
s )2)ds

6 T

∑
i 6=k

|Ri,k|

2
m∑
j=1

∫ T

0

E(σ(Xs)
4ϕj(Xs)

4)ds

6 T 2

∑
i 6=k

|Ri,k|

2

L(m)2

∫ ∞
−∞

σ(x)4fT (x)dx.

Therefore,

E(|Ê∗mÊm|2) 6
c2

N2T 2
mL(m)2

1 +

 1

N

∑
i 6=k

|Ri,k|

2


with

c2 = 2c1

∫ ∞
−∞

σ(x)4fT (x)dx.

6.2.3. Proof of Lemma 6.2. Let (ϕ1, . . . , ϕNT
) be the orthonormal family of L2(I, fT (x)dx) derived from

(ϕ1, . . . , ϕNT
) via Gram-Schmidt’s method. Consider also the matrix

Ĝm :=

N∑
i=1

Ĝm(Xi),

where

Ĝm(ψ) :=
1

NT

(∫ T

0

ϕj(ψ(t))ϕ`(ψ(t))dt

)
j,`∈{1,...,m}

; ∀ψ ∈ Ω.
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The random matrix Ĝm(Xi) has the same eigenvalues as N−1Ψ
−1/2
m Ψ̂m(Xi)Ψ

−1/2
m , where

Ψ̂m(ψ) :=

(
1

T

∫ T

0

ϕj(ψ(t))ϕ`(ψ(t))dt

)
j,`∈{1,...,m}

; ∀ψ ∈ Ω.

Moreover, for every ψ ∈ Ω, by Jensen’s and Cauchy-Schwarz’s inequalities,

‖Ψ̂m(ψ)‖2op = sup
‖x‖2,m=1

m∑
`=1

 1

T

∫ T

0

 m∑
j=1

ϕj(ψ(t))ϕ`(ψ(t))xj

 dt

2

6
1

T
sup

‖x‖2,m=1

m∑
`=1

∫ T

0

ϕ`(ψ(t))2

 m∑
j=1

ϕj(ψ(t))xj

2

dt

6
L(m)

T
sup

‖x‖2,m=1

∫ T

0

 m∑
j=1

ϕj(ψ(t))xj

2

dt 6 L(m)2.(11)

Notations:
• The semidefinite order on symmetric matrices is denoted by 4.
• E0(.) := E(.) and Ei(.) := E(.|Fi) for every i ∈ {1, . . . , N}.

First of all, note that
‖Ĝm − I‖op 6MN +RN ,

where

MN :=

∥∥∥∥∥
N∑
i=1

(Ĝm(Xi)− Ei−1(Ĝm(Xi)))

∥∥∥∥∥
op

and RN :=

∥∥∥∥∥
N∑
i=1

(Ei−1(Ĝm(Xi))−N−1I)

∥∥∥∥∥
op

.

The proof of Lemma 6.2 is dissected in three steps. Step 1 deals with a suitable bound on P(MN > δ/2),
δ > 0, step 2 with a suitable bound on P(RN > δ/2), and the conclusion comes in step 3.

Step 1. For any δ > 0, let us establish a suitable bound on P(MN > δ). For every i ∈ {1, . . . , N},
since

G̃m(Xi) := Ĝm(Xi)− Ei−1(Ĝm(Xi))

is a symmetric matrix, by Jensen’s inequality and by Inequality (11),

G̃m(Xi)2 4 λmax[G̃m(Xi)2]I

= ‖Ĝm(Xi)− Ei−1(Ĝm(Xi))‖2opI

4
2

N2
(‖Ψ−1/2

m Ψ̂m(Xi)Ψ−1/2
m ‖2op + Ei−1(‖Ψ−1/2

m Ψ̂m(Xi)Ψ−1/2
m ‖2op))I

4
2

N2
(‖Ψ̂m(Xi)‖2op + Ei−1(‖Ψ̂m(Xi)‖2op))‖Ψ−1

m ‖2opI 4 A2
i

with
A2
i :=

4

N2
[L(m)(‖Ψ−1

m ‖op ∨ 1)]2I.

So, by Azuma’s inequality for matrix martingales (see Tropp [22], Theorem 7.1),

P

∥∥∥∥∥
N∑
i=1

G̃m(Xi)

∥∥∥∥∥
op

> δ

 6 m exp

(
− δ2

8σ2

)
with

σ2 =

∥∥∥∥∥
N∑
i=1

A2
i

∥∥∥∥∥
op

=
4

N
[L(m)(‖Ψ−1

m ‖op ∨ 1)]2.
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This leads to

P(MN > δ) 6 m exp

[
− δ2N

32[L(m)(‖Ψ−1
m ‖op ∨ 1)]2

]
.

Step 2. For any δ > 0, let us establish a suitable bound on P(RN > δ). First of all, let us recall that
under Assumption 3.4,

IN = {i ∈ {1, . . . , N} : Bi is not independent of Fi−1}.

For every i ∈ {1, . . . , N}\IN , since (ϕ1, . . . , ϕNT
) is an orthonormal family of L2(I, fT (x)dx),

Ei−1(Ĝm(Xi)) = E(Ĝm(X)) =

(
1

NT

∫ T

0

E(ϕj(Xt)ϕ`(Xt))dt

)
j,`

=
1

N
(〈ϕj , ϕ`〉fT )j,` =

1

N
I.

Then,

RN =

∥∥∥∥∥∑
i∈IN

(Ei−1(Ĝm(Xi))−N−1I)

∥∥∥∥∥
op

.

By Markov’s inequality and Jensen’s inequality (usual and conditional),

P(RN > δ) 6
E(RpN )

δp
6
|IN |p−1

δp

∑
i∈IN

E(‖Ei−1(Ĝm(Xi)−N−1I)‖pop)

6
|IN |p

δp
E(‖Ĝm(X)−N−1I‖pop)

=
|IN |p

δpNp
E(‖Ψ−1/2

m Ψ̂m(X)Ψ−1/2
m − I‖pop)

6
2p−1|IN |p

δpNp
[E(‖Ψ̂m(X)‖pop)‖Ψ−1

m ‖pop + 1] 6
2p|IN |p

δpNp
[L(m)(‖Ψ−1

m ‖op ∨ 1)]p.

Step 3 (conclusion). For any δ > 0, the two previous steps leads to

P(‖Ĝm − I‖op > δ) 6 P
({

MN >
δ

2

}
∪
{
RN >

δ

2

})
6 m exp

[
− δ2N

128[L(m)(‖Ψ−1
m ‖op ∨ 1)]2

]
+

22p|IN |p

δpNp
[L(m)(‖Ψ−1

m ‖op ∨ 1)]p.(12)

As established in the beginning of the proof of Comte and Genon-Catalot [7], Proposition 2.1,

Ωm =

{
sup
τ∈Sm

∣∣∣∣∣ ‖τ‖2N‖τ‖2fT
− 1

∣∣∣∣∣ 6 1

2

}
=

{
‖Ĝm − I‖op 6

1

2

}
.

Then, by Inequality (12), by Assumptions 3.3 and 3.4 (leading to (7)), and since p > 12,

P(Ωcm) 6 m exp

(
− log(NT )

512cT (p)T

)
+

23p(cT (p)T )p/2

2p/2
· |IN |p

Np/2 log(NT )p/2

6 c1

(
m

N1+p/2
+

|IN |p

Np/2 log(NT )p/2

)
6

c1(1 + c3.4(p))

N6

where c1 > 0 is a deterministic constant not depending onm and N . Moreover, on Λcm and by Assumption
3.3,

[L(m)(‖Ψ−1
m ‖op ∨ 1)]2 6

cT (p)

2
· NT

log(NT )
and L(m)(‖Ψ̂−1

m ‖op ∨ 1) > cT (p)
NT

log(NT )
.
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The first inequality implies that

L(m)‖Ψ−1
m ‖op 6

cT (p)

2
· NT

log(NT )
and L(m) 6

cT (p)

2
· NT

log(NT )
,

and then the second one leads to

cT (p)
NT

log(NT )
< L(m)‖Ψ̂−1

m ‖op 6 L(m)(‖Ψ̂−1
m −Ψ−1

m ‖op + ‖Ψ−1
m ‖op)

6 L(m)‖Ψ̂−1
m −Ψ−1

m ‖op +
cT (p)

2
· NT

log(NT )
.

Therefore,

P(Λcm) 6 P
(
cT (p)

2
· NT

log(NT )
6 L(m)‖Ψ̂−1

m −Ψ−1
m ‖op

)
6 P(‖Ψ−1

m ‖op < ‖Ψ̂−1
m −Ψ−1

m ‖op) 6 P(Ωcm) 6
c1(1 + c3.4(p))

N6
.

6.3. Proof of Theorem 4.3. Let us consider the events

ΩN :=
⋂

m∈M+
N

Ωm and ΞN := {MN ⊂ M̂N ⊂M+
N},

where

M+
N :=

{
m ∈ {1, . . . , NT } : [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 6 4dT (p)
NT

log(NT )

}
.

Moreover, recall that

MN =

{
m ∈ {1, . . . , NT } : [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 6
dT (p)

4
· NT

log(NT )

}
⊂M+

N

and

M̂N =

{
m ∈ {1, . . . , NT } : [c2ϕm(‖Ψ̂−1

m ‖op ∨ 1)]2 6 dT (p)
NT

log(NT )

}
.

The proof of Theorem 4.3 relies on the two following lemmas.

Lemma 6.3. Under Assumptions 3.1, 3.4 and 4.1, there exists a deterministic constant c6.3 > 0, not
depending on m and N , such that

P(ΞcN ) 6
c6.3
N5

.

Lemma 6.4. Consider the empirical process

νN (τ) :=
1

NT

N∑
i=1

∫ t

0

σ(Xi
s)τ(Xi

s)dB
i
s ; τ ∈ S1 ∪ · · · ∪ SNT

.

Under Assumptions 3.1 and 4.2, there exists a deterministic constant c6.4 > 0, not depending on N , such
that for every m ∈MN ,

E

[ sup
τ∈Bm̂,m

|νN (τ)|

]2

− p(m̂,m)


+

1ΞN∩ΩN

 6
c6.4
NT

where, for every m′ ∈MN ,

Bm,m′ := {τ ∈ Sm∨m′ : ‖τ‖fT = 1} and p(m,m′) :=
ccal

8
· m ∨m

′

NT

1 +
1

N

∑
i 6=k

|Ri,k|

 .
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6.3.1. Steps of the proof. First of all,

‖b̂m̂ − bI‖2N = ‖b̂m̂ − bI‖2N1Ξc
N

+ ‖b̂m̂ − bI‖2N1ΞN

=: U1 + U2.(13)

Let us find suitable bounds on E(U1) and E(U2).

• Bound on E(U1). By the definition of M̂N and by Lemma 6.1,

E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) = E[(Ê∗m̂Ψ̂−1
m̂ Êm̂)1Ξc

N
]

6 E(‖Ψ̂−1
m̂ ‖op|Ê∗NT ÊNT |1Ξc

N
)

6

√
dT (p)

NT

log(NT )
E(|Ê∗NT ÊNT |2)1/2P(ΞcN )1/2

6
c1N

log(NT )

1 +
1

N

∑
i 6=k

|Ri,k|

P(ΞcN )1/2

where c1 > 0 is a deterministic constant not depending on N . Then,

E(U1) 6 E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) + E(‖bI‖2N1Ξc
N

)

6
c1N

log(NT )

1 +
1

N

∑
i 6=k

|Ri,k|

P(ΞcN )1/2 + c2P(ΞcN )1/2

with

c2 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

.

So, by Lemma 6.2, there exists a deterministic constant c3 > 0, not depending on N , such that

E(U1) 6
c3
N

1 +
1

N

∑
i6=k

|Ri,k|

 .

• Bound on E(U2). Note that

U2 = ‖b̂m̂ − bI‖2N1ΞN∩Ωc
N

+ ‖b̂m̂ − bI‖2N1ΞN∩ΩN

=: U2,1 + U2,2.

On the one hand, by Lemma 6.2, there exists a deterministic constant c4 > 0, not depending on
N , such that

P(ΞN ∩ ΩcN ) 6
∑

m∈M+
N

P(Ωcm) 6
c4
N5

.

Then, as for E(U1), there exists a deterministic constant c5 > 0, not depending on N , such that

E(U2,1) 6
c5
N

1 +
1

N

∑
i 6=k

|Ri,k|

 .

On the other hand,

γN (τ ′)− γN (τ) = ‖τ ′ − b‖2N − ‖τ − b‖2N − 2νN (τ ′ − τ)

for every τ, τ ′ ∈ S1 ∪ · · · ∪ SNT
. Moreover, since

m̂ = arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)} = arg min
m∈M̂N

{γN (̂bm) + pen(m)},

for every m ∈ M̂N ,

(14) γN (̂bm̂) + pen(m̂) 6 γN (̂bm) + pen(m).
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On the event ΞN = {MN ⊂ M̂N ⊂ M+
N}, Inequality (14) remains true for every m ∈ MN .

Then, on ΞN , for any m ∈MN , since Sm + Sm̂ ⊂ Sm∨m̂ under Assumption 4.1,

‖b̂m̂ − bI‖2N 6 ‖b̂m − bI‖2N + 2νN (̂bm̂ − b̂m) + pen(m)− pen(m̂)

6 ‖b̂m − bI‖2N +
1

8
‖b̂m̂ − b̂m‖2fT

+8

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

+ pen(m) + 8p(m, m̂)− pen(m̂).

Since ‖.‖2fT 1ΩN
6 2‖.‖2N1ΩN

on S1 ∪ · · · ∪Smax(M+
N ), and since 8p(m, m̂) 6 pen(m) + pen(m̂), on

ΞN ∩ ΩN ,

‖b̂m̂ − bI‖2N 6 3‖b̂m − bI‖2N + 4pen(m) + 16

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

.

So, by Lemma 6.3,

E(U2,2) 6 min
m∈MN

{E(3‖b̂m − bI‖2N1ΞN
) + 4pen(m)}+

16c6.4
NT

6 c6 min
m∈MN

 inf
τ∈Sm

‖τ − bI‖2fT +
m

NT

1 +
1

N

∑
i 6=k

|Ri,k|

+
c6
N

where c6 > 0 is a deterministic constant not depending on N .

6.3.2. Proof of Lemma 6.3. Note that

ΞcN = {MN 6⊂ M̂N} ∪ {M̂N 6⊂ M+
N}.

The proof of Lemma 6.3 is dissected in three steps. Step 1 deals with a bound on P(MN 6⊂ M̂N ), step
2 with a bound on P(‖Ψ̂m −Ψm‖op > δ), δ > 0, and step 3 with a bound on P(M̂N 6⊂ M+

N ).

Step 1. On {MN 6⊂ M̂N} = {max(MN ) > max(M̂N )}, there exists m ∈ {1, . . . , NT } such that

[c2ϕm(‖Ψ−1
m ‖op ∨ 1)]2 6

dT (p)

4
· NT

log(NT )
and [c2ϕm(‖Ψ̂−1

m ‖op ∨ 1)]2 > dT (p)
NT

log(NT )
.

The first inequality is equivalent to

c4ϕm
2‖Ψ−1

m ‖2op 6
dT (p)

4
· NT

log(NT )
and c4ϕm

2 6
dT (p)

4
· NT

log(NT )
,

and then the second one leads to

dT (p)
NT

log(NT )
< c4ϕm

2‖Ψ̂−1
m ‖2op 6 2c4ϕm

2(‖Ψ̂−1
m −Ψ−1

m ‖2op + ‖Ψ−1
m ‖2op)

6 2c4ϕm
2‖Ψ̂−1

m −Ψ−1
m ‖2op +

dT (p)

2
· NT

log(NT )
.

So,

{MN 6⊂ M̂N} ⊂
⋃

m∈MN

{
dT (p)

4
· NT

log(NT )
6 c4ϕm

2‖Ψ̂−1
m −Ψ−1

m ‖2op

}
⊂

⋃
m∈MN

{‖Ψ−1
m ‖op < ‖Ψ̂−1

m −Ψ−1
m ‖op} ⊂

⋃
m∈MN

Ωcm

and, since dT (p)/4 6 cT (p)/2, by Lemma 6.2,

P(MN 6⊂ M̂N ) 6
∑

m∈MN

P(Ωcm) 6
c1
N5
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where c1 > 0 is a deterministic constant not depending on N .

Step 2. First of all, note that
‖Ψ̂m −Ψm‖op 6MN +RN ,

where

MN :=
1

N

∥∥∥∥∥
N∑
i=1

(Ψ̂m(Xi)− Ei−1(Ψ̂m(Xi)))

∥∥∥∥∥
op

and RN :=
1

N

∥∥∥∥∥
N∑
i=1

(Ei−1(Ψ̂m(Xi))− E(Ψ̂m(Xi)))

∥∥∥∥∥
op

.

On the one hand, for any δ > 0, let us establish a suitable bound on P(MN > δ). For every i ∈ {1, . . . , N},
since

Ψ̃m(Xi) :=
1

N
(Ψ̂m(Xi)− Ei−1(Ψ̂m(Xi)))

is a symmetric matrix, by Jensen’s inequality and by Inequality (11),

Ψ̃m(Xi)2 4 λmax[Ψ̃m(Xi)2]I =
1

N2
‖Ψ̂m(Xi)− Ei−1(Ψ̂m(Xi))‖2opI

4
2

N2
(‖Ψ̂m(Xi)‖2op + Ei−1(‖Ψ̂m(Xi)‖2op))I 4 A2

i

with

A2
i :=

4L(m)2

N2
I.

So, by Azuma’s inequality for matrix martingales (see Tropp [22], Theorem 7.1),

P(MN > δ) = P

∥∥∥∥∥
N∑
i=1

Ψ̃m(Xi)

∥∥∥∥∥
op

> δ

 6 m exp

(
− δ2N

32L(m)2

)
.

On the other hand, let us establish a suitable bound on P(RN > δ). By the definition of IN ,

RN =
1

N

∥∥∥∥∥∑
i∈IN

(Ei−1(Ψ̂m(Xi))− E(Ψ̂m(Xi)))

∥∥∥∥∥
op

.

Then, by Markov’s inequality and Jensen’s inequality (usual and conditional),

P(RN > δ) 6
E(RpN )

δp
6
|IN |p−1

δpNp

∑
i∈IN

E[‖Ei−1[Ψ̂m(Xi)− E(Ψ̂m(Xi))]‖pop]

6
|IN |p

δpNp
E(‖Ψ̂m(X)− E(Ψ̂m(X))‖pop) 6

2p|IN |p

δpNp
L(m)p.

Therefore,

P(‖Ψ̂m −Ψm‖op > δ) 6 P
({

MN >
δ

2

}
∪
{
RN >

δ

2

})
6 m exp

(
− δ2N

128L(m)2

)
+

22p|IN |p

δpNp
L(m)p.

Step 3. On {M̂N 6⊂ M+
N} = {max(M̂N ) > max(M+

N )}, there exists m ∈ {1, . . . , NT } such that

[c2ϕm(‖Ψ̂−1
m ‖op ∨ 1)]2 6 dT (p)

NT

log(NT )
and [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 > 4dT (p)
NT

log(NT )
.

The first inequality is equivalent to

c4ϕm
2‖Ψ̂−1

m ‖2op 6 dT (p)
NT

log(NT )
and c4ϕm

2 6 dT (p)
NT

log(NT )
,
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and then the second one leads to

4dT (p)
NT

log(NT )
< c4ϕm

2‖Ψ−1
m ‖2op 6 2c4ϕm

2(‖Ψ−1
m − Ψ̂−1

m ‖2op + ‖Ψ̂−1
m ‖2op)

6 2c4ϕm
2‖Ψ−1

m − Ψ̂−1
m ‖2op + 2dT (p)

NT

log(NT )
.

Moreover, for every m ∈ {1, . . . , NT },

{‖Ψ−1
m − Ψ̂−1

m ‖op > ‖Ψ̂−1
m ‖op}

⊂
{
‖Ψ̂−1/2

m ΨmΨ̂−1/2
m − I‖op >

1

2

}
⊂
{
‖Ψ̂m −Ψm‖op >

1

2
‖Ψ̂−1

m ‖−1
op

}

by interchanging Ψ̂m and Ψm in the proof of Comte and Genon-Catalot [6], Proposition 4.(ii). So,

{MN 6⊂ M̂N} ⊂
⋃

c4ϕm
26dT (p)NT/ log(NT )

{
2c4ϕm

2‖Ψ̂−1
m ‖2op < 2dT (p)

NT

log(NT )
6 2c4ϕm

2‖Ψ−1
m − Ψ̂−1

m ‖2op

}

⊂
⋃

c4ϕm
26dT (p)NT/ log(NT )

{
‖Ψ̂m −Ψm‖op >

m

2

√
log(NT )

dT (p)NT

}

and, by the previous step, Assumptions 3.4 and 4.1, and since p > 12,

P(MN 6⊂ M̂N ) 6
∑

c4ϕm
26dT (p)NT/ log(NT )

(
m exp

(
− N

512L(m)2
· m

2 log(NT )

dT (p)NT

)

+
23p|IN |p

Np
· dT (p)p/2(NT )p/2

mp log(NT )p/2
L(m)p

)
6

∑
c4ϕm

26dT (p)NT/ log(NT )

(
m exp

(
− 1

512c4ϕ
· log(NT )

dT (p)T

)

+
23p|IN |p

Np/2
· dT (p)p/2T p/2

log(NT )p/2
c2pϕ

)
6

∑
c4ϕm

26dT (p)NT/ log(NT )

(
m

N1+p/2
+

23pc2pϕ c3.4(p)

N6
dT (p)p/2T p/2

)
6

c2
N5

where c2 > 0 is a deterministic constant not depending on N .

6.3.3. Proof of Lemma 6.4. The proof of Lemma 6.4 is dissected in two steps.

Step 1. Consider τ ∈ S1 ∪ · · · ∪ SNT
and the martingale (MN (τ)t)t∈[0,T ] defined by

MN (τ)t :=

N∑
i=1

∫ t

0

σ(Xi
s)τ(Xi

s)dB
i
s ; ∀t ∈ [0, T ].



22 FABIENNE COMTE† AND NICOLAS MARIE�

Note that νN (τ) = MN (τ)T /(NT ). Since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈ {1, . . . , N},

〈MN (τ)〉T =

N∑
i,k=1

Ri,k

∫ T

0

σ(Xi
t)σ(Xk

t )τ(Xi
t)τ(Xk

t )dt

=

∫ T

0

(σ(Xi
t)τ(Xi

t))
∗
i ×R× (σ(Xi

t)τ(Xi
t))idt

6 ‖R‖op

∫ T

0

‖(σ(Xi
t)τ(Xi

t))16i6N‖22,Ndt

6 ‖R‖op‖σ‖2∞
∫ T

0

(
N∑
i=1

τ(Xi
t)

2

)
dt = NT‖R‖op‖σ‖2∞‖τ‖2N .

Then, by Assumption 4.2 and Bernstein’s inequality for local martingales (see Revuz and Yor [21], p.
153), for any ε, υ > 0,

P(νN (τ) > ε, ‖τ‖2N 6 υ2) 6 P(MN (τ)∗T > NTε, 〈MN (τ)〉T 6 NTυ2‖R‖op‖σ‖2∞)

6 exp

(
− NTε2

2υ2‖σ‖2∞r

)
with r = 1 + m4.2.

Step 2. By using the bound of step 1 and by following the pattern of the proof of Baraud et al. [2],
Proposition 6.1, the purpose of this step is to find a suitable bound on

E

[ sup
τ∈Bm,m′

|νN (τ)|

]2

− p(m,m′)


+

1ΞN∩ΩN

 ; m,m′ ∈MN .

Consider δ0 ∈ (0, 1) and let (δn)n∈N∗ be the real sequence defined by

δn := δ02−n ; ∀n ∈ N∗.

Since Sm∨m′ is a vector subspace of L2([0, T ], fT (x)dx) of dimension m ∨m′, for any n ∈ N, there exists
Tn ⊂ Bm,m′ such that |Tn| 6 (3/δn)m∨m

′
and, for any τ ∈ Bm,m′ ,

∃fn ∈ Tn : ‖τ − fn‖fT 6 δn.

In particular, note that

τ = f0 +

∞∑
n=1

(fn − fn−1).

Then, for any sequence (∆n)n∈N of elements of (0,∞) such that ∆ =
∑
n∈N ∆n <∞,

[
sup

τ∈Bm,m′

νN (τ)

]2

> ∆2


=

{
∃(fn)n∈N ∈

∞∏
n=0

Tn : νN (f0) +

∞∑
n=1

νN (fn − fn−1) > ∆

}

⊂

{
∃(fn)n∈N ∈

∞∏
n=0

Tn : νN (f0) > ∆0 or [∃n ∈ N∗ : νN (fn − fn−1) > ∆n]

}

⊂
⋃

f0∈T0

{νN (f0) > ∆0} ∪
∞⋃
n=1

⋃
(fn−1,fn)∈Tn

{νN (fn − fn−1) > ∆n}

with Tn = Tn−1 × Tn for every n ∈ N∗. Moreover, ‖f0‖2fT 6 δ2
0 ,

‖fn − fn−1‖2fT 6 2δ2
n−1 + 2δ2

n =
5

2
δ2
n−1 ; ∀n ∈ N∗,
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and ‖.‖2N1ΩN
6 3/2‖.‖2fT 1ΩN

on S1 ∪ · · · ∪ Smax(M+
N ). So, by step 1,

P


[

sup
τ∈Bm,m′

νN (τ)

]2

> ∆2

 ∩ ΞN ∩ ΩN


6
∑
f0∈T0

exp

(
− NT∆2

0

3‖f0‖2fT ‖σ‖
2
∞r

)

+

∞∑
n=1

∑
(fn−1,fn)∈Tn

exp

(
− NT∆2

n

3‖fn − fn−1‖2fT ‖σ‖
2
∞r

)

6 exp

(
h0 −

NT∆2
0

3δ2
0‖σ‖2∞r

)
+

∞∑
n=1

exp

(
hn−1 + hn −

NT∆2
n

15/2δ2
n−1‖σ‖2∞r

)
(15)

with hn = log(|Tn|) for every n ∈ N. Now, let us take ∆0 such that

h0 −
NT∆2

0

3δ2
0‖σ‖2∞r

= −(m ∨m′ + x) with x > 0,

which leads to

∆0 =

[
3δ2

0‖σ‖2∞r

NT
(m ∨m′ + x+ h0)

]1/2

,

and for every n ∈ N∗, let us take ∆n such that

hn−1 + hn −
NT∆2

n

15/2δ2
n−1‖σ‖2∞r

= −(m ∨m′ + x+ n),

which leads to

∆n =

[
15/2δ2

n−1‖σ‖2∞r

NT
(m ∨m′ + x+ n+ hn−1 + hn)

]1/2

.

For this appropriate sequence (∆n)n∈N,

P


[

sup
τ∈Bm,m′

νN (τ)

]2

> ∆2

 ∩ ΞN ∩ ΩN

 6 e−xe−(m∨m′)

(
1 +

∞∑
n=1

e−n

)
6 1.6e−xe−(m∨m′)

by Inequality (15), and

∆2 6
3‖σ‖2∞r

NT

[
δ0[(m ∨m′ + x)1/2 + h

1/2
0 ] +

√
5

2

∞∑
n=1

δn−1[(m ∨m′ + x)1/2 + (n+ hn−1 + hn)1/2]

]2

6
3‖σ‖2∞r

NT
δ(1)(m ∨m′ + x) +

3‖σ‖2∞r

NT
δ(2) 6

3‖σ‖2∞r

NT
(δ(1) + δ(2))(m ∨m′ + x)

with

δ(1) = 2

(
δ0 +

√
5

2

∞∑
n=1

δn−1

)2

and δ(2) = 2

(
δ0h

1/2
0 +

√
5

2

∞∑
n=1

δn−1(n+ hn−1 + hn)1/2

)2

.

Then,

P

[ sup
τ∈Bm,m′

νN (τ)

]2

− ρ

ccalRN
p(m,m′) >

ρ

NT
x

 6 1.6e−xe−(m∨m′)

with
ρ = 3‖σ‖2∞r(δ(1) + δ(2)) and RN = 1 +

∑
i 6=k

|Ri,k|.
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So, by taking ccal > ρ > ρ/RN and y = ρx/(NT ),

P

[ sup
τ∈Bm,m′

νN (τ)

]2

− p(m,m′) > y

 6 1.6e−NTy/ρe−(m∨m′).

Therefore,

E

[ sup
τ∈Bm,m′

νN (τ)

]2

− p(m,m′)


+

 =

∫ ∞
0

P

[ sup
τ∈Bm,m′

νN (τ)

]2

− p(m,m′) > y

 dy

6 1.6ρ
e−(m∨m′)

NT
.

A union-bound allows to conclude.
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