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Abstract

In the present paper, we consider that N diffusion processes X1, . . . , XN are observed on [0,T ], where T is fixed and
N grows to infinity. Contrary to most of the recent works, we no longer assume that the processes are independent.
The dependency is modeled through correlations between the Brownian motions driving the diffusion processes. A
nonparametric estimator of the drift function, which does not use the knowledge of the correlation matrix, is proposed
and studied. Its integrated mean squared risk is bounded and an adaptive procedure is proposed. Few theoretical tools
to handle this kind of dependency are available, and this makes our results new. Numerical experiments show that the
procedure works in practice.
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1. Introduction

We start by describing our model. Consider the diffusion process X = (Xt)t∈[0,T ], defined by

Xt = x0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs ; t ∈ [0,T ], (1)

where x0 ∈ R, B = (Bt)t∈[0,T ] is a Brownian motion, b : R → R is a Lipschitz continuous function, and σ : R → R is
a bounded Lipschitz continuous function. Now, let B1, . . . , BN be N ∈ N/{0} copies of B such that

E(Bi
sBk

t ) = Ri,k(s ∧ t) ; ∀i, k ∈ {1, . . . ,N}, ∀s, t ∈ [0,T ], (2)

where R = (Ri,k)i,k is a correlation matrix. Note that, thanks to the (stochastic) integration by parts formula, the depen-
dence condition (2) on B1, . . . , BN implies that, for every i, k ∈ {1, . . . ,N}, d〈Bi, Bk〉t = Ri,kdt, with Ri,i = 1. Finally,
consider Xi := I(x0, Bi) for every i ∈ {1, . . . ,N}, where I(.) is the Itô map associated to Equation (1). In the present
paper, we consider that these N diffusion processes X1, . . . , XN are observed on [0,T ], where T is fixed and N grows
to infinity, and our aim is to estimate nonparametrically the drift function b(.).

In the case of independent Brownian motions, that is R = IN (the N × N identity matrix), projection least squares
estimator have been studied in Comte and Genon-Catalot [7] for continuous time observations, in Denis el al. [14] for
discrete time (with small step) observations with a classification purpose in the parametric setting, and in Denis et al.
[15] in the nonparametric context, for instance. Marie and Rosier [20] propose a kernel based Nadaraya-Watson esti-
mator of the drift function b, with bandwidth selection relying on the Penalization Comparison to Overfitting (PCO)
criterion recently introduced by Lacour et al. [18]. Still in the case R = IN , Comte and Marie [12] investigate the
properties of the projection least squares estimator of the drift when B is a fractional Brownian motion.
Dependency is often encountered in recent works in the context of stochastic systems of N interacting particles, with
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recent nonparametric drift estimators proposals in Della Maestra and Hoffmann [13], Belomestny et al. [3] or Comte
and Genon-Catalot [9]. These kinds of models are related to physics. We rather have in mind economic or financial
models. For instance, in Duellmann et al. [16], the authors consider a portfolio of N homogenous firms such that the
asset value Xi

t at time t of the i-th firm is modeled by Merton’s model (see [21]) dXi
t = µXi

tdt + σXi
tdBi

t with Xi
0 = X0,

which corresponds to (1) with b(x) = µx and σ(x) = σx. Intending to capture the dependency between the firms, they
also assume that dBi

t =
√
ρdWt +

√
1 − ρdW i

t , where W is a common systematic risk factor, W i is a firm-specific risk
factor and ρ ∈ [0, 1]. This corresponds to a particular matrix R, precisely Ri,k = ρ for i , k (and Ri,i = 1), so that one
single parameter ρ represents the so-called asset correlation. This model has been considered in e.g. Bush et al. [4],
for the more mathematical purpose of studying the limit of the empirical distribution of the Xi

t’s (see also references
therein). Our extension from specific geometric Brownian motion to general nonparametric diffusion (1), and from
one single correlation parameter to a general matrix representation, is therefore standard in both respects. This context
has nevertheless never been considered before up to our knowledge. Let us emphasize that our aim is not to estimate
R, but to exhibit conditions on it such that b(.) can be estimated with performance near of the independent setting.

In our framework, T is fixed, and N is large. Our results are nonasymptotic, but the idea is that N grows to in-
finity. We fix a subset I of R and build a collection of projection least squares estimators of bI = b1I where I is
compact or not. The estimators are defined by their coefficients on an orthonormal basis of L2(I), ϕ1, . . . , ϕm, result-
ing from a standard least squares computation. Precisely, we consider the estimator of the drift function b minimizing
the objective function γN(τ)

τ 7−→ γN(τ) :=
1

NT

N∑
i=1

(∫ T

0
τ(Xi

s)
2ds − 2

∫ T

0
τ(Xi

s)dXi
s

)
(3)

on the m-dimensional function space Sm = span{ϕ1, . . . , ϕm}. The first part of γN(τ) involves a quantity

‖τ‖2N :=
1

NT

N∑
i=1

∫ T

0
τ(Xi

s)
2ds,

which is considered as the squared empirical norm of the function τ. These estimators are the same as in Comte and
Genon-Catalot [7], but their study is made significantly more difficult by the dependency context. We do not have at
our disposal any coupling method nor any transformation leading to a simpler system; in particular, applying R−1/2 to
the system does not bring any simplification because of a ”widespreading” of the components of the process. Tropp’s
deviation inequalities used in the independent context (see Tropp [24], Matrix Chernov Inequality, Theorem 1.1 and
Matrix Bernstein Inequality, Theorem 1.4), which allow to consider the empirical norm and its expectation (an integral
norm, thus) as equivalent with high probability, no longer apply. Martingale properties still are useful, and we turn to
Azuma’s matrix deviation inequality (see Tropp [24], Theorem 7.1), which however requires to set sparsity conditions
on R (see Assumption 3). This equivalence property between empirical and weighted integral norms is the key of the
rigorous study of the risk of the drift estimator, and the correlation matrix is therefore at the heart of the proofs.

The plan of the paper is the following. A first parametric example motivates the model and the way of estimating
a drift parameter in Section 2. The general nonparametric drift estimator is defined in Section 3 and a risk bound on
a fixed projection space is proved. Adaptive estimation is studied in Section 4 and the whole procedure is illustrated
through simulations in Section 5. Lastly, proofs are gathered in Section 6.

2. Preliminary motivation and example in the parametric framework

This preliminary section deals with the geometric model described in the introduction, in the parametric frame-
work, in order to motivate our investigations. Similarly to Duellmann et al. [16], consider N risky assets of same
nature and of prices processes X1, . . . , XN observed on the time interval [0,T ]. Since these assets are of same nature,
to model their prices by dXi

t = µXi
tdt + σXi

tdBi
t with µ ∈ R and σ > 0 not depending on i ∈ {1, . . . ,N} is realistic, but

it is also very realistic to consider that B1, . . . , BN may be dependent, through the correlation matrix described above.
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Let us compute the quadratic risk of the least squares estimator θ̂N of θ = µ − σ2/2 in this special case. Since we can
write that Xi

t = x0 exp(Y i
t ) with Y i

t = θt + σBi
t for every i ∈ {1, . . . ,N} and t ∈ [0,T ], we set

θ̂N =
1

NT

N∑
i=1

Y i
T = θ +

σ

NT

N∑
i=1

Bi
T .

Then,

E(|̂θN − θ|
2) =

σ2

N2T 2

 N∑
i=1

E(|Bi
T |

2) +
∑
i,k

E(Bi
T Bk

T )


=

σ2

NT
+

σ2

N2T

∑
i,k

Ri,k =
σ2

NT

1 +
1
N

∑
i,k

Ri,k

 .
This means that the rate of convergence of θ̂N is of order

V :=
1
N

+
1

N2

∑
i,k

Ri,k.

We note that if Ri,k = ρ for all i , k, then the estimator is not consistent. This would be the same if all the coefficients
of R were positive and only bounded by a constant ρ > 0. However, if we set a sparsity condition by saying that R
is block-diagonal with blocks of size (less than) k0, and if we assume that all nonzero coefficients are equal to (or
bounded by) ρ, then

∑
i,k Ri,k 6 k0ρN. So, k0ρ is the loss in risk due to dependency, while the rate remains O(1/N).

Referring to the firms model of Duellmann et al. [16] and Bush et al.[4], this means for instance that for a large N,
dependent firms have to be grouped as several independent sets aggregated in the global model.

Another way to model the dependency with few parameters is to assume that

dBi
t =
√
adW i

t +
√

1 − adW i+1
t ,

where W1, . . . ,WN+1 are independent Brownian motions and a ∈ [0, 1]. This is a way of saying that each firm is
correlated to the following one in the list. In that case,

Ri,i+1 = Ri,i−1 =
√
a(1 − a), Ri,i = 1, Ri,k = 0 for |k − i| > 1;

and then

V =
1
N

(
1 + 2

(
1 −

1
N

) √
a(1 − a)

)
has order O(1/N). Note that this matrix is sparse in the sense of Assumption 3 below.

Our purpose is to show that, at least for some special dependence schemes on B1, . . . , BN , the variance term of the
projection (nonparametric) least squares estimator of b(.) introduced in the following section is at most of order

1
N

1 +
1
N

∑
i,k

|Ri,k |

 .
It is noteworthy that the estimator θ̂N is the maximum likelihood estimator (MLE) when X1, . . . , XN are independent,
while the MLE in our dependent setting would involve – and thus require the complete knowledge of – the matrix R
(more specifically, its inverse). In the present strategy, the knowledge of R is not required, which is interesting and
may justify a loss of efficiency.
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3. A projection least squares estimator of the drift function

3.1. The objective function

Set NT := [NT ] + 1 and let fT be the density function defined by

fT (x) :=
1
T

∫ T

0
ps(x0, x)ds ; ∀x ∈ R,

where ps(x0, .) is the density with respect to Lebesgue’s measure of the probability distribution of Xs for every
s ∈ (0,T ]. Let us consider the projection space Sm := span{ϕ1, . . . , ϕm}, where ϕ1, . . . , ϕNT are continuous func-
tions from I into R such that (ϕ1, . . . , ϕNT ) is an orthonormal family in L2(I, dx), and I ⊂ R is a non-empty interval.
We recall now that the objective function τ ∈ Sm 7→ γN(τ) is defined by (3), where m ∈ {1, . . . ,NT }. We choose a
contrast which is the same as in the independent case. Note that for the nonparametric estimation of the drift function
from N observed paths, even in the independent case, least squares and maximum likelihood strategies do not match.
Indeed, the likelihood would involve weights σ(Xi

s)
−2 inside all integrals. In the dependent case, there would also be

the matrix R−1 to take into account. Even if both σ(.) and R can be considered as known, it is interesting not to need
them to compute the drift estimator. In particular, the step to discrete time high frequency data is then much simpler.
Since the strategy works in the independent case, we can hope that if the correlations are not too strong, then the
strategy remains relevant.

Remark. For any τ ∈ Sm,

E(γN(τ)) =
1
T

∫ T

0
E(|τ(Xs) − b(Xs)|2)ds −

1
T

∫ T

0
E(b(Xs)2)ds

=

∫ ∞

−∞

(τ(x) − b(x))2 fT (x)dx −
∫ ∞

−∞

b(x)2 fT (x)dx.

Then, the more τ is close to b, the smaller E(γN(τ)). For this reason, the estimator of b minimizing γN(.) is studied in
this paper.

3.2. The projection least squares estimator and some related matrices

In this section, m is a fixed integer in {1, . . . ,NT }. We consider the estimator

b̂m := arg min
τ∈Sm

γN(τ) (4)

of b, if it exists and is unique. SinceSm = span{ϕ1, . . . , ϕm}, there exist m square integrable random variables θ̂1, . . . , θ̂m

such that

b̂m =

m∑
j=1

θ̂ jϕ j.

Then,

∇γN (̂bm) =

 1
NT

N∑
i=1

2 m∑
`=1

θ̂`

∫ T

0
ϕ j(Xi

s)ϕ`(X
i
s)ds − 2

∫ T

0
ϕ j(Xi

s)dXi
s


j∈{1,...,m}

.

Let

Ψ̂m :=

 1
NT

N∑
i=1

∫ T

0
ϕ j(Xi

s)ϕ`(X
i
s)ds


j,`∈{1,...,m}

and

X̂m :=

 1
NT

N∑
i=1

∫ T

0
ϕ j(Xi

s)dXi
s


j∈{1,...,m}

.
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Therefore, by (4) and if Ψ̂m is invertible, necessarily

Θ̂m := (̂θ1, . . . , θ̂m)∗ = Ψ̂−1
m X̂m,

where M∗ denotes the transpose of the matrix M.

Remarks:

1. We can write Ψ̂m = (〈ϕ j, ϕ`〉N) j,`, where

〈ϕ, ψ〉N :=
1

NT

N∑
i=1

∫ T

0
ϕ(Xi

s)ψ(Xi
s)ds

for every measurable functions ϕ and ψ from R into itself.
2. The following useful decomposition holds: X̂m = (〈b, ϕ j〉N)∗j + Êm, where

Êm :=

 1
NT

N∑
i=1

∫ T

0
σ(Xi

s)ϕ j(Xi
s)dBi

s

∗
j∈{1,...,m}

.

Let us introduce the two following deterministic matrices related to the previous random ones:

• Ψm := E(Ψ̂m) = (〈ϕ j, ϕ`〉 fT ) j,`, where 〈., .〉 fT is the scalar product in L2(I, fT (x)dx).

• Ψm,σ := NTE(ÊmÊ∗m).

Note that under the following assumption, Comte and Genon-Catalot established in [7] (see Lemma 1) that Ψm is
invertible.

Assumption 1. The ϕ j’s satisfy the three following conditions:

1. (ϕ1, . . . , ϕm) is an orthonormal family of L2(I, dx).
2. The ϕ j’s are bounded, continuously derivable, and have bounded derivatives.
3. There exist x1, . . . , xm ∈ I such that det[(ϕ j(x`)) j,`] , 0.

Let us conclude this section with the following suitable bound on the trace of Ψ−1/2
m Ψm,σΨ

−1/2
m . To that aim, we define

the following quantity associated with the basis:

L(m) := 1 ∨

sup
x∈I

m∑
j=1

ϕ j(x)2

 .
Lemma 1. Under Assumption 1, for σ belonging to L2(R, fT (x)dx) but possibly unbounded,

trace(Ψ−1/2
m Ψm,σΨ

−1/2
m ) 6 c1L(m)‖Ψ−1

m ‖op

1 +
1
N

∑
i,k

|Ri,k |

 (5)

with

c1 =

∫ ∞

−∞

σ(x)2 fT (x)dx.

If in addition σ is bounded, then

trace(Ψ−1/2
m Ψm,σΨ

−1/2
m ) 6 m‖σ‖2∞

1 +
1
N

∑
i,k

|Ri,k |

 . (6)
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The two previous bounds on the trace compete. In some contexts, they can have the same order m. This occurs if both
following conditions hold (this setting is referred to as ”compact setting” below):

• I is a compact set and L(m) = m, as in the case of a trigonometric basis.

• fT is lower bounded on I by f0 > 0. Indeed, then ‖Ψ−1
m ‖op 6 1/ f0 (see [7]).

However, the bound (5) is not relevant for a non compactly supported basis. For instance, for the Hermite basis
described below, L(m) is of order

√
m, but ‖Ψ−1

m ‖op is increasing with m and can be checked to be numerically very
large. So, for the Hermite basis, the second bound (6) must be preferred if σ is bounded, and is used in the sequel.
Finally, note that N−1 ∑

i,k |Ri,k | can be replaced by ‖R‖op in the bounds (5) and (6), and it holds that

1
N

∣∣∣∣∣∣∣
N∑

i,k=1

Ri,k

∣∣∣∣∣∣∣ 6 ‖R‖op.

Therefore, if the coefficients of the matrix R are nonnegative, as in the examples of Section 2 or in the simulation
Section 5, then N−1 ∑

i,k |Ri,k | is better than ‖R‖op.

3.3. Risk bound on the projection least squares estimator

This section deals, for a given model m, with a risk bound on the truncated estimator

b̃m := b̂m1
Λ̂m
,

where

Λ̂m :=
{

L(m)(‖Ψ̂−1
m ‖op ∨ 1) 6 cT (p)

NT
log(NT )

}
with

cT (p) =
1

256T (1 + p/2)
, p > 12.

On the event Λ̂m, Ψ̂m is invertible because

inf{sp(Ψ̂m)} >
L(m)
cT (p)

·
log(NT )

NT
> 0,

and then b̃m is well-defined. Consider

IN := {i ∈ {2, . . . ,N} : ∃k ∈ {1, . . . , i − 1} such that Ri,k , 0}.

In the sequel, m fulfills the following assumption, related to the stability condition introduced in Cohen et al. [5] and
also used in Comte and Genon-Catalot [7]. Due to dependency, it has to be reinforced by undesirable squares.

Assumption 2. [L(m)(‖Ψ−1
m ‖op ∨ 1)]2 6

cT (p)
2
·

NT
log(NT )

.

Note that in the so-called compact setting defined above, this condition reduces to

m .

√
NT

log(NT )
,

which is similar to the constraint obtained in Baraud [1] (see the condition Nn 6 K−1
√

n/ log(n)3 in his Theorem 1.1).
However, this last condition can be improved in the independent case.

Moreover, a sparsity condition has to be set on |IN |, and this is again in order to handle dependency.
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Assumption 3. There exists a deterministic constant c3 > 0, not depending on m and N, such that

|IN | 6 c3N
1
2−

6
p .

Remarks:
1. The dependence condition (2) on B1, . . . , BN ensures that

IN = {i ∈ {1, . . . ,N} : Bi is not independent of Fi−1},

where F0 := F and Fi := σ(B1, . . . , Bi) for every i ∈ {1, . . . ,N}. This is crucial in the proof of Theorem 1.
2. The condition on |IN | in Assumption 3 can be understood as a sparsity type condition on the correlation matrix

R. Clearly under Assumption 3, for N large enough,

|IN |
p

N p/2 log(NT )p/2 6
c3(p)
N6 with c3(p) = c

p
3 . (7)

Note that, p is also involved in Assumption 2 through cT (p). Assumption 3 suggests to take p as large as possi-
ble. So, the larger p, the larger IN , but the smaller the authorized choices of m. In other words, p needs to be
chosen large, but not that much.

Note also that for Theorem 1, the constraint p > 12 may be lightened into p > 4 and Assumption 3 into

|IN | 6 c3N
1
2−

2
p .

However, Theorem 2 is more demanding.

Examples:
1. Assume that N ∈ qN∗ with q ∈ N∗, and that R is the block matrix defined by

R :=


R1 (0)

. . .

(0) R N
q

 ,
where R1, . . . ,RN/q are N/q correlation matrices of size q × q. For instance, if the number of Ri’s not equal to I
is of order lower than N1/2−6/p, then the matrix R fulfills Assumption 3. For q = 2,

Ri =

(
1 ρi

ρi 1

)
with ρi ∈ [−1, 1]

for every i ∈ {1, . . . ,N/2}. In this special case, R fulfills Assumption 3 if and only if the number of non-zero
ρi’s is of order lower than N1/2−6/p.

2. Assume that N ∈ 2N∗ and that R = I + Q, where

Q :=

(0) (0) Q∗

(0) (0) (0)
Q (0) (0)

 ,
Q is a correlation matrix of size r × r, and r ∈ {1, . . . ,N/2}. If r = r(N) is of order lower than N1/2−6/p, then the
matrix R fulfills Assumption 3.

Note that R is a Toeplitz matrix when

Q =



0 0 0 · · · · · · 0

q1 0 0
. . .

...

q2 q1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 0
...

. . . q1 0 0
qr · · · · · · q2 q1 0


with q1, . . . , qr ∈ [−1, 1].
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Theorem 1. Under Assumptions 1, 2 and 3, there exists a deterministic constant c1 > 0, not depending on m and N,
such that

E(‖̃bm − bI‖
2
N) 6 min

τ∈Sm

‖τ − bI‖
2
fT +
c1m
NT

1 +
1
N

∑
i,k

|Ri,k |

 +
c1

N
.

As usual for a nonparametric estimator, the risk bound involves a bias term

min
τ∈Sm

‖τ − bI‖
2
fT ,

and a variance term of order m/(NT ) if
1
N

N∑
i,k=1

|Ri,k |

is bounded by a constant which does not depend on N. The last term is of order 1/N and gathers all negligible
quantities. The larger m, the better the approximation of bI in Sm and the smaller the bias. On the opposite, the
variance increases with m. This is why a compromise must be done, either theoretically as in Section 2.4 of Comte
and Genon-Catalot [7] from which consistency follows, or by a model selection procedure, as described hereafter.

4. Model selection

Throughout this section, (ϕ1, . . . , ϕNT ) and the Ri,k’s fulfill the following additional assumptions.

Assumption 4. The ϕ′js satisfy the two following (additional) conditions:

1. There exists a deterministic constant cϕ > 1, not depending on N, such that for every m ∈ {1, . . . ,NT },

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕ j(x)2

 6 c2ϕm.

2. For every m,m′ ∈ {1, . . . ,NT }, if m > m′, then Sm′ ⊂ Sm.

Remark. Note that Assumption 4.(2) is fulfilled when

Sm+1 = Sm + span{ϕm+1} ; ∀m ∈ {1, . . . ,NT }. (8)

For instance, the spaces generated by the trigonometric basis or by the Hermite basis, both defined in Section 5, satisfy
(8).

Assumption 5. There exists a deterministic constant m5 > 0, not depending on N, such that

‖R‖op 6 m5.

Examples (continued). Since R is a symmetric matrix, there exist an orthogonal matrix P and a diagonal matrix D
such that R = PDP∗. Then,

‖R‖op = ‖D‖op = sup
λ∈sp(R)

|λ|.

So, the matrix R fulfills Assumption 5 if and only if there exists a constant m > 0, not depending on N, such that
|λ| 6 m for every λ ∈ sp(R). Moreover, note that since R = PDP∗,

IN =

i ∈ {2, . . . ,N} : ∃k ∈ {1, . . . , i − 1} such that
N∑

r=1

Dr,rPi,rPk,r , 0

 .
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1. (continued) Assume that q = 2. For every λ ∈ R,

det(R − λI) =

N
2∏

i=1

det(Ri − λI) =

N
2∏

i=1

(1 − λ − ρi)(1 − λ + ρi),

and then
sp(R) =

{
1 ± ρi ; i = 1, . . . ,

N
2

}
.

So, the matrix R fulfills Assumption 5:

‖R‖op = max
i∈{1,...,N/2}

|1 ± ρi| 6 2.

More generally, assume that q > 2. Since

det(R − λI) =

N
q∏

i=1

det(Ri − λI) ; ∀λ ∈ R,

then

sp(R) =

N
q⋃

i=1

sp(Ri).

So, the matrix R fulfills Assumption 5:

‖R‖op = sup
λ∈sp(R)

|λ| = max
i∈{1,...,N/q}

 sup
λ∈sp(Ri)

|λ|

 = max
i∈{1,...,N/q}

‖Ri‖op

6 max
i∈{1,...,N/q}

 q∑
k,`=1

[Ri]2
k,`


1
2

6 q.

2. (continued) Let us show that R fulfills Assumption 5 if and only if

sup{|λ| ; λ ∈ R such that det((1−λ)2Ir−Q∗Q) = 0} is bounded by a constant which doesn’t depend on N. (9)

For any λ ∈ R,

det(R − λIN) =

∣∣∣∣∣∣∣ (1 − λ)I N
2

Q
∗

Q (1 − λ)I N
2

∣∣∣∣∣∣∣ with Q =

(
(0) (0)
Q (0)

)
∈ M N

2
(R)

= det((1 − λ)2I N
2
− Q

∗
× Q).

Moreover,

Q
∗
× Q =

(
Q∗Q (0)
(0) (0)

)
,

leading to

det((1 − λ)2I N
2
− Q

∗
× Q) =

∣∣∣∣∣∣ (1 − λ)2Ir − Q∗Q (0)
(0) (1 − λ)2I N

2 −r

∣∣∣∣∣∣
= (1 − λ)N−2r det((1 − λ)2Ir − Q∗Q).

So,
det(R − λIN) = (1 − λ)N−2r det((1 − λ)2Ir − Q∗Q),
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and then R fulfills Assumption 5 if and only if Q fulfills (9). Finally, for instance, assume that

Q =


q1 (0)

. . .

(0) qr

 with q1, . . . , qr ∈ [−1, 1].

So,

det((1 − λ)2Ir − Q∗Q) = det((1 − λ)2Ir − Q2)

=

r∏
i=1

(1 − λ − qi)(1 − λ + qi),

and then Q fulfills (9) because q1, . . . , qr ∈ [−1, 1].

Let us consider
m̂ = arg min

m∈M̂N

{−‖̂bm‖
2
N + pen(m)},

where

pen(m) := ccal
m

NT

1 +
1
N

∑
i,k

|Ri,k |

 ; ∀m ∈ {1, . . . ,NT },

ccal > 0 is a deterministic constant to calibrate,

M̂N :=
{

m ∈ {1, . . . ,NT } : [c2ϕm(‖Ψ̂−1
m ‖op ∨ 1)]2 6 dT (p)

NT
log(NT )

}
and

dT (p) :=
1

512c4ϕT (1 + p/2)
.

Consider also the theoretical counterpart

MN :=
{

m ∈ {1, . . . ,NT } : [c2ϕm(‖Ψ−1
m ‖op ∨ 1)]2 6

dT (p)
4
·

NT
log(NT )

}
of M̂N .

Theorem 2. Under Assumptions 1, 3, 4 and 5, there exist deterministic constants κ0, c2 > 0, not depending on N, such
that ccal > κ0 and

E(‖̂bm̂ − bI‖
2
N) 6 c2 min

m∈MN

min
τ∈Sm

‖τ − bI‖
2
fT +

m
NT

1 +
1
N

∑
i,k

|Ri,k |


 +
c2

N
.

It follows from Theorem 2 that the adaptive estimator b̂m̂ automatically reaches a squared bias-variance compromise
on the collectionMN .

Remark. Note that the constant κ0 is given at the end of the proof of Lemma 5.

5. Numerical experiments

In this section, we study the influence of dependency on the performance of the adaptive estimator. We consider
two bases:

• The cosine basis on I = [a, b], defined by ϕ1(x) := (b− a)−1/21[a,b](x), ϕ j(x) := (2/(b− a))1/2 cos(π j(x− a)/(b−
a))1[a,b](x) for j > 2. The interval [a, b] is chosen different for each model. The basis is orthonormal and fulfills∑m

j=1 ϕ
2
j (x) 6 2m.

10



• The Hermite basis on I = R, defined from the Hermite polynomials H j and given by

H j(x) := (−1) jex2 d j

dx j (e−x2
), ϕ j(x) := c j−1H j−1(x)e−x2/2, c j =

(
2 j j!
√
π
)−1/2

.

The sequence (ϕ j) j>0 is an orthonormal bounded basis of L2(R, dx) with |ϕ j(x)| 6 1/π1/4 (see Indritz [17]). It
is proved in Comte and Lacour [11] (see Lemma 1) that L(m) 6 K

√
m for some constant K.

We experiment five models, where I is the chosen domain of representation for the Hermite basis, and the basis
support for the cosine basis:

1. Hyperbolic diffusion, b1(x) = −θx and σ1(x) = γ
√

1 + x2, with θ = 2 and γ =
√

1/2, I1 = [−0.9, 0.8].
2. Hyperbolic tangent of an Ornstein-Uhlenbeck process,

b2(x) = (1 − x2)
(
−

r
2

atanh(x) −
γ2

4
x
)
, σ2(x) =

γ

2
(1 − x2), r = 2, γ = 2, I2 = [−0.9, 0.9].

3. Exponential of an Ornstein-Ulhenbeck process,

b3(x) = x
(
−

r
2

log(x+) +
γ2

8

)
, σ3(x) =

γ

2
x+, r = 1, γ = 2, I3 = [0.44, 2].

4. Xt = G1(ξt) with dξt = α(ξt)dt + dWt, α(x) = −θx/
√

1 + c2x2, G1(x) = asinh(cξt), θ = 3, c = 2, I4 =

[−1.15, 1.15], leading to

b4(x) = −

(
θ +

c2

2 cosh(x)

)
sinh(x)

cosh2(x)
, σ4(x) =

c
cosh(x)

.

5. Xt = G2(ξt) with ξ as previously and G2(x) = asinh(x − 5) + asinh(x + 5), leading to

b5(x) = G′2(H(x))α(H(x)) +
1
2

G′′2 (H(x)), σ5(x) =
1√

1 + (H(x) − 5)2
+

1√
1 + (H(x) + 5)2

,

where θ = 1, c = 10 (in the definition of α), I5 = [−4, 4] and

H(x) = G−1
2 (x) =

1
√

2 sinh(x)

[
(49 + cosh(x)) sinh(x)2 + 100(1 − cosh(x)

]1/2
.

Models 1, 4, 5 are simulated by Euler scheme with step ∆, directly for X in example 1 or for ξ in examples 4 and 5,
with transformations G1 and G2 in a second stage. The underlying Ornstein-Uhlenbeck processes in models 2 and 3
are generated by exact autoregressive scheme with step ∆. Details can be found in Comte and Genon-Catalot [8] for
examples 1, 2, 3 and in Comte al al. [10] for examples 4 and 5. The dependency is contained in the Toeplitz variance
matrix1 R(ρ) := (ρ|i− j|)16i, j6N for different values of ρ. The choice ρ = 0 corresponds to the independent case, and we
also experiment ρ = 0.5 (mild dependency) and ρ = 0.9 (strong correlations). Assumption 3 is not fulfilled but we can
consider that the coefficients are in fact null when |i− j| is large enough. The orders of some quantities related to R(ρ)
are given in Table 1, and clearly,

∑
i,k R(ρ)i,k/N and ‖R(ρ)‖op are very close. The penalty term is computed as in Comte

and Genon-Catalot [7], by an empirical version which directly takes dependence into account without requiring any
information on R:

p̂en(m) := κ
m

NT
‖Ψ̂−1

m Ψ̂m,σ‖op with Ψ̂m,σ = (〈σϕ j, σϕ`〉N) j,`

and κ = 2 for both bases. Then, the model m̂ is chosen as the minimizer of −‖̂bm‖
2
N + p̂en(m) for m 6 10 (resp.

m 6 20) for the Hermite basis, except in example 5, where we set m 6 15 because otherwise the selected dimension
was systematically the maximal one (resp. for the cosine basis), such that

m‖Ψ̂−1
m ‖

1/4
op 6 NT (empirical collection of models).

1This matrix is indeed a correlation matrix as it is the variance of a stationary AR(1) process, Xt = ρXt−1 + εt , for i.i.d. centered εt’s.
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Fig. 1: Example 3. True functions in bold red and beam of 25 estimated drift b3 with Hermite (left) and cosine (right) bases, ρ = 0.5. The
MISE×100 are 0.12, 0.33 and the mean of selected dimensions are 8.4, 4.3.
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Fig. 2: Example 4. True functions in bold red and beam of 25 estimated drift b4 with Hermite (left) and cosine (right) bases, ρ = 0.5. The
MISE×100 are 0.36, 0.26 and the mean of selected dimensions are 4.4, 6.0.
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Fig. 3: Example 5. True functions in bold red and beam of 25 estimated drift b5 with Hermite basis for ρ = 0 (left) and ρ = 0.9 (right). The
MISE×100 are 0.87, 1.67 and the mean of selected dimensions are 12.5 in both cases.
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ρ = 0 ρ = 0.5 ρ = 0.9
N−1 ∑

i, j Ri, j(ρ) 1 2.96 17.2
‖R(ρ)‖op 1 2.99 17.9

Table 1: Order of different quantities associated to the matrix R(ρ).

We present illustrations of the estimation procedure obtained from simulated paths in Figures 1, 2, 3 for examples 3,
4 and 5. Figures 1 and 2 allow the comparison of the results obtained for Hermite (left pictures) and cosine (right
pictures) bases, for ρ = 0.5. Figure 3 shows the difference of estimation in the Hermite basis when ρ = 0 (left picture)
and when ρ = 0.9 (right picture). The scenario is the same in the three figures: N = 200 and T = 100 (with 1000
observations with step ∆ = 0.1 for each path). The MISE over the 25 repetitions are given, together with the mean of
the selected dimensions. We can see that the examples are quite different, and that the estimation method works in a
convincing way, even for strong dependency (ρ = 0.9).
We also illustrate on the scenario N = 100 and T = 100 (with 1000 observations with step ∆ = 0.1) for each path,
which was a middle scenario in Comte and Genon-Catalot [7], the influence of the value of ρ on the MISE computed
over 200 repetitions: the results are given in Table 2. We see that the MISE increases when ρ increases, slightly from
ρ = 0 to ρ = 0.5 and much more importantly from ρ = 0.5 to ρ = 0.9. On the contrary, the selected dimensions for
each basis are rather unchanged in these different cases. This suggests that bias and variance increase simultaneously
and proportionally. The Hermite basis gives lower MISEs for examples 1 to 3, and the cosine basis wins for examples
4 and 5.

ρ = 0 ρ = 0.5 ρ = 0.9
Ex. Hermite Cosine Hermite Cosine Hermite Cosine

Ex.1 MISE 0.11(0.08) 0.80(0.24) 0.13(0.10) 0.83(0.29) 0.63(0.54) 1.38(6.29)
Dim 6.2(0.8) 6.2(1.5) 6.1(0.5) 6.2(1.5) 6.3(1.1) 6.3(1.2)

Ex.2 MISE 0.78(0.18) 0.95(0.19) 0.78(0.18) 0.94(0.18) 1.02(0.47) 1.18(0.49)
Dim 6.1(0.5) 10.3(1.9) 6.1(0.5) 10.4(2.0) 6.1(0.5) 10.3(2.0)

Ex.3 MISE 0.22(0.16) 0.34(0.11) 0.21(0.16) 0.37(0.14) 0.44(0.41) 0.55(0.43)
Dim 7.8(0.7) 4.1(0.4) 7.7(0.7) 4.1(0.4) 7.8(0.8) 4.2(0.6)

Ex.4 MISE 0.41(0.18) 0.35(0.15) 0.46(0.21) 0.39(0.18) 1.06(0.66) 1.02(0.60)
Dim 4.4(0.8) 5.1(1.4) 4.4(0.8) 5.2(1.3) 4.9(1.3) 5.6(1.5)

Ex. 5 MISE 1.55(0.85) 1.49(0.61) 1.81(0.97) 1.58(0.62) 4.14(4.22) 3.15(3.55)
Dim 11.2(1.3) 6.3(0.8) 11.4(1.4) 6.2(0.6) 11.5(1.5) 6.3(0.8)

Table 2: 100 MISE (with 100 Std in parenthesis) and mean selected dimensions (with StD in parenthesis) for the examples 1 to 5, N = 100 and
T = 100, for Hermite and cosine bases and 3 values of ρ (0 for independence, ρ = 0.9 for strong dependency).
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6. Proofs

6.1. Proof of Lemma 1

First of all, let us show that the symmetric matrix Ψm,σ is nonnegative. Indeed, for every y ∈ Rm,

y∗Ψm,σy =
1

NT

m∑
j,`=1

y jy`
N∑

i,k=1

E
((∫ T

0
σ(Xi

s)ϕ j(Xi
s)dBi

s

) (∫ T

0
σ(Xk

s )ϕ`(Xk
s )dBk

s

))

=
1

NT
E


 N∑

i=1

∫ T

0
σ(Xi

s)τy(Xi
s)dBi

s

2 > 0 with τy(.) :=
m∑

j=1

y jϕ j(.).

On the one hand, since Ψm,σ is a nonnegative matrix, since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈ {1, . . . ,N}, and by the
stochastic integration by parts formula,

trace(Ψ−1
m Ψm,σ) 6 ‖Ψ−1

m ‖optrace(Ψm,σ) =
1

NT
‖Ψ−1

m ‖op

m∑
j=1

E


 N∑

i=1

∫ T

0
σ(Xi

s)ϕ j(Xi
s)dBi

s

2
=

1
NT
‖Ψ−1

m ‖op

m∑
j=1

N∑
i,k=1

∫ T

0
Ri,kE(σ(Xi

s)ϕ j(Xi
s)σ(Xk

s )ϕ j(Xk
s ))ds

6
1
N
‖Ψ−1

m ‖op

N +
∑
i,k

|Ri,k |

 m∑
j=1

∫ ∞

−∞

σ(x)2ϕ j(x)2 fT (x)dx

6 c1‖Ψ
−1
m ‖opL(m)

1 +
1
N

∑
i,k

|Ri,k |

 with c1 =

∫ ∞

−∞

σ(x)2 fT (x)dx.

On the other hand, assume now that σ is bounded. Again, since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈ {1, . . . ,N}, and by
the stochastic integration by parts formula, for every y ∈ Rm,

y∗Ψm,σy =
1

NT
E


 N∑

i=1

∫ T

0
σ(Xi

s)τy(Xi
s)dBi

s

2
6

1
T

1 +
1
N

∑
i,k

|Ri,k |

 ∫ T

0
E(σ(Xs)2τy(Xs)2)ds

6

1 +
1
N

∑
i,k

|Ri,k |

 ∫ ∞

−∞

σ(x)2

 m∑
j=1

y jϕ j(x)

2

fT (x)dx

6 ‖σ‖2∞

1 +
1
N

∑
i,k

|Ri,k |

 ‖Ψ1/2
m y‖22,m. (10)

Thus, since Ψm,σ is nonnegative, and by Inequality (10),

trace(Ψ−1/2
m Ψm,σΨ

−1/2
m ) 6 m‖Ψ−1/2

m Ψm,σΨ
−1/2
m ‖op

= m · sup{y∗Ψm,σy ; y ∈ Rm and ‖Ψ1/2
m y‖2,m = 1}

6 m‖σ‖2∞

1 +
1
N

∑
i,k

|Ri,k |

 .
6.2. Proof of Theorem 1

The proof of Theorem 1 relies on the two following lemmas.
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Lemma 2. There exists a deterministic constant c2 > 0, not depending on m and N, such that

E(|Ê∗mÊm|
2) 6 c2

mL(m)2

N2

1 +

 1
N

∑
i,k

|Ri,k |

2 .
Lemma 3. Consider the event

Ωm :=

sup
τ∈Sm

∣∣∣∣∣∣∣ ‖τ‖
2
N

‖τ‖2fT
− 1

∣∣∣∣∣∣∣ 6 1
2

 .
Under Assumptions 1, 2 and 3, there exists a deterministic constant c3 > 0, not depending on m and N, such that

P(Ωc
m) 6

c3

N6 and P(Λ̂c
m) 6

c3

N6 .

6.2.1. Steps of the proof
First of all,

‖̃bm − bI‖
2
N = ‖bI‖

2
N1

Λ̂c
m

+ ‖̂bm − bI‖
2
N1

Λ̂m

= U1 + U2 + U3 (11)

where U1 := ‖bI‖
2
N1

Λ̂c
m
,

U2 := ‖̂bm − bI‖
2
N1

Λ̂m∩Ωm
and U3 := ‖̂bm − bI‖

2
N1

Λ̂m∩Ωc
m
.

Let us find suitable bounds on E(U1), E(U2) and E(U3).

• Bound on E(U1). By Cauchy-Schwarz’s inequality,

E(U1) 6 E(‖bI‖
4
N)1/2P(Λ̂c

m)1/2 6 E
(

1
T

∫ T

0
bI(Xt)4dt

)1/2

P(Λ̂c
m)1/2

6 c1P(Λ̂c
m)1/2 < ∞ with c1 =

(∫ ∞

−∞

bI(x)4 fT (x)dx
)1/2

< ∞.

• Bound on E(U2). Let ΠN,m(.) be the orthogonal projection from L2(I, fT (x)dx) onto Sm with respect to the
empirical scalar product 〈., .〉N . Then,

‖̂bm − bI‖
2
N = ‖̂bm − ΠN,m(bI)‖2N + min

τ∈Sm

‖bI − τ‖
2
N . (12)

As in the proof of Comte and Genon-Catalot [7], Proposition 2.1, on Ωm,

‖̂bm − ΠN,m(bI)‖2N = Ê∗mΨ̂
−1
m Êm 6 2Ê∗mΨ

−1
m Êm.

So,

E(‖̂bm − ΠN,m(bI)‖2N1
Λ̂m∩Ωm

) 6 2E

 m∑
j,`=1

[Êm] j[Êm]`Ψ−1
m ( j, `)


=

2
NT

m∑
j,`=1

Ψm,σ( j, `)Ψ−1
m ( j, `) =

2
NT

trace(Ψ−1
m Ψm,σ)

=
2

NT
trace(Ψ−1/2

m Ψm,σΨ
−1/2
m ).

Then, by Equality (12) and Lemma 1,

E(U2) 6 E
(
min
τ∈Sm

‖bI − τ‖
2
N

)
+

2
NT

trace(Ψ−1/2
m Ψm,σΨ

−1/2
m )

6 min
τ∈Sm

‖bI − τ‖
2
fT +

2m
NT
‖σ‖2∞

1 +
1
N

∑
i,k

|Ri,k |

 .
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• Bound on E(U3). By the definition of the event Λ̂m and by Lemma 2,

E(‖̂bm − ΠN,m(bI)‖2N1
Λ̂m∩Ωc

m
) = E[(Ê∗mΨ̂

−1
m Êm)1

Λ̂m∩Ωc
m
]

6 E(‖Ψ̂−1
m ‖op|Ê∗mÊm|1Λ̂m∩Ωc

m
)

6
cT (p)
L(m)

·
NT

log(NT )
E(|Ê∗mÊm|

2)1/2P(Ωc
m)1/2

6
c2m1/2

log(NT )

1 +
1
N

∑
i,k

|Ri,k |

P(Ωc
m)1/2

where c2 > 0 is a deterministic constant not depending on m and N. Then,

E(U3) 6 E(‖̂bm − ΠN,m(bI)‖2N1
Λ̂m∩Ωc

m
) + E(‖bI‖

2
N1

Λ̂m∩Ωc
m
)

6
c2m1/2

log(NT )

1 +
1
N

∑
i,k

|Ri,k |

P(Ωc
m)1/2 + c1P(Ωc

m)1/2.

So,

E(‖̃bm − bI‖
2
N) 6 min

τ∈Sm

‖bI − τ‖
2
fT

+

 2m
NT
‖σ‖2∞ + c2

√
mP(Ωc

m)
log(NT )


1 +

1
N

∑
i,k

|Ri,k |

 + c1(P(Λ̂c
m)1/2 + P(Ωc

m)1/2).

Therefore, by Lemma 3, there exists a deterministic constant c3 > 0, not depending on m and N, such that

E(‖̃bm − bI‖
2
N) 6 min

τ∈Sm

‖bI − τ‖
2
fT +
c3m
NT

1 +
1
N

∑
i,k

|Ri,k |

 +
c3

N
.

6.2.2. Proof of Lemma 2
By Jensen’s inequality, by Burkholder-Davis-Gundy’s inequality, and since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈

{1, . . . ,N}, there exists a deterministic constant c1 > 0, not depending on m and N, such that

E(|Ê∗mÊm|
2) 6 m

m∑
j=1

E(Êm( j)4) 6
c1m

N4T 4

m∑
j=1

E


〈 N∑

i=1

∫ T

0
σ(Xi

s)ϕ j(Xi
s)dBi

s

〉2

T


6

2c1m
N4T 4

m∑
j=1

(E(D2
j ) + E(A2

j )),

where

D j :=
N∑

i=1

∫ T

0
σ(Xi

s)
2ϕ j(Xi

s)
2ds and A j :=

∑
i,k

Ri,k

∫ T

0
σ(Xi

s)ϕ j(Xi
s)σ(Xk

s )ϕ j(Xk
s )ds

for every j ∈ {1, . . . ,m}. On the one hand, by Jensen’s inequality,

m∑
j=1

E(D2
j ) 6 NT

m∑
j=1

N∑
i=1

∫ T

0
E(σ(Xi

s)
4ϕ j(Xi

s)
4)ds

6 N2T L(m)2
∫ T

0
E(σ(Xs)4)ds = N2T 2L(m)2

∫ ∞

−∞

σ(x)4 fT (x)dx.
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On the other hand, by Jensen’s inequality and Cauchy-Schwarz’s inequality,

m∑
j=1

E(A2
j ) 6 T

∑
i,k

|Ri,k |

 m∑
j=1

∑
i,k

|Ri,k |

∫ T

0
E(σ(Xi

s)
2ϕ j(Xi

s)
2σ(Xk

s )2ϕ j(Xk
s )2)ds

6 T

∑
i,k

|Ri,k |

2 m∑
j=1

∫ T

0
E(σ(Xs)4ϕ j(Xs)4)ds

6 T 2

∑
i,k

|Ri,k |

2

L(m)2
∫ ∞

−∞

σ(x)4 fT (x)dx.

Therefore,

E(|Ê∗mÊm|
2) 6

c2

N2T 2 mL(m)2

1 +

 1
N

∑
i,k

|Ri,k |

2
with

c2 = 2c1

∫ ∞

−∞

σ(x)4 fT (x)dx.

6.2.3. Proof of Lemma 3
Let (ϕ1, . . . , ϕNT

) be the orthonormal family of L2(I, fT (x)dx) derived from (ϕ1, . . . , ϕNT ) via Gram-Schmidt’s
method. Consider also the matrix

Ĝm :=
N∑

i=1

Ĝm(Xi),

where

Ĝm(ψ) :=
1

NT

(∫ T

0
ϕ j(ψ(t))ϕ`(ψ(t))dt

)
j,`∈{1,...,m}

; ∀ψ ∈ Ω.

The random matrix Ĝm(Xi) has the same eigenvalues as N−1Ψ
−1/2
m Ψ̂m(Xi)Ψ−1/2

m , where

Ψ̂m(ψ) :=
(

1
T

∫ T

0
ϕ j(ψ(t))ϕ`(ψ(t))dt

)
j,`∈{1,...,m}

; ∀ψ ∈ Ω.

Moreover, for every ψ ∈ Ω, by Jensen’s and Cauchy-Schwarz’s inequalities,

‖Ψ̂m(ψ)‖2op = sup
‖x‖2,m=1

m∑
`=1

 1
T

∫ T

0

 m∑
j=1

ϕ j(ψ(t))ϕ`(ψ(t))x j

 dt

2

6
1
T

sup
‖x‖2,m=1

m∑
`=1

∫ T

0
ϕ`(ψ(t))2

 m∑
j=1

ϕ j(ψ(t))x j

2

dt

6
L(m)

T
sup
‖x‖2,m=1

∫ T

0

 m∑
j=1

ϕ j(ψ(t))x j

2

dt 6 L(m)2. (13)

Notations:

• The semidefinite order on symmetric matrices is denoted by 4.

• E0(.) := E(.) and Ei(.) := E(.|Fi) for every i ∈ {1, . . . ,N}.
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First of all, note that
‖Ĝm − I‖op 6 MN + RN ,

where

MN :=

∥∥∥∥∥∥∥
N∑

i=1

(Ĝm(Xi) − Ei−1(Ĝm(Xi)))

∥∥∥∥∥∥∥
op

and RN :=

∥∥∥∥∥∥∥
N∑

i=1

(Ei−1(Ĝm(Xi)) − N−1I)

∥∥∥∥∥∥∥
op

.

The proof of Lemma 3 is dissected in four steps. Step 1 deals with a suitable bound on P(MN > δ/2), δ > 0, step 2
with a suitable bound on P(RN > δ/2),

{‖Ψ−1
m ‖op < ‖Ψ̂

−1
m −Ψ

−1
m ‖op} ⊂ Ωc

m

is established in step 3, and the conclusion comes in step 4.

Step 1. For any δ > 0, let us establish a suitable bound on P(MN > δ). For every i ∈ {1, . . . ,N}, since

G̃m(Xi) := Ĝm(Xi) − Ei−1(Ĝm(Xi))

is a symmetric matrix, by Jensen’s inequality and by Inequality (13),

(−G̃m(Xi))2 = G̃m(Xi)2 4 λmax[G̃m(Xi)2]I
= ‖Ĝm(Xi) − Ei−1(Ĝm(Xi))‖2opI

4
2

N2 (‖Ψ−1/2
m Ψ̂m(Xi)Ψ−1/2

m ‖2op + Ei−1(‖Ψ−1/2
m Ψ̂m(Xi)Ψ−1/2

m ‖2op))I

4
2

N2 (‖Ψ̂m(Xi)‖2op + Ei−1(‖Ψ̂m(Xi)‖2op))‖Ψ−1
m ‖

2
opI 4 A2

i

with
A2

i =
4

N2 [L(m)(‖Ψ−1
m ‖op ∨ 1)]2I.

So, by Azuma’s inequality for matrix martingales (see Tropp [24], Theorem 7.1),

P
λmax

 N∑
i=1

G̃m(Xi)

 > δ 6 m exp
(
−
δ2

8σ2

)
and

P
−λmin

 N∑
i=1

G̃m(Xi)

 > δ = P
λmax

 N∑
i=1

(−G̃m(Xi))

 > δ 6 m exp
(
−
δ2

8σ2

)
,

where

σ2 =

∥∥∥∥∥∥∥
N∑

i=1

A2
i

∥∥∥∥∥∥∥
op

=
4
N

[L(m)(‖Ψ−1
m ‖op ∨ 1)]2.

This leads to

P(MN > δ) = P


∥∥∥∥∥∥∥

N∑
i=1

G̃m(Xi)

∥∥∥∥∥∥∥
op

> δ


= P

max

λmax

 N∑
i=1

G̃m(Xi)

 ;−λmin

 N∑
i=1

G̃m(Xi)


 > δ


6 2m exp

(
−
δ2

8σ2

)
= 2m exp

[
−

δ2N
32[L(m)(‖Ψ−1

m ‖op ∨ 1)]2

]
.
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Step 2. For any δ > 0, let us establish a suitable bound on P(RN > δ). First of all, let us recall that

IN = {i ∈ {1, . . . ,N} : Bi is not independent of Fi−1}.

For every i ∈ {1, . . . ,N}\IN , since (ϕ1, . . . , ϕNT
) is an orthonormal family of L2(I, fT (x)dx),

Ei−1(Ĝm(Xi)) = E(Ĝm(X)) =

(
1

NT

∫ T

0
E(ϕ j(Xt)ϕ`(Xt))dt

)
j,`

=
1
N

(〈ϕ j, ϕ`〉 fT ) j,` =
1
N

I.

Then,

RN =

∥∥∥∥∥∥∥∥
∑
i∈IN

(Ei−1(Ĝm(Xi)) − N−1I)

∥∥∥∥∥∥∥∥
op

.

By Markov’s inequality and Jensen’s inequality (usual and conditional),

P(RN > δ) 6
E(Rp

N)
δp 6

|IN |
p−1

δp

∑
i∈IN

E(‖Ei−1(Ĝm(Xi) − N−1I)‖pop)

6
|IN |

p

δp E(‖Ĝm(X) − N−1I‖pop)

=
|IN |

p

δpN p E(‖Ψ−1/2
m Ψ̂m(X)Ψ−1/2

m − I‖pop)

6
2p−1|IN |

p

δpN p [E(‖Ψ̂m(X)‖pop)‖Ψ−1
m ‖

p
op + 1] 6

2p|IN |
p

δpN p [L(m)(‖Ψ−1
m ‖op ∨ 1)]p.

Step 3. Now, consider
Θm := {‖Ψ−1

m ‖op < ‖Ψ̂
−1
m −Ψ

−1
m ‖op}.

Note that
‖Ψ̂−1

m −Ψ
−1
m ‖op = ‖Ψ

− 1
2

m (Ĝ−1
m − I)Ψ−

1
2

m ‖op 6 ‖Ĝ−1
m − I‖op‖Ψ

−1
m ‖op.

Moreover, as established in Stewart and Sun [23], for every A,B ∈ Md(R), if A is invertible and ‖A−1B‖op < 1, then
M := A + B is invertible, and

‖M−1 − A−1‖op 6
‖B‖op‖A−1‖2op

1 − ‖A−1B‖op
.

On Ωm, by applying this result to A = I and B = Ĝm − I, A + B = Ĝm is invertible and

‖Ĝ−1
m − I‖op 6

‖Ĝm − I‖op

1 − ‖Ĝm − I‖op

.

Therefore,

Θm ⊂ {‖Ĝ−1
m − I‖op > 1} ⊂ Ωc

m ∪ (Ωm ∩ {‖Ĝ−1
m − I‖op > 1})

⊂ Ωc
m ∪

‖Ĝm − I‖op 6
1
2

and
‖Ĝm − I‖op

1 − ‖Ĝm − I‖op

> 1

 = Ωc
m.

Step 4 (conclusion). For any δ > 0, the two previous steps leads to

P(‖Ĝm − I‖op > δ) 6 P
({

MN >
δ

2

}
∪

{
RN >

δ

2

})
6 2m exp

[
−

δ2N
128[L(m)(‖Ψ−1

m ‖op ∨ 1)]2

]
+

22p|IN |
p

δpN p [L(m)(‖Ψ−1
m ‖op ∨ 1)]p. (14)
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As established in the beginning of the proof of Comte and Genon-Catalot [7], Proposition 2.1,

Ωm =

sup
τ∈Sm

∣∣∣∣∣∣∣ ‖τ‖
2
N

‖τ‖2fT
− 1

∣∣∣∣∣∣∣ 6 1
2

 =

{
‖Ĝm − I‖op 6

1
2

}
.

Then, by Inequality (14), by Assumptions 2 and 3 (leading to (7)), and since p > 12,

P(Ωc
m) 6 2m exp

(
−

log(NT )
256cT (p)T

)
+

23p(cT (p)T )p/2

2p/2 ·
|IN |

p

N p/2 log(NT )p/2

6 c1

(
m

N1+p/2 +
|IN |

p

N p/2 log(NT )p/2

)
6
c1(1 + c3(p))

N6

where c1 > 0 is a deterministic constant not depending on m and N. Moreover, on Λ̂c
m and by Assumption 2,

[L(m)(‖Ψ−1
m ‖op ∨ 1)]2 6

cT (p)
2
·

NT
log(NT )

and L(m)(‖Ψ̂−1
m ‖op ∨ 1) > cT (p)

NT
log(NT )

.

The first inequality implies that

L(m)‖Ψ−1
m ‖op 6

cT (p)
2
·

NT
log(NT )

and L(m) 6
cT (p)

2
·

NT
log(NT )

,

and then the second one leads to

cT (p)
NT

log(NT )
< L(m)‖Ψ̂−1

m ‖op 6 L(m)(‖Ψ̂−1
m −Ψ

−1
m ‖op + ‖Ψ−1

m ‖op)

6 L(m)‖Ψ̂−1
m −Ψ

−1
m ‖op +

cT (p)
2
·

NT
log(NT )

.

Therefore, by step 3,

P(Λ̂c
m) 6 P

(
cT (p)

2
·

NT
log(NT )

6 L(m)‖Ψ̂−1
m −Ψ

−1
m ‖op

)
6 P(‖Ψ−1

m ‖op < ‖Ψ̂
−1
m −Ψ

−1
m ‖op) 6 P(Ωc

m) 6
c1(1 + c3(p))

N6 .

6.3. Proof of Theorem 2
Let us consider the events

ΩN :=
⋂

m∈M+
N

Ωm and ΞN := {MN ⊂ M̂N ⊂ M
+
N},

where

M+
N :=

{
m ∈ {1, . . . ,NT } : [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 6 4dT (p)
NT

log(NT )

}
.

Moreover, recall that

MN =

{
m ∈ {1, . . . ,NT } : [c2ϕm(‖Ψ−1

m ‖op ∨ 1)]2 6
dT (p)

4
·

NT
log(NT )

}
⊂ M+

N

and

M̂N =

{
m ∈ {1, . . . ,NT } : [c2ϕm(‖Ψ̂−1

m ‖op ∨ 1)]2 6 dT (p)
NT

log(NT )

}
.

The proof of Theorem 2 relies on the two following lemmas.
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Lemma 4. Under Assumptions 1, 3 and 4, there exists a deterministic constant c4 > 0, not depending on m and N,
such that

P(Ξc
N) 6

c4

N5 .

Lemma 5. Consider the empirical process

νN(τ) :=
1

NT

N∑
i=1

∫ T

0
σ(Xi

s)τ(Xi
s)dBi

s ; τ ∈ S1 ∪ · · · ∪ SNT .

Under Assumptions 1 and 5, there exist deterministic constants κ0, c5 > 0, not depending on N, such that ccal > κ0
and, for every m ∈ MN ,

E



 sup
τ∈Bm̂,m

|νN(τ)|

2

− p(m̂,m)


+

1ΞN∩ΩN

 6 c5

NT

where, for every m′ ∈ MN ,

Bm,m′ := {τ ∈ Sm∨m′ : ‖τ‖ fT = 1} and p(m,m′) :=
ccal

8
·

m ∨ m′

NT

1 +
1
N

∑
i,k

|Ri,k |

 .
6.3.1. Steps of the proof

First of all,

‖̂bm̂ − bI‖
2
N = ‖̂bm̂ − bI‖

2
N1Ξc

N
+ ‖̂bm̂ − bI‖

2
N1ΞN

=: U1 + U2. (15)

Let us find suitable bounds on E(U1) and E(U2).

• Bound on E(U1). By the definition of M̂N and by Lemma 2,

E(‖̂bm̂ − ΠN,m̂(bI)‖2N1Ξc
N
) = E[(Ê∗m̂Ψ̂

−1
m̂ Êm̂)1Ξc

N
]

6 E(‖Ψ̂−1
m̂ ‖op|Ê∗NT

ÊNT |1Ξc
N
)

6

√
dT (p)

NT
log(NT )

E(|Ê∗NT
ÊNT |

2)1/2P(Ξc
N)1/2

6
c1N

log(NT )

1 +
1
N

∑
i,k

|Ri,k |

P(Ξc
N)1/2

where c1 > 0 is a deterministic constant not depending on N. Then,

E(U1) 6 E(‖̂bm̂ − ΠN,m̂(bI)‖2N1Ξc
N
) + E(‖bI‖

2
N1Ξc

N
)

6
c1N

log(NT )

1 +
1
N

∑
i,k

|Ri,k |

P(Ξc
N)1/2 + c2P(Ξc

N)1/2

with

c2 =

(∫ ∞

−∞

bI(x)4 fT (x)dx
)1/2

.

So, by Lemma 3, there exists a deterministic constant c3 > 0, not depending on N, such that

E(U1) 6
c3

N

1 +
1
N

∑
i,k

|Ri,k |

 .
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• Bound on E(U2). Note that

U2 = ‖̂bm̂ − bI‖
2
N1ΞN∩Ωc

N
+ ‖̂bm̂ − bI‖

2
N1ΞN∩ΩN

=: U2,1 + U2,2.

On the one hand, by Lemma 3, there exists a deterministic constant c4 > 0, not depending on N, such that

P(ΞN ∩Ωc
N) 6

∑
m∈M+

N

P(Ωc
m) 6

c4

N5 .

Then, as for E(U1), there exists a deterministic constant c5 > 0, not depending on N, such that

E(U2,1) 6
c5

N

1 +
1
N

∑
i,k

|Ri,k |

 .
On the other hand,

γN(τ′) − γN(τ) = ‖τ′ − b‖2N − ‖τ − b‖2N − 2νN(τ′ − τ)

for every τ, τ′ ∈ S1 ∪ · · · ∪ SNT . Moreover, since

m̂ = arg min
m∈M̂N

{−‖̂bm‖
2
N + pen(m)} = arg min

m∈M̂N

{γN (̂bm) + pen(m)},

for every m ∈ M̂N ,
γN (̂bm̂) + pen(m̂) 6 γN (̂bm) + pen(m). (16)

On the event ΞN = {MN ⊂ M̂N ⊂ M
+
N}, Inequality (16) remains true for every m ∈ MN . Then, on ΞN , for any

m ∈ MN , since Sm + Sm̂ ⊂ Sm∨m̂ under Assumption 4,

‖̂bm̂ − bI‖
2
N 6 ‖̂bm − bI‖

2
N + 2νN (̂bm̂ − b̂m) + pen(m) − pen(m̂)

6 ‖̂bm − bI‖
2
N +

1
8
‖̂bm̂ − b̂m‖

2
fT

+8


 sup
τ∈Bm,m̂

|νN(τ)|

2

− p(m, m̂)


+

+ pen(m) + 8p(m, m̂) − pen(m̂).

Since ‖.‖2fT 1ΩN 6 2‖.‖2N1ΩN on S1 ∪ · · · ∪ Smax(M+
N ), and since 8p(m, m̂) 6 pen(m) + pen(m̂), on ΞN ∩ΩN ,

‖̂bm̂ − bI‖
2
N 6 3‖̂bm − bI‖

2
N + 4pen(m) + 16


 sup
τ∈Bm,m̂

|νN(τ)|

2

− p(m, m̂)


+

.

So, by Lemma 5,

E(U2,2) 6 min
m∈MN

{E(3‖̂bm − bI‖
2
N1ΞN ) + 4pen(m)} +

16c5
NT

6 c6 min
m∈MN

 inf
τ∈Sm

‖τ − bI‖
2
fT +

m
NT

1 +
1
N

∑
i,k

|Ri,k |


 +
c6

N

where c6 > 0 is a deterministic constant not depending on N.
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6.3.2. Proof of Lemma 4
Note that

Ξc
N = {MN 1 M̂N} ∪ {M̂N 1M

+
N}.

The proof of Lemma 4 is dissected in three steps. Step 1 deals with a bound on P(MN 1 M̂N), step 2 with a bound
on P(‖Ψ̂m −Ψm‖op > δ), δ > 0, and step 3 with a bound on P(M̂N 1M

+
N).

Step 1. On {MN 1 M̂N}, there exists m ∈ {1, . . . ,NT } such that

[c2ϕm(‖Ψ−1
m ‖op ∨ 1)]2 6

dT (p)
4
·

NT
log(NT )

and [c2ϕm(‖Ψ̂−1
m ‖op ∨ 1)]2 > dT (p)

NT
log(NT )

.

The first inequality is equivalent to

c
4
ϕm2‖Ψ−1

m ‖
2
op 6

dT (p)
4
·

NT
log(NT )

and c
4
ϕm2 6

dT (p)
4
·

NT
log(NT )

,

and then the second one leads to

dT (p)
NT

log(NT )
< c4ϕm2‖Ψ̂−1

m ‖
2
op 6 2c4ϕm2(‖Ψ̂−1

m −Ψ
−1
m ‖

2
op + ‖Ψ−1

m ‖
2
op)

6 2c4ϕm2‖Ψ̂−1
m −Ψ

−1
m ‖

2
op +
dT (p)

2
·

NT
log(NT )

.

So,

{MN 1 M̂N} ⊂
⋃

m∈MN

{
dT (p)

4
·

NT
log(NT )

6 c4ϕm2‖Ψ̂−1
m −Ψ

−1
m ‖

2
op

}
⊂

⋃
m∈MN

{‖Ψ−1
m ‖op < ‖Ψ̂

−1
m −Ψ

−1
m ‖op} ⊂

⋃
m∈MN

Ωc
m

and, since dT (p)/4 6 cT (p)/2, by Lemma 3,

P(MN 1 M̂N) 6
∑

m∈MN

P(Ωc
m) 6

c1

N5

where c1 > 0 is a deterministic constant not depending on N.

Step 2. First of all, note that
‖Ψ̂m −Ψm‖op 6 MN + RN ,

where

MN :=
1
N

∥∥∥∥∥∥∥
N∑

i=1

(Ψ̂m(Xi) − Ei−1(Ψ̂m(Xi)))

∥∥∥∥∥∥∥
op

and RN :=
1
N

∥∥∥∥∥∥∥
N∑

i=1

(Ei−1(Ψ̂m(Xi)) − E(Ψ̂m(Xi)))

∥∥∥∥∥∥∥
op

.

On the one hand, for any δ > 0, let us establish a suitable bound on P(MN > δ). For every i ∈ {1, . . . ,N}, since

Ψ̃m(Xi) :=
1
N

(Ψ̂m(Xi) − Ei−1(Ψ̂m(Xi)))

is a symmetric matrix, by Jensen’s inequality and by Inequality (13),

(−Ψ̃m(Xi))2 = Ψ̃m(Xi)2 4 λmax[Ψ̃m(Xi)2]I =
1

N2 ‖Ψ̂m(Xi) − Ei−1(Ψ̂m(Xi))‖2opI

4
2

N2 (‖Ψ̂m(Xi)‖2op + Ei−1(‖Ψ̂m(Xi)‖2op))I 4 A2
i
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with

A2
i :=

4L(m)2

N2 I.

So, by Azuma’s inequality for matrix martingales (see Tropp [24], Theorem 7.1),

P(MN > δ) = P


∥∥∥∥∥∥∥

N∑
i=1

Ψ̃m(Xi)

∥∥∥∥∥∥∥
op

> δ


= P

max

λmax

 N∑
i=1

Ψ̃m(Xi)

 ;−λmin

 N∑
i=1

Ψ̃m(Xi)


 > δ


6 2m exp

(
−

δ2N
32L(m)2

)
.

On the other hand, let us establish a suitable bound on P(RN > δ). By the definition of IN ,

RN =
1
N

∥∥∥∥∥∥∥∥
∑
i∈IN

(Ei−1(Ψ̂m(Xi)) − E(Ψ̂m(Xi)))

∥∥∥∥∥∥∥∥
op

.

Then, by Markov’s inequality and Jensen’s inequality (usual and conditional),

P(RN > δ) 6
E(Rp

N)
δp 6

|IN |
p−1

δpN p

∑
i∈IN

E[‖Ei−1[Ψ̂m(Xi) − E(Ψ̂m(Xi))]‖pop]

6
|IN |

p

δpN p E(‖Ψ̂m(X) − E(Ψ̂m(X))‖pop) 6
2p|IN |

p

δpN p L(m)p.

Therefore,

P(‖Ψ̂m −Ψm‖op > δ) 6 P
({

MN >
δ

2

}
∪

{
RN >

δ

2

})
6 2m exp

(
−

δ2N
128L(m)2

)
+

22p|IN |
p

δpN p L(m)p.

Step 3. On {M̂N 1M
+
N}, there exists m ∈ {1, . . . ,NT } such that

[c2ϕm(‖Ψ̂−1
m ‖op ∨ 1)]2 6 dT (p)

NT
log(NT )

and [c2ϕm(‖Ψ−1
m ‖op ∨ 1)]2 > 4dT (p)

NT
log(NT )

.

The first inequality is equivalent to

c
4
ϕm2‖Ψ̂−1

m ‖
2
op 6 dT (p)

NT
log(NT )

and c
4
ϕm2 6 dT (p)

NT
log(NT )

,

and then the second one leads to

4dT (p)
NT

log(NT )
< c4ϕm2‖Ψ−1

m ‖
2
op 6 2c4ϕm2(‖Ψ−1

m − Ψ̂
−1
m ‖

2
op + ‖Ψ̂−1

m ‖
2
op)

6 2c4ϕm2‖Ψ−1
m − Ψ̂

−1
m ‖

2
op + 2dT (p)

NT
log(NT )

.

Moreover, for every m ∈ {1, . . . ,NT },

{‖Ψ−1
m − Ψ̂

−1
m ‖op > ‖Ψ̂

−1
m ‖op}

⊂

{
‖Ψ̂−1/2

m ΨmΨ̂
−1/2
m − I‖op >

1
2

}
⊂

{
‖Ψ̂m −Ψm‖op >

1
2
‖Ψ̂−1

m ‖
−1
op

}
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by interchanging Ψ̂m and Ψm in the proof of Comte and Genon-Catalot [6], Proposition 4.(ii). So,

{M̂N 1M
+
N} ⊂

⋃
c4ϕm26dT (p)NT/ log(NT )

{
2c4ϕm2‖Ψ̂−1

m ‖
2
op < 2dT (p)

NT
log(NT )

6 2c4ϕm2‖Ψ−1
m − Ψ̂

−1
m ‖

2
op

}

⊂
⋃

c4ϕm26dT (p)NT/ log(NT )

‖Ψ̂m −Ψm‖op >
m
2

√
log(NT )
dT (p)NT


and, by the previous step, Assumptions 3 and 4, and since p > 12,

P(M̂N 1M
+
N) 6

∑
c4ϕm26dT (p)NT/ log(NT )

(
2m exp

(
−

N
512L(m)2 ·

m2 log(NT )
dT (p)NT

)

+
23p|IN |

p

N p ·
dT (p)p/2(NT )p/2

mp log(NT )p/2 L(m)p
)

6
∑

c4ϕm26dT (p)NT/ log(NT )

2m exp
− 1

512c4ϕ
·

log(NT )
dT (p)T


+

23p|IN |
p

N p/2 ·
dT (p)p/2T p/2

log(NT )p/2 c
2p
ϕ

)
6

∑
c4ϕm26dT (p)NT/ log(NT )

 2m
N1+p/2 +

23pc
2p
ϕ c3(p)
N6 dT (p)p/2T p/2

 6 c2N5

where c2 > 0 is a deterministic constant not depending on N.

6.3.3. Proof of Lemma 5
The proof of Lemma 5 is dissected in two steps.

Step 1. Consider τ ∈ S1 ∪ · · · ∪ SNT and the martingale (MN(τ)t)t∈[0,T ] defined by

MN(τ)t :=
N∑

i=1

∫ t

0
σ(Xi

s)τ(Xi
s)dBi

s ; ∀t ∈ [0,T ].

Note that νN(τ) = MN(τ)T /(NT ). Since d〈Bi, Bk〉t = Ri,kdt for every i, k ∈ {1, . . . ,N},

〈MN(τ)〉T =

N∑
i,k=1

Ri,k

∫ T

0
σ(Xi

t)σ(Xk
t )τ(Xi

t)τ(Xk
t )dt

=

∫ T

0
(σ(Xi

t)τ(Xi
t))
∗
i × R × (σ(Xi

t)τ(Xi
t))idt

6 ‖R‖op

∫ T

0
‖(σ(Xi

t)τ(Xi
t))16i6N‖

2
2,Ndt

6 ‖R‖op‖σ‖
2
∞

∫ T

0

 N∑
i=1

τ(Xi
t)

2

 dt = NT‖R‖op‖σ‖
2
∞‖τ‖

2
N .

Then, by Assumption 5 and Bernstein’s inequality for local martingales (see Revuz and Yor [22], p. 153), for any
ε, υ > 0,

P(νN(τ) > ε, ‖τ‖2N 6 υ2) 6 P(MN(τ)∗T > NTε, 〈MN(τ)〉T 6 NTυ2‖R‖op‖σ‖
2
∞)

6 exp
(
−

NTε2

2υ2‖σ‖2∞r

)
with r = 1 +m5.
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Since this bound remains true by replacing τ by −τ,

P(|νN(τ)| > ε, ‖τ‖2N 6 υ2) = P(νN(τ) > ε, ‖τ‖2N 6 υ2) + P(νN(−τ) > ε, ‖τ‖2N 6 υ2)

6 2 exp
(
−

NTε2

2υ2‖σ‖2∞r

)
.

Step 2. By using the bound of step 1 and by following the pattern of the proof of Baraud et al. [2], Proposition 6.1,
the purpose of this step is to find a suitable bound on

E



 sup
τ∈Bm,m′

|νN(τ)|

2

− p(m,m′)


+

1ΞN∩ΩN

 ; m,m′ ∈ MN .

Consider δ0 ∈ (0, 1) and let (δn)n∈N∗ be the real sequence defined by

δn := δ02−n ; ∀n ∈ N∗.

Since Sm∨m′ is a vector subspace of L2(I, fT (x)dx) of dimension m∨m′, by Lorentz et al. [19], Chapter 15, Proposition
1.3, for any n ∈ N, there exists Tn ⊂ Bm,m′ such that |Tn| 6 (3/δn)m∨m′ and, for any τ ∈ Bm,m′ ,

∃ fn ∈ Tn : ‖τ − fn‖ fT 6 δn.

In particular, note that

τ = f0 +

∞∑
n=1

( fn − fn−1).

Then, for any sequence (∆n)n∈N of elements of (0,∞) such that ∆ =
∑

n∈N ∆n < ∞,
 sup
τ∈Bm,m′

|νN(τ)|

2

> ∆2


=

∃( fn)n∈N ∈

∞∏
n=0

Tn : |νN( f0)| +
∞∑

n=1

|νN( fn − fn−1)| > ∆


⊂

∃( fn)n∈N ∈

∞∏
n=0

Tn : |νN( f0)| > ∆0 or [∃n ∈ N∗ : |νN( fn − fn−1)| > ∆n]


⊂

⋃
f0∈T0

{|νN( f0)| > ∆0} ∪

∞⋃
n=1

⋃
( fn−1, fn)∈Tn

{|νN( fn − fn−1)| > ∆n}

with Tn = Tn−1 × Tn for every n ∈ N∗. Moreover, ‖ f0‖2fT 6 1,

‖ fn − fn−1‖
2
fT 6 2δ2

n−1 + 2δ2
n =

5
2
δ2

n−1 ; ∀n ∈ N∗,

and ‖.‖2N1ΩN 6 3/2‖.‖2fT 1ΩN on S1 ∪ · · · ∪ Smax(M+
N ). So, by step 1,

P



 sup
τ∈Bm,m′

|νN(τ)|

2

> ∆2

 ∩ ΞN ∩ΩN


6 2

∑
f0∈T0

exp

− NT∆2
0

3‖ f0‖2fT ‖σ‖
2
∞r


+2

∞∑
n=1

∑
( fn−1, fn)∈Tn

exp

− NT∆2
n

3‖ fn − fn−1‖
2
fT
‖σ‖2∞r


6 2 exp

h0 −
NT∆2

0

3‖σ‖2∞r

 + 2
∞∑

n=1

exp
hn−1 + hn −

NT∆2
n

15/2δ2
n−1‖σ‖

2
∞r

 (17)
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with hn = log(|Tn|) for every n ∈ N. Now, let us take ∆0 such that

h0 −
NT∆2

0

3‖σ‖2∞r
= −(m ∨ m′ + x) with x > 0,

which leads to

∆0 =

[
3‖σ‖2∞r

NT
(m ∨ m′ + x + h0)

]1/2

,

and for every n ∈ N∗, let us take ∆n such that

hn−1 + hn −
NT∆2

n

15/2δ2
n−1‖σ‖

2
∞r

= −(m ∨ m′ + x + n),

which leads to

∆n =

15/2δ2
n−1‖σ‖

2
∞r

NT
(m ∨ m′ + x + n + hn−1 + hn)

1/2

.

For this appropriate sequence (∆n)n∈N,

P



 sup
τ∈Bm,m′

|νN(τ)|

2

> ∆2

 ∩ ΞN ∩ΩN

 6 2e−xe−(m∨m′)

1 +

∞∑
n=1

e−n

 6 3.2e−xe−(m∨m′)

by Inequality (17), and

∆2 6
3‖σ‖2∞r

NT

(m ∨ m′ + x)1/2 + h1/2
0 +

√
5
2

∞∑
n=1

δn−1[(m ∨ m′ + x)1/2 + (n + hn−1 + hn)1/2]

2

6
3‖σ‖2∞r

NT
δ(1)(m ∨ m′ + x) +

3‖σ‖2∞r
NT

δ(2) 6
3‖σ‖2∞r

NT
(δ(1) + δ(2))(m ∨ m′ + x)

with

δ(1) = 2

1 +

√
5
2

∞∑
n=1

δn−1

2

,

and δ(2) = 2

h1/2
0 +

√
5
2

∞∑
n=1

δn−1

(
n + NT

(
2 log

(
3
δ0

)
+ (2n − 1) log(2)

))1/22

because

hn−1 + hn 6 (m ∨ m′)
(
log

(
3
δn−1

)
+ log

(
3
δn

))
6 NT

(
2 log

(
3
δ0

)
+ (2n − 1) log(2)

)
.

Then,

P


 sup
τ∈Bm,m′

|νN(τ)|

2

−
κ0

ccalRN
p(m,m′) >

κ0

NT
x

 6 3.2e−xe−(m∨m′)

with
κ0 = 3‖σ‖2∞r(δ

(1) + δ(2)) and RN = 1 +
∑
i,k

|Ri,k |.
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So, by taking ccal > κ0 > κ0/RN and y = κ0x/(NT ),

P


 sup
τ∈Bm,m′

|νN(τ)|

2

− p(m,m′) > y

 6 3.2e−NTy/κ0 e−(m∨m′).

Therefore,

E



 sup
τ∈Bm,m′

|νN(τ)|

2

− p(m,m′)


+

 =

∫ ∞

0
P


 sup
τ∈Bm,m′

|νN(τ)|

2

− p(m,m′) > y

 dy

6 3.2κ0
e−(m∨m′)

NT
.

A union-bound allows to conclude.
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