
HAL Id: hal-03735961
https://hal.science/hal-03735961

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Prior Publication Identification for Open
Source Code

Daniele Serafini, Stefano Zacchiroli

To cite this version:
Daniele Serafini, Stefano Zacchiroli. Efficient Prior Publication Identification for Open Source Code.
18th International Conference on Open Source Systems (OSS 2022), Sep 2022, Madrid, Spain. �hal-
03735961�

https://hal.science/hal-03735961
https://hal.archives-ouvertes.fr


Efficient Prior Publication Identification
for Open Source Code

Daniele Serafini1 and Stefano Zacchiroli2[0000−0002−4576−136X]

1 University of Turin, Italy
me@danieleserafini.eu

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, France
stefano.zacchiroli@telecom-paris.fr

Abstract. Free/Open Source Software (FOSS) enables large-scale reuse
of preexisting software components. The main drawback is increased
complexity in software supply chain management. A common approach
to tame such complexity is automated open source compliance, which con-
sists in automating the verification of adherence to various open source
management best practices about license obligation fulfillment, vulnera-
bility tracking, software composition analysis, and nearby concerns.
We consider the problem of auditing a source code base to determine
which of its parts have been published before, which is an important
building block of automated open source compliance toolchains. Indeed,
if source code allegedly developed in house is recognized as having been
previously published elsewhere, alerts should be raised to investigate
where it comes from and whether this entails that additional obligations
shall be fulfilled before product shipment.
We propose an efficient approach for prior publication identification that
relies on a knowledge base of known source code artifacts linked together
in a global Merkle direct acyclic graph and a dedicated discovery proto-
col. We introduce swh-scanner, a source code scanner that realizes the
proposed approach in practice using as knowledge base Software Her-
itage, the largest public archive of source code artifacts. We validate
experimentally the proposed approach, showing its efficiency in both
abstract (number of queries) and concrete terms (wall-clock time), per-
forming benchmarks on 16845 real-world public code bases of various
sizes, from small to very large.

Keywords: open source · software supply chain · prior art · source code scan-
ning · license compliance · open compliance

1 Introduction

Free/Open Source Software (FOSS) guarantees, among other fundamental user
freedoms, the ability to build upon existing FOSS components when creating
new software applications of any kind. After several decades of constant growth
this has led to present-day massive reuse of FOSS components. A recent anal-
ysis [34] by a major industry player in the field of mergers and acquisitions



(M&A) software audits reports that 99% of code bases audited in 2019 con-
tained open source software components, with 70% of all audited code being
itself open source.

“But there ain’t no such thing as a free [software] lunch”, as the saying goes.
To fully reap the benefits of massive open source software reuse, the integration
of FOSS components into enterprise development processes requires proper man-
agement of the (open source) software supply chain [16]. In particular, attention
should be devoted to component selection and validation [31,21], licence obliga-
tion fulfillment [11], and tracking known security vulnerabilities in reused com-
ponents. Most of these concerns are in fact not specific to open source software,
but the extent to which FOSS enables software reuse makes most development
teams face them first and foremost when dealing with open source software.

As a whole, these concerns are referred to as Open Source Compliance (OSC),
which consists in adhering to all obligations and best practices for the proper
management of FOSS components. Note that open source license compliance
(or OSLC [11]) is just a part of OSC, albeit an often-discussed one due to the
variety and complexity of software licensing [20,2]. The state-of-the-art indus-
try approach for managing the complexity of OSC—known as continuous open
source compliance [26]—is to automate as much as possible the verification of
adherence to all obligations and best practices for FOSS component management
and integrate them into continuous integration (CI) toolchains [23].

Source code scanners play a fundamental role in open source compliance
toolchains. They are run on local code bases (during CI builds or otherwise) to
identify which code parts are known FOSS components v. in-house unpublished
code, determine the applicable licenses for the open source parts [10,13], break
down components into where they come from (known as Software Composition
Analysis [25], or SCA), produce software bills of materials [32,9] (or SBOMs),
and automatically detect license incompatibilities [18] or violations of other best
practices (optionally making CI build fails).

In this paper we focus on the first among these problems: prior publication
identification. Given a local source code base to audit, we aim to efficiently
identify which parts of it have been published before, according to a refer-
ence knowledge base of previously published code. Slightly more formally: we
aim to partition the audited source code artifacts into two non-overlapping sets
known ⊍ unknown. The known partition contains code that is, according to the
reference knowledge base, known to have been published before (possibly, but
not necessarily, under a FOSS license); whereas the unknown partition contains
code that is supposed to have been written in-house, and hence never published
before. Determining prior publication efficiently is of practical importance be-
cause it helps continuous OSC toolchains to “fail fast” [15]. Indeed, if one can
quickly determine that supposedly in-house code has in fact been published be-
fore, that is often reason enough to raise an alert, e.g., by making a CI build fail.
That will in turn trigger further investigation, usually by Open Source Program
Office [21] (OSPO) staff, to determine where the unknowingly reused code comes



from and whether additional overlooked obligations (legal or policy) concerning
it need to be fulfilled before product shipment.

Contributions. With this paper we contribute to improve the state-of-the-art of
open source compliance toolchains for large software systems as follows:

– We propose an efficient approach for prior publication identification based
on: (1) a source scanner running locally on the code base under audit; (2) a
(remote or local) knowledge base of known source code artifacts, indexed as
a global Merkle DAG [22]; (3) a discovery protocol between the two, called
layered discovery, that minimizes the amount of artifact identifiers whose
known/unknown status has to be queried from the knowledge base.

– We introduce swh-scanner, a novel source code scanner that realizes the pro-
posed approach in practice, establishing its feasibility. As its default knowl-
edge base swh-scanner uses Software Heritage [1], the largest public archive
of publicly available source code artifacts, having archived and indexed (at
the time of writing) 12 billions unique source code files and 2.5 billions
unique commits from more than 180 million development projects. Alterna-
tive knowledge bases can be used instead of Software Heritage, e.g., to better
cope with inner source [33,4] use cases. swh-scanner is open source software
developed at https://forge.softwareheritage.org/source/swh-scanner/
and distributed via PyPI under the name swh.scanner (see Section 3).

– We validate experimentally the proposed approach, by analyzing 16845 real-
world public code bases of various sizes, from a handful up to 2 million
source code files and directories. Benchmark results show that the proposed
approach is efficient in terms of how many source code artifacts have to be
looked up from the knowledge base w.r.t. its total size (15.4% on average).
Benchmarks also show that swh-scanner is efficient enough for both inter-
active use and CI integration. 95% of the tested code bases can be scanned
in less than 1 second using Software Heritage as knowledge base (99% in less
than 4.9 seconds), with a mean scan time of 0.34 seconds.

In the context of open source supply chain management, open compliance [19,8]
refers to the goal of pursuing compliance by only using open technology, including
open source software, open data information, and open access documentation
(including standard specifications). Open compliance helps with reducing lock-in
risks towards service providers and helps with establishing trust in the scanning
tools when they need to run on sensitive code bases. As a byproduct of the chosen
approach, and when Software Heritage is used as knowledge base, swh-scanner is
the first open-compliance-compliant source code scanner, for the specific purpose
of prior publication identification.

2 Approach

The problem we aim to solve can be stated as follows. The scanner takes as
input: (1) a local code base to audit, i.e., a source code tree rooted at a “root”

https://forge.softwareheritage.org/source/swh-scanner/


directory on the filesystem that (recursively) contains all relevant source code
files, and (2) a knowledge base (“KB” for short) capable of answering queries
about whether individual source code files or directories are known to have been
previously published or not, based solely on their content—so that, for instance,
once a given version of a hello.c file has been observed in a given Git repository,
it will be considered to be known no matter in how many different directories or
repositories it appears in the future.

The scanner produces as output a known ⊍ unknown partition of the input
code base, where each audited source code file belongs to either the known or
unknown set. An input file will belong to the known partition if and only if it is
reported as “known” by the KB. Note that, the output being a partition of the
input, it also holds that known⊍unknown is equal to the full set of scanned files.

A couple of caveats are worth noting. First, the input code base can contain
duplicate files, or even duplicate directories. As the known/unknown determi-
nation by the knowledge base depends only on their content, all different oc-
currences of the same file (or directory) in the input source tree will belong to
the same output partition. Second, when all files contained in a source directory
belong to the same partition (say, known) we can say as a shorthand that the
directory itself belongs to that partition, but the final partitioning can always
be described as the set of all files contained recursively in the root directory.

2.1 Knowledge base

Without any additional information about the structure of scanned source code
artifacts, the best one can do to establish the known ⊍ unknown partition is to
query the KB for all individual files. Doing so can incur significant costs for
large code bases. For example, version 5.9.1 of the Linux kernel contains 327441
files and it is going to be just a part of mixed FOSS/proprietary code bases for
IoT devices that use Linux as embedded operating system. This naive approach
of querying the status of all source code files and directories is our baseline of
(non) efficient prior publication identification.

The centerpiece of the proposed approach is a Merkle [22] DAG (Direct
Acyclic Graph) that links together all source code artifacts known to the KB.
In Merkle structures node labels are not chosen, but computed as strong cryp-
tographic identifiers based only on the content of each node and, for non-leaf
nodes, on the identifiers of their children. State-of-the-art distributed version
control systems (DVCSs) such as Git [12] already rely on Merkle structures, as
do P2P filesystems like IPFS [3] and Distributed Ledger Technologies (DLTs).

Merkle structures enjoy properties which are useful for efficient comparison
of structured data. In particular it holds that if a complete Merkle structure (i.e.,
one with no outgoing dangling links from any node in it) contains a given node,
then it also contains all of its descendants, leaves or otherwise.

A generic data model for representing source code artifacts commonly stored
in VCSs has been introduced by Software Heritage (SWH) [7] for long-term
archival needs; it is shown in Figure 1. The SWH data model supports individual
source code files (or “blobs” in SWH jargon), directories (i.e., source code trees),



Fig. 1. Data model of the global corpus of public software development: a Merkle DAG
(Direct Acyclic Graph) linking together deduplicated source code artifacts.

commits (or “revisions”), releases (i.e., commits annotated with mnemonic labels
like “2.0”), and repository snapshots (i.e., the full state of repositories, keeping
track of where each branch was pointing at archival time). Origin nodes represent
software distribution places, such as public Git repositories identifier by URLs,
and act as the graph roots pointing into the Merkle DAG.

As node identifiers Software Heritage, and by extension swh-scanner, relies
on SWHIDs (SoftWare Heritage IDentifiers) [6], which are standardized intrinsic
textual identifiers that embed a cryptographic checksum (a SHA1, in SWHID
version 1) and node type information. Examples of a blob and directory SWHID
identifier are: swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2 and
swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505. SWHIDs can be resolved
via the SWH archive Web UI and various other public resolvers.3

We require the KB to index source code artifacts using a Merkle DAG, to sup-
port at least directory and blob nodes, and to behave consistently w.r.t. Merkle
properties when answering known/unknown queries. In particular, if the lookup
of the known status of a directory returns known, then the knowledge base
must also return known for all source code files and directories (recursively)
contained in it. On the other hand the proposed approach does not depend on
SWH specifically. We have built swh-scanner (see Section 3) using the Software
Heritage archive due to its availability and large coverage of public code, but
the proposed approach is applicable to any KB respecting the desired Merkle
properties. Node types other than files and directories, while not strictly needed
for code tree scanning, can also be exploited if available (see Section 6).

3 For details see https://docs.softwareheritage.org/devel/swh-model/
persistent-identifiers.html.

https://archive.softwareheritage.org/swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2
https://archive.softwareheritage.org/swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html


Algorithm 1 Layered discovery : efficient prior publication identification of
known source code artifacts
1: procedure LayeredDiscovery(root, kb)
2: known,unknown← ∅,∅ ▷ output partition
3: Q← ∅ ▷ queue of nodes to visit
4: Q.enqueue(root)
5: while Q ≠ ∅ do ▷ main loop
6: node← Q.dequeue()
7: if kb.knows(node.id) then ▷ knowledge base lookup
8: known← known ∪ {node}
9: if node.type = directory then
10: ▷ known directory, mark descendants as known
11: known← known ∪ visit(node)
12: end if
13: else ▷ unknown node
14: unknown← unknown ∪ {node}
15: if node.type = directory then
16: ▷ unknown directory, dig further
17: for child ∈ children(node) do
18: Q.enqueue(child)
19: end for
20: end if
21: end if
22: end while
23: return ⟨known,unknown⟩ ▷ return partition
24: end procedure

2.2 Discovery protocol

Once a knowledge base is available, a source code scanner can efficiently de-
termine the known ⊍ unknown using the layered discovery protocol detailed in
Algorithm 1. It takes as first input root, the root node of a Merkle tree that corre-
sponds to the code base to audit, indexed in the same way used by the knowledge
base to index known code4 and containing directory and blob nodes. Note that,
due to the fact that Merkle structures are built bottom-up, the scanner needs
to read the entire local code base to obtain the root node before starting Algo-
rithm 1. The second input is kb, a handle to the knowledge base that can be
queried to obtain the known/unknown status of a given node identifier.

The following additional notation is used in Algorithm 1: nodes have two
attributes, n.type returning the node type (blob or directory) and n.id returning
its Merkle identifier; visit(n) is a function returning all the (recursive) descen-
dants of node n, including itself, in an arbitrary order; children(n) returns the
direct (non-recursive) descendants of a given node; Q is a FIFO queue, equipped
with the usual Q.enqueue(n) and Q.dequeue() methods. The knowledge base is

4 In particular, Merkle node identifiers shall be computed in the exact same way
between the knowledge base and the scanner.



equipped with a single kb.knows(id) method that returns a boolean indicating
whether it knows about a given node or not, based on its Merkle identifier.5

Layered discovery proceeds by performing a BFS (breadth-first search) visit
of the local source tree, querying the knowledge base and updating the (initially
empty) known/unknown partition as it goes. Once a known node is encountered,
knowledge base querying can stop, because all nodes in its subgraph must be
known to the knowledge base as well, due to Merkle properties. This allows to
prune potentially large subgraphs, minimizing querying, which is expected to
be costly, as it will usually happen over the network. However, note that when
querying stops, the entire subgraph should still be added to the known partition;
this step can be done locally without further interacting with the knowledge base.

Runtime complexity. In the worst case scenario, when kb does not know any node
of the local code base, layered discovery has a time-complexity of 2 ⋅O(V +E) =
O(V +E) (one bottom-up visit of the source tree to build the Merkle DAG plus
one top-down visit to determine the known⊍unknown split), where V and E are
respectively the nodes and edges of the audited code base as a Merkle DAG; the
scanner will perform O(V ) knowledge base lookups using kb.knows().

In the best case scenario, when kb knows the entire code base, complexity is
O(V +E) with a single call (O(1)) to kb.knows(root).

We will verify experimentally in Section 4 that, using Software Heritage as
a knowledge base, we are often close to the best case scenario and also that,
independently from the chosen knowledge base, this approach is significantly
more efficient than the baseline. We will also see that runtime in practice is
good enough for both interactive and CI integration use cases. Before that, let
us see how swh-scanner implements in practice the proposed approach.

3 Design and implementation

Figure 2 shows the architecture of swh-scanner as a C4 container diagram. In
this section we describe the role of each component in the architecture, through-
out the execution of a typical swh-scanner use case.

On the left of Figure 2 a compliance engineer of some organization is inter-
ested in establishing the prior art status of a local source code tree. swh-scanner,
on the top-right of the figure, is free/open source software, released under the
GNU GPL license version 3 or above, implemented in Python and distributed
via PyPI. It can be installed using the pip package manager as follows:

$ pip install swh.scanner

The compliance engineer can then run swh-scanner on the input source tree:

$ swh scanner scan SRC_ROOT/

5 Hash collisions are possible, but we assume that the chosen cryptographic hash
function is strong enough for the target domain.



«boundary»
Compliance organization

[Enterprise]

«boundary»
swh-scanner

[System]

«person»

Compliance engineer

«system»

Source code tree

«container»

Controller
[swh.scanner.scanner]

Scanning driver and policy

«container»

Parser
[swh.scanner.model]

Reads source tree and
builds its Merkle DAG

representation

«container»

Model
[swh.scanner.model]

Merkle DAG representation
of the source tree

«container»

Backend
[swh.scanner.backend]

Local knowledge base of
known artifacts

«system»

Results

Scanning results in various
formats (textual, JSON,

interactive dashboard, etc.)

Requests scan
[Command-line interface]

Is read by
[Filesystem]

Creates
[In memory]

Visits
[In memory]

«external_system»

Software Heritage
archive

Public archive of source
code artifacts

Checks for known
artifacts
[REST API]

EmitsInspects
[various formats]

Fig. 2. Architecture of swh-scanner as a C4 container diagram.

where SRC_ROOT is the root directory of the source code tree for which we want
to determine prior art. Upon invocation swh-scanner will first build, using the
Parser component, an in-memory Model of the source tree as a Merkle DAG
structure compatible with the one described in Section 2.1.

The Controller component will then run layered discovery (see Algorithm 1)
on the source tree model to determine the known⊍unknown partition. swh-scanner
also implements alternative, user-selectable discovery protocols (e.g., scan direc-
tory nodes first, scan file nodes first, random scanning, etc.) in addition to layered
discovery, which is the default and most efficient protocol.

By default swh-scanner directs KB queries—corresponding to kb.knows()
method invocations in Algorithm 1—to the Software Heritage public REST
API, which provides a dedicated /known endpoint6 capable of returning the
known/unknown status of several SWHIDs at once. Alternatively, a local knowl-
edge base of known source code artifacts, identified by SWHIDs, can be op-
erated locally. In such a scenario swh-scanner can be pointed to the non-
default, local KB via the web-api configuration setting. The companion com-
mand swh scanner db serve -f KB.sqlite will serve a swh-scanner-compatible
KB (on a configurable host/port) using the KB.sqlite database as source of
truth for known SWHIDs. More complex setups are possible by providing a cus-
tom implementation of the /known endpoint; for instance, in inner source [33]
scenarios one might want to check first a local KB and then fallback to SWH.

At the end of scanning the Controller emits Results in various user-selectable
formats: textual output for manual inspection (à la recursive ls, with annota-
tions of which parts of the tree are known/unknown), machine-parsable JSON
reports, or an interactive HTML dashboard to drill down into scanning results.
For example, a sample run of swh-scanner on a locally modified version of a

6 https://archive.softwareheritage.org/api/1/known/doc/

https://archive.softwareheritage.org/api/1/known/doc/


Linux kernel source tree, requesting detailed output in JSON format (e.g, for
further automated processing), could look like this (excerpt):
$ time swh scanner scan -f json /srv/src/linux/kernel
{

[...]
"/srv/src/linux/kernel/auditsc.c": {

"known": true ,
"swhid": "swh:1: cnt :814406 a35db163080bbf937524d63690861ff750"

},
"/srv/src/linux/kernel/backtracetest.c": {

"known": true ,
"swhid": "swh:1: cnt:a2a97fa3071b1c7ee6595d61a172f7ccc73ea40b"

},
"/srv/src/linux/kernel/bounds.c": {

"known": true ,
"swhid": "swh:1: cnt :9795 d75b09b2323306ad6a058a6350a87a251443"

},
"/srv/src/linux/kernel/bpf/": {

"known": false ,
"swhid": "swh:1: dir:fcd9987804d26274fee1eb6711fac38036ccaee7"

},
"/srv/src/linux/kernel/capability.c": {

"known": true ,
"swhid": "swh:1: cnt :1444 f3954d750ba685b9423e94522e0243175f90"

},
[...]

}
0,53s user 0,61s system 145$

4 Experimental validation

In order to validate the proposed approach for efficient prior publication iden-
tification of open source code artifacts we have used swh-scanner to analyze
16845 public code bases.

We initially selected 20000 public Git repositories from the Software Heritage
dataset [27] whose sizes, measured as the number of commits in the repository,
uniformly distributed on a log scale. This gave us a varied project sample in
terms of project age and activity. We then cloned each of those projects from
their public repository URLs. It is important to notice that we explicitly did
not retrieve the projects from the SWH archive to allow active projects to have
more code and commits w.r.t. the last archived version in SWH, e.g., due to
archival lag, which is a common scenario in compliance use cases: the prior art
knowledge base used at scan time is not necessarily up-to-date w.r.t. the state
of public code in the real world.

Clones were performed using git clone –depth 1 to retrieve only the most
recent commit of each repository, which will constitute one code base to be
scanned. We successfully cloned 16845 repositories. The other repositories were
no longer available from their original hosting places and have been ignored.

We then run swh-scanner7 on each code base keeping track for each invoca-
tion of: n. of SWHIDs looked up from the KB (equivalently: n. of kb.knows(id)

7 Specifically, we used the swh-scanner version identified by SWHID
swh:1:rev:979d7c803a1478c1e65a6cf8a827c16a746e3aa1, archived by SWH.

https://archive.softwareheritage.org/swh:1:rev:979d7c803a1478c1e65a6cf8a827c16a746e3aa1


calls in Algorithm 1); elapsed real time for scanning; code base size as the total
number of files and directories it contains. (equivalently: n. of nodes in the Merkle
DAG model). Scanned projects have sizes ranging from small code bases of a few
files+directories (mean: 3160, median: 132) up to medium and very large code
bases (90% percentile: 4198, 95%: 10283, max: 2.54 millions files+directories).

On each code base we have run swh-scanner using different knowledge
bases. The scenario denoted as known-swh consists of using the live Software
Heritage archive as knowledge base at the time of scanning; it best repre-
sents a real compliance engineer using swh-scanner. Other scenarios, denoted
known-0,known-10,...,known-100, are simulations of different knowledge bases
knowing from none (0%, or known-0) to all of (100%, or known-100) the files
and directories encountered in all tested code bases by 10% increments.

To obtain the simulated knowledge bases we first mined from all code bases
the identifiers (as SWHIDs) of all contained files and directories. This set consti-
tutes the known-100 knowledge base: any node that could ever be queried when
scanning any code base will be reported as “known” by this KB. To obtain the
known-90 we proceeded as follows: randomly mark 10% files (which correspond
to leaves in the Merkle DAG) as unknown; then visit the Merkle DAG backward
from leaves to roots marking all encountered directory nodes as unknown as well.
The visit ensures that Merkle properties are respected by the simulated KBs:
if a given file is reported as unknown, no directory (recursively) containing it
should be reported as known, because if the directory had been encountered in
the wild, all its (recursive) content would have been too. Iterating this process
by 10% increments we produced all simulated KBs up to known-10. (known-0 is
trivial to produce: it is the KB that always answers “unknown”.)

Practically, experiments for the known-swh KB were run using default scan-
ner settings (which make swh-scanner query the live SWH archive), whereas
other known-* cases by operating local KBs using swh scanner db serve (dis-
cussed in Section 3) and pointing the scanner to them.

Figure 3 shows experimental results about the number of files and directories
looked up from the KB using kb.knows(id), for various KBs. For the sake of
readability results are split between two charts, one for small code bases (above)
and one for big ones (below). The size line is our baseline, corresponding to a
discovery scenario where the scanner has to lookup all artifacts (files + directories
= size) from the KB. Indeed, the known-0 scenario, i.e., a KB that knows no
artifact, is identical to the baseline (and hidden below it in the charts).

The real-world scenario of known-swh, where we have queried the live SWH
archive performs much better than the baseline, looking up only an increasingly
marginal fraction of scanner artifacts. On average as little as 15.4% of the input
files and directories need to be looked up, with a median of 2.3% and a 75%
percentile of 20% nodes of the input code base looked up. Among simulated
scenarios, the only one outperforming known-swh is known-100, for a KB that
knows all artifacts and hence always need a single lookup of the root directory
node. Other simulated KB scenarios increasingly approach the baseline: the less
the KB knows, the closer they get to it, i.e., the worse they perform.



Fig. 3. Amount of knowledge base lookups performed for determining the known ⊍
unknown partition of public code bases of various sizes (small ones above, large ones
below) using various knowledge bases: known-swh for the live Software Heritage archive,
known-100 for 100% of the code base files and directories known, down to known-10
and known-0 for 10% and 0% artifacts known, respectively.



Fig. 4. Elapsed real time (seconds) for determining the known ⊍ unknown partition of
public code bases of various sizes using Software Heritage as remote knowledge base.
Mean: 0.34 seconds; 95% percentile < 1 second; 99% < 4.9 seconds.

These results show that, in terms of lookup efficiency, the proposed approach
beats the baseline and does so by far when using the SWH archive as KB. But
what about the practical efficiency and viability of swh-scanner as a tool for
the task? We answer this question by showing in Figure 4 the elapsed real time
for scanning all analyzed code bases.

Timing benchmarks show that swh-scanner, when used with SWH as re-
mote knowledge base over the network, is efficient enough for both interactive
use, e.g., by a compliance engineer, and integration into CI/CD workflows for
continuous open source compliance. 95% of the tested code bases can be scanned
in less than 1 second using Software Heritage as knowledge base (99% in less
than 4.9 seconds), with a mean scan time of 0.34 seconds. Aside from a sin-
gle outlier (1 code base out of 16845 projects, which took ≈15 minutes to scan
0.5 million files/directories) even the largest code bases in our sample, up to 2
million files/directories, were scanned in less than 2 minutes.

5 Related Work

We have introduced an efficient approach to detect prior publication of open
source code artifacts, implemented it in swh-scanner, and verified experimen-
tally its efficiency. To the best of our knowledge this is the only scanner for



FOSS compliance that is open source itself, leverages Merkle properties to im-
prove scanning efficiency and uses Software Heritage as an open data knowledge
base to determine prior publication of source code files and directories. While
the underlying problem seems to have received little attention in the research
literature a number of industrial code scanning tools exist, for the purpose of
(semi-)automating the verification of compliance with FOSS license obligations
and/or security best practices.

The tooling landscape8 conducted by the Open Source Tooling Group and the
OpenChain [5] curriculum9 provide a good overview of existing tools to support
automated governance of FOSS supply chains, including tools that adhere to the
open compliance principle [8] (see Section 1). State-of-the-art license scanners
in the field are FOSSology [17], and ScanCode (discussed in [25] together with
other FOSS tools for Software Composition Analysis). Zooming out from license
detection per se, several tools are used in the compliance landscape to manage
the workflow of vetting open source component before production use, such as
Eclipse SW36010 as component inventory manager and the OSS Review Toolkit
(ORT)11 that provides a customizable pipeline for continuous compliance [26].

SCANOSS12 has recently announced an open data knowledge base (OSSKB)
to accompany its (also open) scanning tool. Its coverage is comparable in size
to Software Heritage, but the indexing technique is different. OSSKB has finer
granularity (see Section 6 for a discussion of this point) than swh-scanner, rely-
ing on winnowing [29] for approximate matches on individual source code files.
On the other hand the SCANOSS scanner does not rely on Merkle structur-
ing to prune code base parts that do not need scanning. In-depth quantitative
benchmarking of the two approaches constitutes interesting future work.

6 Discussion

Scanning commits and other artifact types. We focused our discussion on the
scanning of source code files and directories, because that corresponds to both
the state-of-the-art in terms of artifact types and to what swh-scanner sup-
ports today. But in fact all artifact types supported by the SWH data model
(Figure 1)—and in particular commits, releases and snapshots, not discussed in
the paper—can be supported via the same approach. Minimal changes would
be needed in the discovery protocol, roughly speaking to treat all other non-leaf
nodes similarly to how directories are handled. This flexibility is likely to become
increasingly relevant in the future, as relevant FOSS projects (e.g., the Linux
kernel) are starting to discuss13 the possibility that their entire Git development
history might correspond best to the complete and corresponding source (CCS)
8 https://github.com/Open-Source-Compliance/Sharing-creates-value/
9 https://github.com/OpenChain-Project/curriculum/

10 https://www.eclipse.org/sw360/
11 https://github.com/oss-review-toolkit/ort
12 https://www.scanoss.com/
13 https://lore.kernel.org/linux-spdx/YqILppVZUrD19M6D@ebb.org/

https://github.com/Open-Source-Compliance/Sharing-creates-value/
https://github.com/OpenChain-Project/curriculum/
https://www.eclipse.org/sw360/
https://github.com/oss-review-toolkit/ort
https://www.scanoss.com/
https://lore.kernel.org/linux-spdx/YqILppVZUrD19M6D@ebb.org/


that should be made available to users for compliance with the terms of the GNU
GPL. In such a scenario it will become important for compliance engineer to de-
termine the prior publication of entire Git repositories; the proposed approach
will fit well and efficiently such novel use cases.

Scanning granularity. Whereas scanning commits, release, etc. goes in the direc-
tion of (conceptually) larger artifacts, one can also increase scanning granularity
and scan within source code files, e.g., to support prior art detection at level
of individual snippets contained in a larger source code file. Various techniques
exist to support this in source code scanners, including plagiarism detection
(like Winnowing [29], mentioned in Section 5), locality-sensitive hashing (like
TLSH [24]), or source code parsing followed by code clone detection [30].

While the proposed implementation, based on swh-scanner + SWH as KB,
stops at file granularity with a notion of file equality based on cryptographic
hashes—and hence will not recognize as known a source code file where a single
byte has been altered w.r.t. a previously published version of it—the proposed
approach is granularity-agnostic. The Merkle structure of Figure 1 can be ex-
tended to have as leaves file parts, such as code snippets or lines (SLOCs), rather
than files. That would cause an increase in the size of the KB, but will not sub-
stantially alter the approach efficiency, because large known sub-parts of public
code bases will be fully detected as known based on hashes that are high up
in the Merkle structure. To the best of our knowledge no attempt of building a
Merkle structure of public code at a granularity finer than individual files and at
the scale of SWH (= tens of billions source code files) has ever been attempted.

Enriching scan results with additional information. Industrial source code scan-
ners generally offer as output more information than mere known/unknown in-
formation, as swh-scanner does. The latter not being a marketed product, we do
not consider this a significant limitation: swh-scanner is meant to be a research
prototype showing how the specific sub-problem of determining prior publication
for FOSS artifacts can be solved efficiently using a Merkle-structured open data
knowledge base. At the same time it is important to discuss how compatible the
proposed approach is with “joining” additional information to scanning output.

Once the known ⊍ unknown is identified, computed SWHIDs can be used as
unique keys to lookup additional information about scanned artifacts that can
then be included in scanning results. Typical example of additional informa-
tion returned by code scanners for open compliance are: licensing information
(already available from SWH itself, detected using FOSSology [17]), software
composition analysis [25] decomposition (which would need to be computed
separately), software provenance [14] information (that can be tracked at the
scale of SWH [28]), and known vulnerability information (available from pub-
lic CVE databases, but currently lacking an open data CVE↔SWHID map-
ping). Once these information become available from third-party KBs, extending
swh-scanner to look them up and join them with scanning results would be a
simple matter of programming.



6.1 Threats to validity

Our experimental benchmarks have been conducted on public code bases rather
than on private code bases. We have simulated the ignorance by the knowledge
base of encountered artifacts, but there is no guarantee that matches the re-
ality of in-house code bases encountered in the real world. It is difficult to do
better while at the same time preserving experiment reproducibility (on public
code that anyone can retrieve and experiment with). It would nonetheless be
interesting to experiment with swh-scanner in an industrial compliance engi-
neering setting. We are aware of large companies integrating swh-scanner in
their licence compliance toolchains, but no rigorous empirical experiment has
been conducted yet.

The correctness of swh-scanner depends on the fact that the answers re-
turned by the KB are Merkle-consistent. In particular it must hold that when
the KB answers known for a non-leaf node (e.g., a directory), all its descendants
must be known as well. In specific corner cases this property might not hold for
the SWH archive. For example, corrupted objects from some VCS repositories
might not have been archived or legal takedown actions might have forced the
archive to poke “holes” into the Merkle structure. Given the Merkle DAG can
only be built bottom-op, arguably, holes do not invalidate the fact that the con-
tent that used to be there should be reported as known; after all it has been
observed in the past, only to disappear later. A more satisfying answer is techni-
cally possible, but requires engineering a more complex Merkle-based accounting
of “holes”; doing so is beyond the scope of this paper. In quantitative terms the
problem is negligible when using SWH as KB. It is also a KB-specific issue which
does not impact the validity of the approach as a whole.

7 Conclusion

We introduced an efficient approach to determine prior publication of open
source code artifacts based on a Merkle-structured knowledge base (KB) and
implemented it in the open source swh-scanner tool, which uses the Software
Heritage archive as KB. By scanning 16845 code bases we have experimentally
validated the efficiency of the proposed approach and tool, both in intrinsic terms
(calls between scanner and KB) and in terms of wall-clock time.

Several steps remain as future work. Alternative discovery protocols are possi-
ble: they should be designed, modeled, and benchmarked to determine if further
efficiency improvements are practically viable. Merkle structuring can also be
improved to better cater for real-world data losses on the KB side, finer artifact
granularity, and approximate artifact matching.

Acknowledgements The authors would like to thank Guillaume Rousseau for
providing the project sample used in the experiments described in Section 4 and,
more generally, for insightful discussions about swh-scanner.



References

1. Abramatic, J.F., Di Cosmo, R., Zacchiroli, S.: Building the universal archive
of source code. Communications of the ACM 61(10), 29–31 (Sep 2018).
https://doi.org/10.1145/3183558

2. Almeida, D.A., Murphy, G.C., Wilson, G., Hoye, M.: Do software developers under-
stand open source licenses? In: Proceedings of the 25th International Conference on
Program Comprehension, ICPC 2017. pp. 1–11. IEEE Computer Society (2017).
https://doi.org/10.1109/ICPC.2017.7

3. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR
abs/1407.3561 (2014), http://arxiv.org/abs/1407.3561

4. Capraro, M., Riehle, D.: Inner source definition, benefits, and challenges. ACM
Computing Surveys (CSUR) 49(4), 67 (2017)

5. Coughlan, S.: Standardizing open source license compliance with OpenChain. Com-
puter 53(11), 70–74 (2020)

6. Di Cosmo, R., Gruenpeter, M., Zacchiroli, S.: Identifiers for digital ob-
jects: the case of software source code preservation. In: Proceedings of the
15th International Conference on Digital Preservation, iPRES 2018 (2018).
https://doi.org/10.17605/OSF.IO/KDE56

7. Di Cosmo, R., Zacchiroli, S.: Software Heritage: Why and how to preserve soft-
ware source code. In: Proceedings of the 14th International Conference on Digi-
tal Preservation, iPRES 2017 (Sep 2017), https://hal.archives-ouvertes.fr/
hal-01590958/

8. Fendt, O., Jaeger, M.C.: Open source for open source license compliance. In: Open
Source Systems - 15th IFIP WG 2.13 International Conference, OSS 2019. IFIP
Advances in Information and Communication Technology, vol. 556, pp. 133–138.
Springer (2019). https://doi.org/10.1007/978-3-030-20883-7_12

9. Gandhi, R.A., Germonprez, M., Link, G.J.P.: Open data standards for open
source software risk management routines: An examination of SPDX. In: Pro-
ceedings of the 2018 ACM Conference on Supporting Groupwork, GROUP 2018,
Sanibel Island, FL, USA, January 07 - 10, 2018. pp. 219–229. ACM (2018).
https://doi.org/10.1145/3148330.3148333

10. Germán, D.M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic
license identification of source code files. In: ASE 2010, 25th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. pp. 437–446. ACM (2010).
https://doi.org/10.1145/1858996.1859088

11. Germán, D.M., Penta, M.D.: A method for open source license
compliance of java applications. IEEE Softw. 29(3), 58–63 (2012).
https://doi.org/10.1109/MS.2012.50

12. Git community: Git version control system (2005), https://git-scm.com/, re-
trieved 09 April 2018

13. Gobeille, R.: The FOSSology project. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories, MSR 2008. pp. 47–50. ACM
(2008). https://doi.org/10.1145/1370750.1370763

14. Godfrey, M.W.: Understanding software artifact provenance. Science of Computer
Programming 97, 86–90 (2015)

15. Gray, J.: Why do computers stop and what can be done about it? In: Proceedings of
the 5th Symposium on Reliability in Distributed Software and Database Systems,
SRDS 1986. pp. 3–12. IEEE Computer Society (1986)

https://doi.org/10.1145/3183558
https://doi.org/10.1109/ICPC.2017.7
http://arxiv.org/abs/1407.3561
https://doi.org/10.17605/OSF.IO/KDE56
https://hal.archives-ouvertes.fr/hal-01590958/
https://hal.archives-ouvertes.fr/hal-01590958/
https://doi.org/10.1007/978-3-030-20883-7_12
https://doi.org/10.1145/3148330.3148333
https://doi.org/10.1145/1858996.1859088
https://doi.org/10.1109/MS.2012.50
https://git-scm.com/
https://doi.org/10.1145/1370750.1370763


16. Harutyunyan, N.: Managing your open source supply chain-why and how? Com-
puter 53(6), 77–81 (2020). https://doi.org/10.1109/MC.2020.2983530

17. Jaeger, M.C., Fendt, O., Gobeille, R., Huber, M., Najjar, J., Stewart, K., Weber,
S., Wurl, A.: The FOSSology project: 10 years of license scanning. IFOSS L. Rev.
9, 9 (2017)

18. Kapitsaki, G.M., Kramer, F., Tselikas, N.D.: Automating the license compatibility
process in open source software with SPDX. J. Syst. Softw. 131, 386–401 (2017).
https://doi.org/10.1016/j.jss.2016.06.064

19. Koltun, P.: Free and open source software compliance: An operational perspective.
IFOSS L. Rev. 3, 95 (2011)

20. Lindberg, V.: Intellectual property and open source: a practical guide to protecting
code. O’Reilly Media, Inc. (2008)

21. McAffer, J.: Getting started with open source governance. Computer 52(10), 92–96
(2019). https://doi.org/10.1109/MC.2019.2929568

22. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Proceedings of Advances in Cryptology - CRYPTO ’87. pp. 369–378 (1987).
https://doi.org/10.1007/3-540-48184-2_32

23. Meyer, M.: Continuous integration and its tools. IEEE Softw. 31(3), 14–16 (2014).
https://doi.org/10.1109/MS.2014.58

24. Oliver, J., Cheng, C., Chen, Y.: Tlsh–a locality sensitive hash. In: 2013 Fourth
Cybercrime and Trustworthy Computing Workshop. pp. 7–13. IEEE (2013)

25. Ombredanne, P.: Free and open source software license compliance: Tools
for software composition analysis. Computer 53(10), 105–109 (2020).
https://doi.org/10.1109/MC.2020.3011082

26. Phipps, S., Zacchiroli, S.: Continuous open source license compliance. Computer
53(12), 115–119 (2020). https://doi.org/10.1109/MC.2020.3024403

27. Pietri, A., Spinellis, D., Zacchiroli, S.: The Software Heritage graph dataset: pub-
lic software development under one roof. In: Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories, MSR 2019. pp. 138–142 (2019).
https://doi.org/10.1109/MSR.2019.00030

28. Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Software provenance tracking at the
scale of public source code. Empirical Software Engineering 25(4), 2930–2959
(2020). https://doi.org/10.1007/s10664-020-09828-5

29. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD In-
ternational Conference on Management of Data. pp. 76–85. ACM (2003).
https://doi.org/10.1145/872757.872770

30. Shobha, G., Rana, A., Kansal, V., Tanwar, S.: Code clone detection—a systematic
review. Emerging Technologies in Data Mining and Information Security pp. 645–
655 (2021)

31. Spinellis, D.: How to select open source components. Computer 52(12), 103–106
(2019). https://doi.org/10.1109/MC.2019.2940809

32. Stewart, K., Odence, P., Rockett, E.: Software package data exchange (SPDX)
specification. IFOSS L. Rev. 2, 191 (2010)

33. Stol, K.J., Fitzgerald, B.: Inner source–adopting open source development practices
in organizations: a tutorial. IEEE Software 32(4), 60–67 (2014)

34. Synopsis: 2020 open source security and risk analysis report (OSSRA).
Tech. rep., Synopsis (2020), https://www.synopsys.com/content/dam/synopsys/
sig-assets/reports/2020-ossra-report.pdf, accessed 2020-04-15

https://doi.org/10.1109/MC.2020.2983530
https://doi.org/10.1016/j.jss.2016.06.064
https://doi.org/10.1109/MC.2019.2929568
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/MC.2020.3011082
https://doi.org/10.1109/MC.2020.3024403
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1145/872757.872770
https://doi.org/10.1109/MC.2019.2940809
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf

	Efficient Prior Publication Identification for Open Source Code

