
HAL Id: hal-03735849
https://hal.science/hal-03735849v2

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Long-Term Dynamics of Biological Networks
with Answer Set Programming

Emna Ben Abdallah, Maxime Folschette, Morgan Magnin

To cite this version:
Emna Ben Abdallah, Maxime Folschette, Morgan Magnin. Analyzing Long-Term Dynamics of Bio-
logical Networks with Answer Set Programming. Systems Biology Modelling and Analysis: Formal
Bioinformatics Methods and Tools, 2022. �hal-03735849v2�

https://hal.science/hal-03735849v2
https://hal.archives-ouvertes.fr

Chapter 7

Analyzing Long-Term
Dynamics of Biological
Networks with Answer Set
Programming

Emna Ben Abdallah,1 Maxime Folschette,2* and Morgan Magnin3

1Independent researcher
2Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
3Centrale Nantes, Université de Nantes, CNRS, LS2N, F-44000 Nantes, France

*Corresponding Author: Maxime Folschette, maxime.folschette@centralelille.fr

Merits of ASP for biological systems analysis: The formal study of the dynamics

of biological systems raises many problems, e.g., identification of attractors, bifurca-

tions, reachability, that are combinatorial by essence. Making these issues tractable

requires to design efficient methods that rely on solid and efficient programming

frameworks. During the last decades, Answer Set Programming (ASP) [Baral, 2003]

has proven to be a strong logic programming paradigm to deal with the inherent

complexity of the biological models, allowing to quickly investigate a wide range

of configurations. ASP can efficiently enumerate a large number of answer sets, as

well as easily filter the results thanks to constraints based on certain properties. This

chapter begins by a motivation of the merits of ASP in biological studies based on a

1

state of the art. The basic concepts about ASP and its use in systems biology are then

introduced. After having given an overview of the different issues that can be tack-

led using ASP, the focus is turned onto one problem that is of critical importance:

model-checking with ASP, and more specifically the identification of attractors. The

merits of such an approach are then exhibited using case studies. This chapter ends

on a summary of the promising perspectives that ASP holds in future works about

biological dynamics.

Keywords: Answer Set Programming (ASP), logic programming, attractors, stable

states, dynamical analysis

7.1. Introduction
Recent advances in molecular biology have made it possible to produce comprehen-

sive genome maps of many living organisms. However, these static maps — made

popular in case of humans in particular through the “Human Genome Project” [Collins

et al., 2003] — are not sufficient to account for the intrinsic complexity of living

things. It is indeed necessary to consider genetic phenomena with regard to the full

complexity of the dynamics of their interactions, either internal or with their environ-

ment (for example, the stress represented by an external component such as light or

the ingestion of a protein).

Meanwhile, the development of biotechnologies such as DNA chips and the rise of

high-throughput sequencing techniques (such as RNAseq) facilitate the production of

time series data corresponding to the expression of several thousand genes. The ques-

tion then arises of the meaning to be given to this profusion of information. One of the

main current challenges in systems biology is thus to integrate these high-throughput

data and to infer the associated genetic regulatory networks. As the interactions occur

at different scales (genes, proteins, biochemical components, cells, etc.), there is a

2

need to develop integrative methods that can formally and automatically learn biolog-

ical data to facilitate understanding, at a systemic level, of the phenomena involved.

In fact, the modeling of biological regulatory mechanisms can be divided into two

main trends. The first, quantitative, is based on ordinary differential equations involv-

ing the quantitative expression of interacting components. However, these equations

are generally non-linear, which prevents their analytical resolution. In addition, the

biological data obtained experimentally are generally relatively noisy, which means

that they must be filtered efficiently. Conversely, the second tendency consists in ad-

dressing the problem using a discrete methodology. In other words, the expression

of each component is assessed according to several (usually two, sometimes three or

four) qualitative levels, and no longer quantitatively. Even though such discrete mod-

eling might be considered a less faithful abstraction of reality, it has been shown to be

effective in addressing many qualitative biological questions (such as understanding

the interactions between several components of a biological system, or determining

the reachability of a state).

In this chapter, the emphasis is placed on regulatory processes at the genetic level.

We choose here to abstract certain mechanisms, e.g., the ones at the molecular level,

which would require to specify in detail the behavior of each biological element like

proteins, plasmids, etc.

Difficulties encountered in analysis and prediction can be considered to fall into

one of the following four broad categories:

• Parameter identification: discrete models, such as synchronous Boolean net-

works introduced by Stuart Kauffman (1969) or asynchronous multi-valued

networks introduced by René Thomas (1973), do not only require information

about the network topology and the type of influences — activation or inhibi-

tion — between genes, but also on the respective strength of each interaction.

3

This type of information is needed to determine, for example, the predominant

influence when a gene is the single target of two influences with opposite ef-

fects. As we mentioned previously, such information is represented either at the

core of a network node update function or in a dedicated parameterization of

the model. In either cases, this information can be deduced from experimen-

tal biological observations by automatic methods such as model-checking or

constraint programming.

• Model inference: broader than the identification of parameters, the problem of

inference also encompasses the determination of the overall structure of the net-

work. Considering time series data that can be converted (once discretized) into

a state transition system, it may be important — to facilitate data analysis — to

build a discrete model compatible with the available data.

• The identification of stable states and attractors, key properties of most biolog-

ical systems, which are tackled in this chapter.

• Model control, which is the ability to control a model so that it exhibits a desired

behavior or, on the contrary, guarantees that undesirable behaviors are avoided.

This issue is closely linked to the analysis of the aforementioned key properties.

This is the most recent, but also the most difficult, research topic in the field of

systems biology, closely linked to the problem of gene therapy.

Answer Set Programming (ASP) is a logic programming paradigm that has proven to

be useful in all these four challenges. We will here focus on the ones that seem, to

us at least, the most representative of ASP merits, especially the full identification of

attractors.

4

7.2. State of the Art

7.2.1. Qualitative modeling of biological sys-

tems
In the last decades, the emergence of a wide range of new technologies has made it

possible to produce a massive amount of biological data (genomics, proteomics...).

This leads to considerable developments in systems biology which takes profit from

this data. In order to understand the nature of a cellular function or more broadly

a living biological system (healthy or diseased), it is indeed essential to study not

only the individual properties of cellular components, but also their interactions. The

behavior and functionalities of the cells emerge from such networks of interactions.

Considering this paradigm, the long-term behavior of a regulatory network’s dy-

namics is of specific interest [Wuensche, 1998]. Indeed, at any moment, a system may

fall into a trap domain, which is a part of its dynamics that cannot be escaped. While

evolving, the system may eventually fall into new and smaller trap domains, thus re-

ducing its possible future behaviors by making previous states no longer reachable.

This phenomenon depends on biological disruptions or other complex phenomena.

Such outline has been interpreted as distinct responses of the organism, such as dif-

ferentiating into distinct cell types in multicellular organisms [Huang et al., 2005].

Moreover, when refining a model of a living system, one way to remove inconsis-

tencies or to predict missing information in biological models consists in comparing

the attractors of the model with the experimentally observed long-term behavior. For

instance, the model of the cellular development of Drosophila melanogaster was de-

scribed using Boolean networks and their attractors [González et al., 2008, Albert and

Othmer, 2003].

5

As mentioned in the previous sections, the modeling of biological regulatory

mechanisms can be divided into two main categories: based on either ordinary dif-

ferential equations or discrete values. Even if discrete modeling can be roughly seen

as a less faithful abstraction, it has proven to be effective in addressing many biolog-

ical questions, such as understanding how biological systems evolve or determining

whether certain states are reachable. In fact, since data in biology are often more qual-

itative than quantitative, it is natural that an alternative view to differential equations

started to emerge in the late 1960s. This qualitative modeling is based on the follow-

ing principle: the expression of a component can be encoded with a Boolean variable.

This corresponds to the fact that a component (e.g., a gene) is “on” (i.e., the regu-

lations it controls are expressed) or “off”. The relations between Boolean variables

are governed by activation or inhibition relations, respectively represented by positive

or negative signed arcs. Various kinds of mathematical models implementing these

precepts have been proposed for the modeling of Biological Regulatory Networks

(BRNs). The two main families of such models have been Stuart Kauffman’s syn-

chronous Boolean networks [Kauffman, 1969] on the one hand, and René Thomas’

asynchronous networks [Thomas, 1991] on the other.

In this chapter, the focus is on a subclass of automata networks, called Asyn-

chronous Automata Networks (AAN) [Folschette et al., 2015, Paulevé, 2016a], which

is an extension of a previous framework called Process Hitting [Paulevé et al., 2014],

and is convenient to model BRNs. This qualitative approach is based on three key

concepts:

• Biological components (e.g., genes) are abstracted in the form of automata. The

different local states (that are not restricted to Boolean values) of each automa-

ton correspond to the different discrete qualitative levels of the components

represented by the automaton.

6

• Interaction between biological components is modeled in an atomic way by

local transitions on the automata, where each one is conditioned by a set of

required local states in different automata and can modify the local state of a

unique automaton.

• In the modeling task, such a representation makes it possible to build the largest

possible dynamics, and then to proceed by successive refinements to restrict the

possible behaviors [Paulevé et al., 2011].

To sum up, AANs allow to have multiple requirements for a local transition to occur,

but not to synchronize several local transitions in different automata. In this sense,

they are considered Asynchronous Automata Networks, although in the following, we

define and apply both the asynchronous and synchronous semantics to such networks.

Here, the synchronous semantics allows to fire all local transitions at once, but not

to add information about specific transitions being synchronized. Depending on the

chosen semantics (asynchronous or synchronous), AANs especially encompass the

Boolean frameworks of René Thomas and Stuart Kauffman.

Qualitative frameworks have received substantial attention, because of their ca-

pacity to capture the switching behavior of genetic or biological processes, and there-

fore, the study of their long-term behavior. This adds up to the choice of a qualitative

representation for the identification of trap domains. In such a qualitative framework,

a minimal trap domain can take two different forms: it can be either a stable state,

also called fixed point or steady-state, which is one state in which the system does

not evolve anymore; or an attractor, which is a minimal set of states that cannot be

escaped, and thus loops indefinitely.

7

7.2.2. Identifying Attractors: A Major Challenge
The computational problem of finding all attractors in a BRN is difficult. Even the

simpler problem of deciding whether the system has a stable state, which can be seen

as the smallest kind of attractor, is NP-hard [Zhang et al., 2007]. Based on this, many

studies have proven that computing attractors in BRNs is also a NP-hard problem

[Klemm and Bornholdt, 2005, Akutsu et al., 2012]. Although some methods exist

with a lesser complexity, consisting for instance in randomly selecting an initial state

and following a long enough trajectory, hoping to eventually finding an attractor, they

are not exhaustive and may miss some (hard to reach) attractors.

Therefore, in the absence of more efficient exhaustive methods, it is still relevant

to develop an approach to resolve the original NP-hard problem of attractors identi-

fication. Such an approach consists in exhaustively examine all possible states of a

network, along with all possible paths from each of these states. Obviously, this brute

force method is very time and memory consuming: 2n initial states have to be con-

sidered for a Boolean model with n nodes; and multi-valued networks raise this value

even more. Furthermore, a sufficient number of computations have to be performed to

ensure that all trajectories have been explored and all attractors are found. This high

complexity justifies the use of a tool able to tackle such hard problems.

The simplest way to detect attractors is to enumerate all the possible states and

to run a simulation from each one until an attractor is reached [Somogyi and Greller,

2001]. This method ensures that all attractors are detected but it has an exponential

time complexity, therefore its applicability is highly restricted by the network size.

Regarding Boolean networks only, algorithms for detecting attractors have been

extensively studied in the literature. Irons [2006] proposes to analyze partial states

in order to discard potential attractors more efficiently. This method improves the

efficiency from exponential time to polynomial time for a subset of biological Boolean

8

models that is highly dependent on the topology of the underlying network (in terms

of indegree, outdegree and update functions). Another method, called GenYsis [Garg

et al., 2007], starts from one (randomly selected) initial state and detects attractors by

computing the successor and predecessor states of this initial state. It works well for

small Boolean networks, but becomes inefficient for large Boolean networks.

More generally, the efficiency and scalability of attractor detection techniques are

further improved with the integration of two techniques. This first is based on Binary

Decision Diagrams (BDD), a compact data structure for representing Boolean func-

tions. In [Zhao et al., 2014], algorithms have been based on the reduced-order BDD

(ROBDD) data structure, which further speeds up the computation time of attractor

detection. These BDD-based solutions only work for BRNs of a hundred of nodes

and also suffer from the infamous state explosion problem, as the size of the BDD

depends both on the regulatory functions and the number of nodes in the BRN. The

other technique consists in representing the attractor enumeration problem as a satis-

fiability (SAT) problem such as in [Dubrova and Teslenko, 2011]. The main idea is

inspired by SAT-based bounded model-checking: the transition relation of the BRN is

unfolded into a bounded number of steps in order to construct a propositional formula

which encodes attractors and which is then solved by a SAT solver. In every step, a

new variable is required to represent a state of a node in the BRN. It is clear that the

efficiency of these algorithms largely depends on the number of unfolding steps and

the number of nodes in the BRN. The method presented below is also inspired from

this bounded model-checking approach.

In [Mushthofa et al., 2014], the authors separated the rules that describe the net-

work (the nodes and their interactions: activation or inhibition) from the rules that

define its dynamics (for instance: a gene will be activated in the next state if all its

activators are active or when at least one of its activators is active at the current state).

9

This allows to obtain more flexible simulations, and the authors also chose to use the

declarative paradigm Answer Set Programming [Baral, 2003] in order to have more

liberty in the expression of evolution rules. They illustrated that specifying large net-

works with rather complicated behaviors becomes cumbersome and error prone in

paradigms like SAT, whereas this is much less the case in a declarative approach such

as theirs.

7.2.3. Answer Set Programming for Systems

Biology
More recently, Answer Set Programming (ASP) has been recently used successfully

in systems biology on two different challenges. The first one consists in the synthesis

of discrete models from different background knowledge. In [Chevalier et al., 2019],

the authors focus on Boolean networks and exhibit an ASP-based method to deter-

mine the Boolean function from information about the attractors (either stable states

or trap spaces). They show the scalability of their approach, that is able to tackle

networks up to 50 nodes with an in-degree of 15 per node, and advocate for the as-

sociated benefits by addressing the cell differentiation process in the central nervous

system. The efficient matching between biological data given as input and a family of

admissible models is really one of the cornerstones that motivates for the use of ASP.

In [Lemos et al., 2019], the authors introduce a method to revise models, encoded as

Boolean logical regulatory graphs, from time series data. Such work stems from the

need to be able to revise existing Boolean models that may become inconsistent when

new data is made available. The authors define various atomic revision operations,

e.g., negation of a regulator (changing a regulator from an inhibitor to an activator,

and conversely), operator substitution (turning a Boolean operator from AND to OR,

10

and conversely), removal of a regulator (removing all occurrences of a given regulator

from a logical function). They show how such a method can be applied to biological

case studies by applying this approach to 5 models with associated time series con-

taining a dozen of nodes, with a number of time steps varying from 10 to 13.

The second main challenge — which is explored in details in this chapter — con-

sists in the identification of attractors in biological regulator networks. In [Ben Abdal-

lah et al., 2017], the authors proposed a first version of the approach and algorithms

that will be explained in more details below. Meanwhile, other authors got interest in

such a problem. In [Khaled and Benhamou, 2020], the authors search and enumer-

ate attractors in asynchronous Boolean networks that have the form of a circuit using

ASP by introducing a new resolution semantics that does not use the usual negation

by failure. Instead, they rely on a weak version of the negation by failure that allows

them to provide an enumeration approach preventing the simulation of the underlying

networks. This approach targets networks with a given structure (all nodes must have

an incoming edge and some results have been obtained only for cyclic interaction

graphs). The methodology detailed in this chapter is different in the sense that it is

iterative and without any assumption on the topology of the interaction graph.

7.2.4. Enumerating Attractors of a Biological

Model Using Answer Set Programming
Our goal in this chapter is to present two methods to enumerate minimal trap spaces of

a BRN modeled in AAN: (1) finding all stable states, and (2) enumerating all attractors

up to a given length n. A stable state, also called fixed point, is a state with no more

possible dynamical evolution. An attractor is a minimal trap domain which is not a

fixed point; in other words, it is a minimal set of at least two states that cannot be

11

dynamically escaped. Here, the length refers to the number of dynamical transitions

required to cover all states of the attractor, which can be equal or higher than the

number of states if there are complex dynamical branchings. This notion of length is

required since it gives a higher bound to the dynamical exploration performed, and

makes this method fall under bounded model checking.

We focus on two widespread non-deterministic semantics: asynchronous and syn-

chronous. It has to noted that the stable states are the same in both dynamics [Klarner

et al., 2015]. Although we do not prove it, we claim that our method is also correct

for the enumeration of attractors in the asynchronous dynamics and returns all at-

tractors up to the given length. Regarding the synchronous dynamics, we also claim

that out method is correct for simple attractors, that is, attractors made of exactly

one loop; however, it might miss some complex attractors, that are compositions of

several loops. We use ASP to perform these aforementioned enumerations.

The originality of our approach is to consider AAN models with ASP. Within the

AAN formalism, interactions are modeled as automata transitions instead of generic

influences. This allows to define finer influences between components than in for-

malisms based on parameters or evolution functions. For instance, an AAN model can

contain non-monotonic influences, or be built as a union of models to check several

dynamics simultaneously [Paulevé et al., 2011]. As mentioned in the introduction of

this chapter, AANs are more expressive than the modelings of René Thomas [Thomas,

1973] or Kauffman [Kauffman, 1969], which also means that models in these for-

malisms can be expressed and analyzed as AANs, including their multi-valued iter-

ations. Moreover, automata-like transitions happen to be easily represented in ASP.

Finally, since ASP is a programming paradigm, this would theoretically allow a much

wider expression power in the description of update semantics (generalized, block-

parallel, with memory, with priorities, etc.) although these are not tackled here.

12

Although some ideas of this approach were previously introduced in [Ben Ab-

dallah et al., 2015, 2017], the method presented in this chapter has been improved.

Thanks to the possibility now offered by the ASP solver Clingo of interfacing with

scripts, we propose an approach using Python to perform post-filtering or pre-filtering

to enumerate all attractors up to a given length without yielding many spurious solu-

tions as in the previous iterations. This conjunction of ASP and Python illustrates the

benefits of such a combination to tackle efficient enumeration of answer sets. Given

these changes, we have extended our previous benchmarks to reflect the changes made

on the method and its implementation. As such, we summarize our results in updated

case studies that illustrate the benefits of our approach.

This chapter is organized as follows. After discussing the possible uses of ASP in

systems biology in the current section, Section 7.3 briefly presents the ASP framework

that is used later. Then, Section 7.4 presents the main definitions related to the AAN

formalism and the specific properties on which we will focus later on, that is, stable

states and attractors. Section 7.5 details our approach to define an AAN model using

ASP rules and enumerate all stable states or attractors in such a model. The merits

of such an approach are then emphasized in Section 7.6, where we give benchmarks

of our methods on several models of different sizes (up to 100 components). Finally,

Section 7.7 concludes and gives some perspectives to this work.

7.3. Basic Notions of Answer Set Pro-

gramming
Answer Set Programming (ASP) is a purely declarative language based on the stable

model semantics of logic programming [Baral, 2003]. As illustrated by the literature

13

study proposed in the previous section, ASP has proved to be efficient to address

highly computational problems.

In this section, we will introduce the basic elements of ASP syntax and way of

modeling problems. We will focus here on the parts that will be necessary to us to

model biological systems in the following parts of this chapter.

7.3.1. Syntax and Rules
An answer set program is a finite set of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an. (7.1)

where n ≥ m ≥ 0, a0 is an atom or ⊥, all a1, . . . , an are atoms, and the symbol

“not” denotes negation as failure. The intuitive reading of such a rule is that whenever

a1, . . . , am are known to be true and there is no evidence for any of the negated atoms

am+1, . . . , an to be true, then a0 has to be true as well. An atom or a negated atom is

also called a literal. The atom on the left of the arrow is called the head of the rule

while the set of literals on the right is called its body. The order of the rules in the

program, and of literals in a body, does not change its meaning.

Some special rules are noteworthy. A rule where m = n = 0 is called a fact and

is useful to represent data because the head atom a0 is always true. It is often written

without the central arrow, as in rule (7.2). On the other hand, a rule where n > 0

and a0 = ⊥ is called a constraint. Because ⊥ can never become true, if the body of

a constraint is true, this invalidates the whole solution. Constraints are thus useful to

filter out unwanted solutions when there are several candidate solutions. The symbol

14

⊥ is usually omitted in a constraint, as in rule (7.3).

a0. (7.2)

← a1, . . . , am, not am+1, . . . , not an. (7.3)

In the ASP paradigm, the search of solutions consists in computing the answer

sets of a given program. Intuitively, the answer sets of a program are the minimal sets

of atoms (in terms of set inclusion) that respect all rules of this program. Note that for

a given program, there might be no, one or several answer sets.

Formally, an answer set for a given program is defined by Gelfond and Lifschitz

[1988] as follows. An interpretation I is a finite set of propositional atoms. A rule r

as given in (7.1) is true under I if and only if:

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅ ⇒ a0 ∈ I .

An interpretation I is a model of a program P if each rule r ∈ P is true under I .

Finally, let P I be the program obtained from P by deleting all rules that contain

a negated atom appearing in I , and deleting all negated atoms from the remaining

rules. I is an answer set (also called solution in the following) of P if I is a minimal

model of P I .

Example 7.1: Consider the following program:

a.

b ← a, not c.

c ← b, not a.

15

The atom a is given in a fact, and is thus always true. The atoms b and c depend on

the presence of the other atoms. The unique solution (answer set) of this program is

{a, b}. Indeed, it is the only minimal set of atoms that respects all rules.

Example 7.2: Programs can yield no answer set, one answer set, or several answer

sets. For example, the following program:

b ← not c.

c ← not b.

produces two answer sets: {b} and {c}. Indeed, the absence of c makes b true, and

conversely absence of b makes c true.

Cardinality constructs, depicted by a set of atoms in curly braces, are another way

to obtain multiple answer sets. The most usual way of using a cardinality is in the

head:

l {q1, . . . , qk} u ← a1, . . . , am, not am+1, . . . , not an.

where k ≥ 0, l is an integer and u is an integer or the infinity (∞). Such a cardinality

means that, under the condition that the body is satisfied, the answer set X must

contain at least l and at most u atoms from the set {q1, ..., qm}, or, in other words:

l ≤ |{q1, ..., qm} ∩X| ≤ u where ∩ is the symbol of set intersection and | · | denotes

the cardinality of a set. We note that several answer sets may match this definition, as

there may be numerous solutions X to this equation. If they are not explicitly given, l

defaults to 0 and u defaults to∞.

Example 7.3: Using a cardinality construct, the program of Example 7.2 can be

16

summed up into the following program containing only one cardinality fact:

1 {b, c} 1.

7.3.2. Predicates
Atoms in ASP are expressed as predicates with an arity, that is, they can apply to

terms (also called arguments). For instance, let us consider the following program:

parentOf(jenny, charles). (7.4)

parentOf(mary, jenny). (7.5)

grandparentOf(X,Z) ← parentOf(X,Y),parentOf(Y, Z). (7.6)

This program first contains two facts in lines (7.4) and (7.5), stating that Jenny is

a parent of Charles, and Mary is a parent of Jenny. This is expressed by predi-

cate “parentOf” with arity 2 (it has two arguments) and three constants “jenny”,

“charles” and “mary”. Then, line (7.6) expresses that a grandparent of someone is

the parent of their parent. This is expressed by predicate “grandparentOf” also of

arity 2, but this time using variables (X , Y and Z). A variable can stand for any exist-

ing atom in the program. By convention, constant names start with a low letter or are

surrounded by double quotes, and variable names start with a capital letter. Moreover,

variables have a scope limited to the rule, meaning that if X was used in another rule,

it would be considered another variable.

Solving an ASP program as explained above requires that it contains no variable;

for this, a grounding step is first required, consisting in the removal of all free vari-

ables by replacing them by possible constants while preserving the meaning of the

program. In the example above, the grounding step produces the following variable-

17

free program, where X , Y and Z are replaced by all possible constants:

parentOf(jenny, charles). parentOf(mary, jenny).

grandparentOf(mary,mary) ← parentOf(mary,mary), parentOf(mary,mary).

grandparentOf(mary, charles) ← parentOf(mary,mary), parentOf(mary, charles).

grandparentOf(mary, charles) ← parentOf(mary, jenny),parentOf(jenny, charles).

grandparentOf(mary, jenny) ← parentOf(mary, charles),parentOf(charles, jenny).

. . . (23 more grounded rules) . . .

The two first rules in the grounded rules above are simply the facts; all the others come

from the replacing of all variables in rule (7.6). Solving then consists in iteratively

removing the rules whose body is false. The answer set is the set of head predicates

of the remaining rules, that is:

{ parentOf(jenny, charles),

parentOf(mary, jenny),

grandparentOf(mary, charles) } .

Finally, predicates are very useful in cardinality constructs as defined in the previ-

ous section: instead of explicitly giving all atoms in the cardinality set (by extension),

it is possible to enumerate them based on predicates and variables (by comprehen-

sion). For instance:

0 {f(A,B) : g(A)} 2 ← h(B).

means that for each value of B so that h(B) is true, all values of A so that g(A) is

true are enumerated in order to create predicates f(A,B), and at most two are kept.

Typically, this might create a number of answer sets which depends on the existing

18

predicates g and h.

The grounding and solving steps are usually tackled by specialized software. For

the present chapter, we use Clingo1 [Gebser et al., 2016] which is a combination of a

grounder and a solver. In the rest of this chapter, we use ASP to tackle the problems

of enumerating all stable states and attractors of a given AAN model.

7.3.3. Scripting
Since its version 5.0, Clingo offers scripting capabilities, using either Lua or Python.

In both cases, this scripting allows to enrich the usual solving of an ASP program

with:

• grounding and solving control,

• external predicates (provided by external data or software),

• on-the-fly modification of programs,

• post-processing of solutions.

For instance, in Python, this scripting allows to programmatically start the solving

and interrupt it for each solution found to execute some processing on the result with

Python. The introduction of a more classical imperative language into the solving has

many advantages, such as allowing to easily compute some parts of the program that

are trivially done in imperative scripting, but difficult in ASP.

The solution that we present in this work comes in three versions that make a

progressive usage of this scripting:

1We used Clingo version 5.4: https://potassco.org/

19

https://potassco.org/

1. The first version uses no scripting and thus outputs duplicate solutions that are

detailed later.

2. In the second version, each answer set found by Clingo is provided to a Python

script that checks if it is a duplicate or not, and outputs it only if it is a genuine

solution; this solution uses scripting as a mere post-processing tool.

3. In the third version, for each answer set found by Clingo, a constraint is added

to the ASP program in order to avoid enumerating a duplicate solution; this

solution uses on-the-fly modification of the ASP program for the same result.

7.4. Dynamic Modeling Using Asynchronous

Automata Networks
This section introduces the formal definitions required to model and analyze Asyn-

chronous Automata Networks (AANs).

7.4.1. Motivation: Using ASP to Analyze the

Dynamics
In order to study the dynamics of a system, one of the main approaches is to model it

in a formal way. This allows to understand or control the behavior of this system, by

checking properties on its model.

The modeling process can be considered as a particular form of operationalization

of the knowledge representation. ASP logic programs follow the “generate and test”

strategy. This strategy includes four steps:

20

• enumerate with facts,

• explain and extend with rules,

• generate all possibilities with cardinalities, and finally

• filter with constraints.

In the rest of this chapter, we propose ASP programs whose semantics and rule

syntax are based on those presented here. The idea of using ASP to analyze the dy-

namics of a discrete model has its origin in the combinatorial explosion of the number

of states. Since ASP was designed to demonstrate a certain efficiency in enumerating

sets satisfying a set of rules, this framework seems appropriate to study some dynamic

properties of interest. In the following, we will focus on one type of dynamic model:

Asynchronous Automata Networks (AANs), that we introduce formally in this sec-

tion. The conversion of such an AAN model into ASP is the subject of Section 7.5.

7.4.2. Definition of Asynchronous Automata

networks
Asynchronous Automata Networks (AANs) are a recently introduced formalism al-

lowing to model discrete dynamical systems. Although mostly used to model Bio-

logical Regulatory Networks (BRNs), AANs are general-purpose and could be ap-

plied to other fields. AAN are conveniently encoded into ASP because of their simple

form that can be straightforwardly described in terms of a few simple rules. Its two

most used update semantics are also easily represented in ASP (as explained later in

Section 7.5.3). Moreover, AANs have been chosen for this chapter as they allow to

encompass more widespread frameworks such as René Thomas modeling [Thomas,

21

1973] and Boolean networks [Kauffman, 1969]. The results of this chapter are thus

applicable to these frameworks too.

Definition 7.1 introduces the formalism of AANs [Folschette et al., 2015] which

allows to model a finite number of discrete levels, called local states, into several

automata. A local state is denoted ai, where a is the name of the automaton, corre-

sponding usually to a biological component, and i is a level identifier within a. At any

time, exactly one local state of each automaton is active, modeling the current level of

activity of this automaton or, equivalently, its internal state. The set of all active local

states at a given time is called the global state of the network. Figure 7.1 depicts the

structure of a simple AAN, which is more thoroughly detailed later.

The possible local evolutions inside an automaton are defined by local transi-

tions. A local transition is a triple noted ai
`→ aj and is responsible, inside a given

automaton a, for the change of the active local state (ai) to another local state (aj),

conditioned by a set ` of local states belonging to other automata. Such a local tran-

sition is playable if and only if ai and all local states in the set ` are active. Thus, it

can be read as “all the local states in ` can cooperate to change the active local state

of a by making it switch from ai to aj”. It is required that ai and aj are two different

local states in automaton a and that ` contains no local state of a. We also note that

` should contain at most one local state per automaton, otherwise the local transition

is unplayable. Conversely, if ` is empty, the transition is playable if and only if ai is

active.

Definition 7.1(Asynchronous Automata Network): An Asynchronous Automata Net-

work is a triple (Σ,S, T) where:

• Σ = {a, b, . . . } is the finite set of automata identifiers;

• For each a ∈ Σ, b(a) ∈ N \ {0} denotes the upper bound of automaton a

22

and Sa = {a0, . . . , ab(a)} is the finite set of local states of automaton a; S =∏
a∈Σ Sa is the finite set of global states; LS = ∪a∈ΣSa denotes the set of all

the local states.

• For each a ∈ Σ, Ta ⊂ {ai `→ aj ∈ Sa×℘(LS\Sa)×Sa | ai 6= aj} is the set of

local transitions on automaton a, where ℘ denotes the power set; T =
⋃
a∈Σ Ta

is the set of all local transitions in the model.

For a given local transition τ = ai
`→ aj , ai is called the origin or τ , ` the

condition and aj the destination, and they are respectively noted ori(τ), cond(τ) and

dest(τ).

Example 7.4: Figure 7.1 represents an AAN (Σ,S, T) with 4 automata (among

which two contain 2 local states and the two others contain 3 local states) and 12

local transitions:

• Σ = {a, b, c, d},

• b(a) = 1, b(b) = 2, b(c) = 1, b(d) = 2,

• Sa = {a0, a1}, Sb = {b0, b1, b2}, Sc = {c0, c1}, Sd = {d0, d1, d2},

• T = {a0
{c1}−→ a1, a1

{b2}−→ a0, b0
{d0}−→ b1, b0

{a1,c1}−→ b2, b1
{d1}−→ b2, b2

{c0}−→ b0,

c0
{a1,b0}−→ c1, c1

{d2}−→ c0, d0
{b2}−→ d1, d0

{a0,b1}−→ d2, d1
{a1}−→ d0, d2

{c0}−→ d0 }.

The local transitions given in Definition 7.1 define concurrent interactions be-

tween automata. They have by nature only local consequences, but they can be com-

bined in different ways to create a global dynamics for the model. When such a way

of combining local transitions, also called semantics, is decided, it becomes possible

to compute global transitions between global states. In the following, we will only

23

a

0

1
b

0

1

2

c

0

1
d

0

1

2

c1 b2

d0

d1

b2 a1

a1, b0 d2

a1, c1 a0, b1c0 c0

Figure 7.1: An example of an AAN model with 4 automata: a, b, c and d. Each box

represents an automaton (modeling a biological component), circles represent their local

states (corresponding to their discrete expression levels) and the local transitions are

represented by arrows labeled by their necessary conditions (consisting of a set of local

states from other automata). The automata a and c are either at level 0 or 1, and b and d have

3 levels (0, 1 and 2). The grayed local states stand for the global state 〈a0, b1, c1, d0〉.

focus on the (purely) asynchronous and (purely) synchronous semantics, which are

the most widespread in the literature. The choice of such a semantics mainly depends

on the considered biological phenomena modeled and the mathematical abstractions

chosen by the modeler.

7.4.3. Semantics and Dynamics of Asynchronous

Automata Networks
As explained in the previous section, a global state of an AAN is a set of local states

of automata, containing exactly one local state for each automaton. In the following,

we give some notations related to global states, then we define the global dynamics

of an AAN.

24

The active local state of a given automaton a ∈ Σ in a global state ζ ∈ S is noted

ζ[a]. For any given local state ai ∈ LS, we also note: ai ∈ ζ if and only if ζ[a] = ai.

For a given set of local states X ⊆ LS, we extend this notation to X ⊆ ζ if and only

if ∀ai ∈ X, ai ∈ ζ, meaning that all local states of X are active in ζ.

Furthermore, for any given local state ai ∈ LS, ζ e ai represents the global

state that is identical to ζ, except for the local state of a which is substituted with ai:

(ζ e ai)[a] = ai ∧ ∀b ∈ Σ \ {a}, (ζ e ai)[b] = ζ[b]. We generalize this notation to a

set of local states X ⊆ LS containing at most one local state per automaton, that is,

∀a ∈ Σ, |X ∩ Sa| ≤ 1 where | · | denotes the cardinality of a set; in this case, ζ eX

is the global state ζ where the local state of each automaton has been replaced by the

local state of the same automaton in X , if it exists: ∀a ∈ Σ, (X ∩ Sa = {ai} ⇒

(ζ eX)[a] = ai) ∧ (X ∩ Sa = ∅ ⇒ (ζ eX)[a] = ζ[a]).

In Definition 7.2, we formalize the notion of playability of a local transition which

was informally presented in the previous section. Playable local transitions are not

necessarily used as such, but combined depending on the chosen semantics, which is

the subject of the rest of the section.

Definition 7.2(Playable Local Transitions): Let AAN = (Σ,S, T) be an Asyn-

chronous Automata Network and ζ ∈ S a global state. The set of playable local

transitions in ζ is called Pζ and defined by: Pζ = {ai `→ aj ∈ T | ` ⊆ ζ ∧ ai ∈ ζ}.

The dynamics of the AAN is a composition of global transitions between global

states, that consist in selecting and playing a set of local transitions. Such sets are

different depending on the chosen semantics. In the following, we give the definition

of the asynchronous and synchronous semantics by characterizing the sets of local

transitions that can be “played” as global transitions. The sets of the asynchronous

semantics (Definition 7.3) are made of exactly one playable local transition; thus,

25

a global asynchronous transition changes the local state of exactly one automaton.

On the other hand, the sets of the synchronous semantics (Definition 7.4) consist

of exactly one playable local transition for each automaton, except for the automata

where no local transition is playable; in other words, a global synchronous transition

changes the local state of all automata that can evolve at a time. The empty set is

not a valid set of local transitions for both semantics, meaning that they both cannot

produce a global transition that changes no automaton (also known as self-transition).

Definition 7.3(Asynchronous semantics): Let AAN = (Σ,S, T) be an Asyn-

chronous Automata Network and ζ ∈ S a global state. The set of global transitions

playable in ζ for the asynchronous semantics is given by:

Uasyn(ζ) = {{ai `→ aj} | ai `→ aj ∈ Pζ}.

Definition 7.4(Synchronous semantics): LetAAN = (Σ,S, T) be an Asynchronous

Automata Network and ζ ∈ S a global state. The set of global transitions playable in

ζ for the synchronous semantics is given by:

U syn(ζ) = {u ⊆ T | u 6= ∅ ∧ ∀a ∈ Σ, (Pζ ∩ Ta = ∅ ⇒ u ∩ Ta = ∅) ∧

(Pζ ∩ Ta 6= ∅ ⇒ |u ∩ Ta| = 1)}.

Once a semantics has been chosen, it is possible to compute the corresponding

dynamics of a given AAN. Thus, in the following, when it is not ambiguous and

when results apply to both of them, we will denote by U a chosen semantics among

Uasyn and U syn. Definition 7.5 formalizes the notion of a global transition depending

on a chosen semantics U .

Definition 7.5(Global Transition): Let AAN = (Σ,S, T) be an Asynchronous

26

Automata Network, ζ1, ζ2 ∈ S two states and U ∈ {Uasyn, U syn} a semantics. The

global transition relation between two states ζ1 and ζ2 for the semantics U , noted

ζ1 →U ζ2, is defined by:

ζ1 →U ζ2 ⇐⇒ ∃u ∈ U(ζ1) ∧ ζ2 = ζ1 e {dest(τ) ∈ LS | τ ∈ u}.

The state ζ2 is called a successor of ζ1.

Example 7.5: Figures 7.2 and 7.3 illustrate respectively the asynchronous and syn-

chronous semantics on the model of Figure 7.1. Each global transition is depicted by

an arrow between two global states. Only an interesting subset of the whole dynamics

is depicted in both figures.

A semantics is called deterministic if it makes each global state to have at most one

successor. However, in general, semantics are non-deterministic: each global state can

have several successors. Indeed, the two semantics studied here are non-deterministic

in general (some particular models may not show the non-determinism).

In the case of the asynchronous semantics, the non-determinism may come from

concurrent local transitions, but it actually mainly comes from the fact that exactly one

local transition is taken into account for each global transition (see Definition 7.3).

Thus, for a given state ζ ∈ S, as soon as |Pζ | > 1, several successors may exist.

In the model of Figure 7.1, for example, the global state 〈a1, b2, c0, d1〉 (in green

on Figure 7.2) has three successors because: 〈a1, b2, c0, d1〉 →Uasyn 〈a0, b2, c0, d1〉,

〈a1, b2, c0, d1〉 →Uasyn 〈a1, b0, c0, d1〉 and 〈a1, b2, c0, d1〉 →Uasyn 〈a1, b2, c0, d0〉.

In the case of the synchronous semantics (see Definition 7.4), however, the non-

determinism on the global scale is only generated by local transitions that create

non-determinism inside an automaton, that is, local transitions that have the same

27

origin, are together playable in at least one global state, but have different destina-

tions. For example, the model of Figure 7.1 features two local transitions b0
{d0}−→ b1

and b0
{a1,c1}−→ b2 that can produce the two following global transitions from the same

state (depicted by red arrows on Figure 7.3): 〈a1, b0, c1, d0〉 →U syn 〈a1, b1, c1, d0〉

and 〈a1, b0, c1, d0〉 →U syn 〈a1, b2, c1, d0〉. Note that for this particular case, these

transitions also exist for the asynchronous semantics (also depicted by red arrows on

Figure 7.2).

Finally, Definition 7.6 introduces the notions of path and trace which are used

to characterize a set of successive global states with respect to a global transition

relation. Paths are useful for the characterization of attractors that are the topic of

this work. The trace is the set of all global states traversed by a given path (thus

disregarding the order in which they are visited). Thus, a path is a sequence while a

trace is a set.

Definition 7.6(Path and Trace): Let AAN = (Σ,S, T) be an Asynchronous Au-

tomata Network, U a semantics and n ∈ N \ {0} a strictly positive integer. A se-

quence H = (Hi)i∈J0;nK ∈ Sn+1 of global states is a path of length n if and only

if: ∀i ∈ J0;n − 1K,Hi →U Hi+1. H is also simply called a path if its length

n is not known or relevant. The trace of H is the set of global states it contains:

trace(H) = {Hj ∈ S | j ∈ J0;nK}.

In the following, when we define a path H of length n, we use the notation Hi to

denote the ith element in the sequence H, with i ∈ J0;nK. We also use the notation

|H| = n to denote the length of a path H, allowing to write: H|H| to refer to its last

element. H is said to start from a given global state ζ ∈ S if and only if H0 = ζ; it is

said to end in a given global state ζ ′ ∈ S if and only if Hn = ζ ′. Finally, we note that

a path of length n models the succession of n global transitions, and thus features at

28

most n + 1 states: trace(H) ≤ n + 1. When at least one state is visited more than

once in H, the inequality becomes strict.

Example 7.6: The following sequence is a path of length 6 for the asynchronous

semantics:

H = (〈a1, b2, c1, d1〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉; 〈a1, b2, c1, d0〉;

〈a0, b2, c1, d0〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉)

We have: trace(H) = {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d1〉, 〈a1, b2, c1, d0〉, 〈a0, b2, c1, d0〉}.

Although |H| = 6, we note that |trace(H)| = 4 because H0 = H2 = H6 and

H1 = H5.

7.4.4. Stable States and Attractors in Asyn-

chronous Automata Networks
Studying the dynamics of biological networks was the focus of many works, explain-

ing the diversity of existing frameworks dedicated to modeling and the different meth-

ods developed in order to identify some patterns, especially attractors [Skodawessely

and Klemm, 2011, Zhang et al., 2007, Mushthofa et al., 2014, Akutsu et al., 2012,

Berntenis and Ebeling, 2013]. In this chapter we focus on several sub-problems re-

lated to this: we seek to identify the stable states and the attractors of a given network.

The stable states and the attractors are the two long-term structures in which any dy-

namics eventually falls into. Indeed, they consist in terminal (sets of) global states

that cannot be escaped, and in which the dynamics always ends. In the following, we

formally define these dynamical properties.

29

A stable state (sometimes called fixed point) is a global state which has no suc-

cessor, as given in Definition 7.7. The existence of several of these states is called

multistability, and implies bifurcations in the dynamics [Wuensche, 1998]. At this

point, it is important to remind that the empty set never belongs to the semantics de-

fined above: ∀ζ ∈ S, ∅ /∈ Uasyn(ζ)∧∅ /∈ U syn(ζ). The consequence on the dynamics

is that a global state can never be its own successor. In other words, even when no

local transition can be played in a given global state (i.e., Pζ = ∅), we do not add a

self-transition on this state. Instead, this state has no successor and is thus structurally

a sink node in the state-transition graph.

Definition 7.7(Stable state): LetAAN = (Σ,S, T) be an Asynchronous Automata

Network, and U ∈ {Uasyn, U syn} be a semantics. A global state ζ ∈ S is called a

stable state if and only if no global transition can be played in this state:

U(ζ) = ∅.

It is interesting to note that the set of stable states of a model is the same in both

the asynchronous and the synchronous semantics [Klarner et al., 2015, Moisset de

Espanés et al., 2016]: ∀ζ ∈ S, Uasyn(ζ) = ∅ ⇐⇒ U syn(ζ) = ∅. This comes from the

fact that both semantics rely on the same definition of set of playable transitions.

Example 7.7: The state-transition graphs of Figures 7.2 and 7.3 depict three stable

states colored in red: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉. Visually, they

can be easily recognized because they have no outgoing arrows (meaning that they

have no successors). Although these figures do not represent the whole dynamics, they

allow to check that in both semantics, the stable states are shared. Actually, the model

contains no other stable state than the ones depicted in these figures.

30

Another complementary dynamical pattern consists in the notion of trap domain

(Definition 7.8), which is a non-empty set of states that the dynamics cannot escape,

and thus in which the system indefinitely remains. Relying on this, an attractor (Def-

inition 7.9) is a minimal trap domain in terms of set inclusion. In this work, we focus

more precisely on non-singleton attractors, that is, attractors made of at least two

states. Formally speaking, stable states are trap domains of size 1, and could thus be

considered attractors. However, in the scope of this chapter and for the sake of clarity,

in the following, we call “attractors” only non-singleton attractors. This is justified by

the very different approaches developed to enumerate stable states and attractors in

the next sections.

Definition 7.8(Trap Domain): Let AAN = (Σ,S, T) be an Asynchronous Au-

tomata Network and U a semantics. A set of global states T ⊆ S, with T 6= ∅, is

called a trap domain (regarding a semantics U) if and only if the successors of each

of its elements are also in T :

∀ζ1 ∈ T ∧ ∀ζ2 ∈ S, ζ1 →U ζ2 ⇒ ζ2 ∈ T.

Definition 7.9(Attractor): Let AAN = (Σ,S, T) be an Asynchronous Automata

Network and U a semantics. A set of global states A ⊆ S, with |A| ≥ 2, is called an

attractor (regarding semantics U) if and only if it is a minimal trap domain in terms

of set inclusion.

The previous definition is hard to encode into ASP, due to the notion of minimal-

ity. In the following, we use the notion of cycle (Definition 7.10), which is a looping

path, in order to give an alternative definition for an attractor (Lemma 7.3).

Definition 7.10(Cycle): Let AAN = (Σ,S, T) be an Asynchronous Automata

31

Network, U a semantics and C a path for this semantics. C is called a cycle (re-

garding the semantics U) if and only if it starts from and ends in the same state:

C0 = C|C| .

Example 7.8: The path H of length 6 given in Example 7.6 is a cycle because

H0 = H6.

Definition 7.11 recalls the definition of a strongly connected subgraph (SCSG) in

the scope of the dynamics of an AAN: it is a subgraph of the global state-transition

graph in which there exists a path between any pair of states. Note that, because we

consider here only the synchronous and asynchronous semantics, a subgraph made

of exactly one state ζ cannot be a SCSG, because there never exists a self-transition

ζ → ζ.

The definition of SCSG is then used in two lemmas that later allow to give an

alternative definition of an attractor. Lemma 7.1 states that the set of (traces of) cycles

in a model is exactly the set of strongly connected subgraphs. Indeed, a cycle allows

to “loop” between all states that it contains, and conversely, such a cycle can be built

from the states of any strongly connected subgraph. Lemma 7.2 states that any attrac-

tor is also a SCSG. This well-known result comes from the minimality of an attractor

and implies that an attractor is always made of one or several loops.

Definition 7.11(Strongly Connected Subgraph): Let AAN = (Σ,S, T) be an

Asynchronous Automata Network, U a semantics and G ⊆ S a set of states. G is

a strongly connected subgraph (regarding the semantics U) or SCSG for short, if and

only if for all pairs of states (ζ1, ζ2) ∈ G2 in this set, there exists a path H made of

32

states in G that starts from ζ1 and ends in ζ2, that is:

H0 = ζ1 ∧H|H| = ζ2 ∧ ∀ζ ∈ trace(H), ζ ∈ G .

Lemma 7.1(The Traces of Cycles are the SCSGs): The traces of the cycles are

exactly the strongly connected subgraphs.

Proof. (⇒) From any state of a cycle, it is possible to reach all the other states

(by possibly cycling). Therefore, the trace of this cycle is a strongly connected sub-

graph. (⇐) Let G be a strongly connected subgraph. Consider, without loss of gen-

erality, an arbitrary state ζ0 ∈ G. For each other state ζ ′ ∈ G \ {ζ0}, by defini-

tion of a SCSG, there exists two paths Jζ
′

and Kζ′ made of states of G so that:

Jζ
′

0 = ζ0, Jζ
′

|Jζ′ | = ζ ′, Kζ′

0 = ζ ′ and Kζ′

|Kζ′ | = ζ0. We denote Hζ′ the concatenation

of Jζ
′

and Kζ′ which is possible because Jζ
′

|Jζ′ | = ζ ′ = Kζ′

0 . Hζ′ is a cycle because

Hζ′

0 = Jζ
′

0 = ζ0 = Kζ′

|Kζ′ | = Hζ′

|Hζ′ |. Moreover, Hζ′ is only made of states of G. By

considering, without loss of generality, an arbitrary sequence A = (ζ ′i)i∈J1;|G\{ζ0}|K

of all the states inG\{ζ0}, that is: ∀ζ ′ ∈ G\{ζ0},∃i ∈ J1; |G\{ζ0}|K, Ai = ζ0, then

we can build a path H by concatenating HA0 , HA1 , ..., HA|A| . H is a cycle because

H0 = H|H| = ζ0. Moreover, trace(H) ⊆ G because H is only made of states in G,

and G ⊆ trace(H) because for each state in G, at least one sub-cycle of H contains

it. Therefore, H is a cycle so that trace(H) = G.

Lemma 7.2(An Attractor is a SCSG): An attractor is a strongly connected sub-

graph.

Proof. Let A be an attractor. Suppose that A is not a SCSG in order to make

a proof by contradiction. Then there exists ζ1, ζ2 ∈ A so that ζ2 cannot be reached

from ζ1. Let X be the set containing exactly ζ1 and all states that can be reached from

33

ζ1. Obviously, X 6= ∅. By definition of an attractor (Definition 7.9), A is also a trap

domain; therefore, the successors of each state in A are also in A, which recursively

gives X ⊂ A because ζ1 ∈ A. However, ζ2 /∈ X by definition of ζ2 and X , thus

X (A. X is a trap domain by construction (if a state can be reached from ζ1, then it

belongs to X). This contradicts the fact that A is a minimal trap domain in terms of

set inclusion (Definition 7.9). To conclude, A is a SCSG.

In Definition 7.9, attractors are characterized in the classical way, that is, as mini-

mal trap domains. However, we use an alternative characterization of attractors in this

chapter, due to the specifics of ASP: Lemma 7.3 states that an attractor can alterna-

tively be defined as a trap domain that is also a cycle, and conversely. In other words,

the minimality requirement is replaced by a cyclicity requirement.

Lemma 7.3(The Attractors are the Cyclic Trap Domains): The attractors are ex-

actly the traces of cycles that are trap domains.

Proof. (⇒) By Definition 7.9, an attractor is a trap domain. From Lemma 7.2, it

is also a strongly connected subgraph, and thus, from Lemma 7.1, it is the trace of a

cycle. (⇐) Let C be a cycle which trace is a trap domain. From Lemma 7.1, C is also

a strongly connected subgraph. Let us prove by contradiction that C is a minimal trap

domain, by assuming that it is not minimal. This means that there exists a smaller trap

domain D (C. Let us consider ζ1 ∈ D and ζ2 ∈ C\D. Because D is a trap domain,

there exists no path between ζ1 and ζ2; this is in contradiction with C being a strongly

connected subgraph (as both ζ1 and ζ2 belong to C). Therefore, C is a minimal trap

domain, and thus an attractor.

As explained before, Lemma 7.3 will be used in Section 7.5.3 to enumerate attrac-

tors. Indeed, directly searching for minimal trap domains would be too cumbersome;

instead, we enumerate cycles of length n in the dynamics of the model and filter out

34

those that are not trap domains.

Example 7.9: The state-transition graphs of Figures 7.2 and 7.3 feature different

attractors:

• {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} is depicted in blue and appears in both figures.

It is a simple attractor, because it contains a unique cycle.

• {〈a0, b2, c1, d0〉, 〈a0, b2, c1, d1〉, 〈a1, b2, c1, d1〉, 〈a1, b2, c1, d0〉} is only present

for the asynchronous semantics and is depicted in yellow on Figure 7.2. It is a

complex attractor, that is, a composition of several cycles.

• {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉} is, on the contrary, only present for the syn-

chronous semantics and is depicted in gray on Figure 7.3. It is also a simple

attractor.

For each of these attractors, the reader can check that they can be characterized

as cycles that are trap domains. For instance, the second attractor can be found by

considering the following cycle:

A = (〈a0, b2, c1, d0〉; 〈a0, b2, c1, d1〉; 〈a1, b2, c1, d1〉; 〈a1, b2, c1, d0〉; 〈a0, b2, c1, d0〉)

and checking that its trace is a trap domain (which is visually confirmed in Figure 7.2

by the absence of outgoing arrows from any of the yellow states).

On the other hand, the following cycle is not an attractor:

C = (〈a1, b2, c0, d1〉; 〈a1, b2, c0, d0〉; 〈a1, b2, c0, d1〉).

Indeed, although it is a cycle, it features states having outgoing transitions (such as,

for instance, transition 〈a1, b2, c0, d0〉 →Uasyn 〈a0, b2, c0, d0〉) and thus is not a trap

35

ha0, b2, c0, d1i

ha1, b2, c0, d1i

ha1, b0, c0, d1i

ha0, b0, c0, d1i

ha0, b1, c0, d2i

ha1, b0, c0, d0i

ha0, b0, c0, d0i

ha0, b2, c1, d1i

ha1, b2, c1, d1iha1, b1, c0, d0i

ha0, b1, c0, d0i

ha0, b2, c0, d0i

ha1, b1, c1, d0i

ha1, b2, c0, d0i

ha1, b2, c1, d0i

ha0, b2, c1, d0i

ha1, b0, c1, d1i

ha1, b0, c1, d0i

1

Figure 7.2: A part of the state-transition graph of the AAN given in Figure 7.1 for the

asynchronous semantics, computed from the initial state: 〈a1, b2, c0, d1〉 until reaching

attractors. We can observe three stable states: 〈a1, b1, c1, d0〉, 〈a1, b1, c0, d0〉 and

〈a0, b0, c0, d1〉; an attractor of size 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} (in blue) and an

attractor of size 4: {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d1〉, 〈a0, b2, c1, d0〉, 〈a1, b2, c1, d0〉} (in

yellow).

domain.

The aim of the rest of this chapter is to tackle the enumeration of stable states

(Section 7.5.2) and attractors (Section 7.5.3) in an AAN using ASP.

7.5. Encoding into Answer Set Program-

ming
This section presents the three facets of this work in terms of ASP:

1. How to encode an AAN model to use with the two other facets (Section 7.5.1),

2. How to encode the stable state enumeration (Section 7.5.2),

36

ha1, b2, c1, d1i

ha0, b2, c1, d0i

ha0, b1, c1, d1i

ha1, b0, c1, d1i ha1, b2, c1, d0i

ha0, b2, c1, d1iha0, b0, c1, d1i

ha0, b1, c0, d1iha1, b0, c0, d1i ha1, b2, c0, d1iha0, b0, c0, d2i

ha0, b1, c0, d0i

ha0, b0, c0, d0i ha1, b2, c0, d0i

ha0, b1, c0, d2i ha0, b1, c1, d0i

ha0, b0, c0, d1i

ha1, b1, c0, d0i

ha1, b1, c1, d2i

ha1, b0, c0, d0iha0, b0, c1, d0i

ha0, b0, c1, d2i

ha1, b0, c1, d0i

ha1, b1, c1, d0i

ha1, b0, c0, d2i

ha0, b2, c0, d1i

1

Figure 7.3: A part of the state-transition graph of the AAN given in Figure 7.1 for the

synchronous semantics, computed from several initial states, such as 〈a1, b2, c0, d1〉, until

reaching attractors. It features non-deterministic global transitions, depicted by the two red

arrows. We can observe the same three stable states than for the asynchronous semantics of

Figure 7.2, but instead two attractors of size 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉} (in blue) and

{〈a1, b2, c1, d1〉, 〈a0, b2, c1, d0〉} (in gray).

3. How to encode the attractor enumeration (Section 7.5.3).

All parts were initially presented in [Ben Abdallah et al., 2015, 2017]. The first two

are identical, while the last one has been significantly improved by fixing mistakes

and adding filtering methods to avoid redundant answers in attractor enumeration.

Indeed, a straightforward approach for this problem, like in [Ben Abdallah et al.,

2017], produces a lot of duplicate solutions because of the enumeration method, as

explained at the end of Section 7.5.3.2. In this chapter, we propose two additions

based on the combination of Python scripting with ASP to solve this issue.

All code presented in this section is available as free software online2. The ASP

scripts are exactly the lines of code presented below, where the symbol← in rules is

2All programs and benchmarks are available as additional files and at: https://zenodo.org/record/

6534531

37

https://zenodo.org/record/6534531
https://zenodo.org/record/6534531

replaced by the characters colon and dash “:-” for Clingo compatibility. Rules are

sometimes written on several lines, as they are ended only by a period “.”. Lines

beginning with a percent sign “%” are comments.

7.5.1. Translating Asynchronous Automata Net-

works into Answer Set Programs
Before any analysis of an AAN model, we first need to express it with ASP rules. We

developed a dedicated converter named an2asp.py and we detail its principle in

the following.

First, the predicate automaton level(Automaton, Level) is used to de-

fine each automaton Automaton along with its local state Level. Each local transi-

tion is then represented with two predicates: conditionwhich is used several times

to define each element of the condition along with the origin, and target which is

used once to define the target of the local transition. Each local transition is labeled

by an identifier that is the same in its condition and target predicates.

Example 7.10(Representation of an AAN Model in ASP): Here is the representa-

tion of the AAN model of Figure 7.1 in ASP:

1 % Automata and local states

2 automaton_level("a", 0..1). automaton_level("b", 0..2).

3 automaton_level("c", 0..1). automaton_level("d", 0..2).

4 % Local transitions on a

5 condition(t1, "a", 0). target(t1, "a", 1). condition(t1, "c", 1). % a0
{c1}−→ a1

6 condition(t2, "a", 1). target(t2, "a", 0). condition(t2, "b", 2). % a1
{b2}−→ a0

38

7 % Local transitions on b

8 condition(t3, "b", 0). target(3, "b", 1). condition(t3, "d", 0).

9 condition(t4, "b", 0). target(4, "b", 2). condition(t4, "a", 1). condition(t4, "c", 1).

10 condition(t5, "b", 1). target(5, "b", 2). condition(t5, "d", 1).

11 condition(t6, "b", 2). target(6, "b", 0). condition(t6, "c", 0).

12 % Local transitions on c

13 condition(t7, "c", 0). target(7, "c", 1). condition(t7, "a", 1). condition(t7, "b", 0).

14 condition(t8, "c", 1). target(8, "c", 0). condition(t8, "d", 2).

15 % Local transitions on d

16 condition(t9, "d", 0). target(9, "d", 1). condition(t9, "b", 2).

17 condition(t10, "d", 0). target(10, "d", 2). condition(t10, "a", 0). condition(t10, "b", 1).

18 condition(t11, "d", 1). target(11, "d", 0). condition(t11, "a", 1).

19 condition(t12, "d", 2). target(12, "d", 0). condition(t12, "c", 0).

In lines 2–3 we define the model’s automata with their local states. For example,

the automaton "a" has two levels numbered 0 and 1. For this, we use the construct

m..n in rule automaton level("a", 0..1). of line 2 which is actually a

shortcut for the two following rules:

automaton_level("a", 0). automaton_level("a", 1).

All the local transitions of the network are defined in lines 5–19; for instance, all

the predicates in line 5 declare the transition τ1 = a0
{c1}−→ a1, which is internally

labeled t1. We declare as many predicates condition as necessary in order to

fully define a local transition τ that has potentially several elements in its condition

cond(τ). For instance, transition b0
{a1,c1}−→ b2 is defined in line 9 with label t4 and

requires three of these predicates for b0, a1 and c1.

39

Since the names of the biological components may start with a capital letter or

contain non-alphabetic characters, it is preferable to use double quotes ("") around

the automata names in the parameters of predicates to ensure that they are correctly

interpreted as constants by the ASP grounder.

Finally, lines lines 21–24 extend the facts presented above and are thus always

defined in other scripts to be used in more complex rules. Predicate automaton

gathers all existing automata names in the model. The underscore symbol “ ” in the

parameters of a predicate is a placeholder for any value that is not used elsewhere; it

could be replaced by a variable name occurring only here in the rule, but this prac-

tice reduces readability. Predicate local transition comes in two forms: with

arity 1 (i.e., one argument) it gathers all transition labels, and with arity 2 (i.e., two

arguments) it gathers transition labels and the automaton they target. Note that two

predicates with the same name but different arities are completely distinct; neverthe-

less, using the same name allows to remind that they have a close meaning.

20 % Automata names

21 automaton(Automaton) ← automaton_level(Automaton, Level).

22 % Local transition names

23 local_transition(Transition) ← target(Transition, _, _).

24 local_transition(Transition, Automaton) ← target(Transition, Automaton, _).

7.5.2. Stable State Enumeration
The first aspect of this work is the enumeration of a particular type of minimal trap

domains: stable states (also called fixed points or steady states) which are composed

of only one global state (see Definition 7.7). They can be studied separately from

40

attractors because their enumeration follows a different pattern which is more specific

to this problem. The encoding presented here is equivalent to [Ben Abdallah et al.,

2017], which itself is an extension of [Ben Abdallah et al., 2015] that tackled a more

restrictive class of automata.

To summarize roughly, the enumeration of stable states requires to encode the

definition of a stable state (given in Definition 7.7) as an ASP program through logic

rules. The first step of this process is to browse all the possible states of the network;

in other words, all possible combinations of local states are generated by choosing

exactly one local level for each automaton. This is performed by lines 26–27 which

create several candidate solutions, more precisely as many as there are sets respecting

the cardinality constructs (around the curly braces). More precisely, for each value of

Automaton so that automaton(Automaton) is true, we enumerate all values of

Level so that automaton level(Automaton, Level) is true, and create as

many local state(Automaton, Level) predicates; only one is kept in each

answer set due to the lower and upper cardinalities of 1. Therefore, we theoretically

obtain as many answer sets as there are possible states in the model. Of course, among

these candidate solutions, we want to filter out all those that are not valid answers to

our problem of stable state enumeration.

25 % Enumerate all possible states (one local state per automaton)

26 1 { local_state(Automaton, Level) : automaton_level(Automaton, Level) } 1 ←

27 automaton(Automaton).

For each enumerated state, we want to filter out those featuring at least one

playable local transition, that is, a local transition for which all conditions are met. It is

not possible to express playable transitions directly, because ASP naturally expresses

existentiality (∃) rather than universality (∀). Nevertheless, universality in ASP can be

expressed as a negation of existentiality. Therefore, we first express unplayable local

41

transitions, that is, transitions such that there exists a condition that is not met, with

predicate unplayable (lines 29–32). This predicate can then be used with a nega-

tion by default (not) to find playable transitions: indeed, a transition T is playable if

unplayable(T) is not part of the answer set, and thus if not unplayable(T)

holds. Finally, using this, we can filter out all candidate solutions (i.e., states) that

contain at least one playable local transition, with the constraint of line 34.

28 % Compute not playable transitions in the current state

29 unplayable(Transition) ←

30 local_state(Automaton, LevelI),

31 condition(Transition, Automaton, LevelJ),

32 LevelI != LevelJ.

33 % Constraint: discard states with a playable transition

34← not unplayable(Transition), local_transition(Transition).

The following special clause can be added to the Clingo script in order to show

only the predicates local state of arity 2 and hide all the others:

35 #show local_state/2.

Example 7.11(Stable State Enumeration): The AAN model of Figure 7.1 contains 4

automata: a and c have 2 local states while b and d have 3; therefore, the whole model

has 2 ∗ 2 ∗ 3 ∗ 3 = 36 states (whether they can be reached or not from a given initial

state). We can check that this model contains exactly 3 stable states: 〈a0, b0, c0, d1〉,

〈a1, b1, c1, d0〉 and 〈a1, b1, c0, d0〉. All of them are represented in both Figures 7.2 and

7.3. In this model, no other state verifies this property. We recall that the stable states

are identical for the synchronous and asynchronous semantics [Klarner et al., 2015].

To enumerate stable states, one can execute the ASP program detailed above

42

(lines 26–35) alongside with the AAN model given in Example 7.10 (lines 1–19) and

the extended facts (lines 21–24). This can also be done with the following command

line on the supplementary material:

clingo 0 stabe-states.lp ../models/asp/example.lp

The output of Clingo is the following, matching the expected result:

Answer: 1

local_state("a",0) local_state("b",0) local_state("c",0) local_state("d",1)

Answer: 2

local_state("a",1) local_state("b",1) local_state("c",1) local_state("d",0)

Answer: 3

local_state("a",1) local_state("b",1) local_state("c",0) local_state("d",0)

The solving is performed in about a hundredth of a second.

7.5.3. Attractors
The previous section offered a method to enumerate all stable states of a given model.

In a sense, a stable state can be considered as an attractor: it cannot be escaped and

its size (n = 1) makes it trivially minimal. However, attractors in the general case

are made of several states. In the rest of this section, we exclude one-state attrac-

tors and focus on attractors that are made of several states (following Definition 7.9).

We describe how to obtain all the attractors up to a given length in a model for the

asynchronous semantics, where the length is the number of steps of the minimal path

covering the whole attractor (see Definition 7.6). Obtaining all attractors of any length

can be theoretically tackled by providing a length that is high enough, but attractors

being often of small size, results are usually obtained even for small lengths. For the

43

synchronous semantics, the method still holds but only a part of the attractors are

returned.

The computational method to enumerate all attractors of length n in AAN models

consists in three steps:

1. Enumerate all paths of length n,

2. Remove all paths that do not contain a cycle,

3. Remove all paths that are not trap domains.

Once all steps are passed, each trace of the remaining paths is an attractor (following

Lemma 7.3).

This whole section is largely similar to Ben Abdallah et al. [2017], with several

improvements:

• The returned attractors can now be of length inferior or equal to n (and not

necessarily exactly n);

• Minor fixes for bugs that occurred in rare cases;

• Python scripting now allows to avoid duplicate answer sets;

• Specific optimizations in the ASP scripts have been removed as they were dep-

recated.

7.5.3.1. Cycle Enumeration

The approach presented here first consists in enumerating all possible paths of a given

length n in the AAN model (Definition 7.6), and attempting to find a cycle (Defini-

tion 7.10) among the first states of these paths. In an ASP program, it is possible

44

to instantiate constants, the values of which are defined by the user at each execu-

tion: this is the role of the lowercase n in step(0..n) (line 37), which represents

the number of considered steps. For instance, if n is initialized at value 2, the predi-

cate above becomes: step(0..2), which in turns means: step(0). step(1).

step(2).; in other words, 3 successive global states are considered, that is, a path of

length 2 because it contains two transitions. Then, predicate main cycle length(N)

states that we make the assumption that the states 0 and N are identical and thus

characterize a cycle; this will be checked afterwards. This predicate is instantiated in

line 39 with a cardinality construct that means that as many candidate solutions are

created as there are possible values for N. In other words, all values for N are tested,

up to n (the constant). Finally, we differentiate the steps before and equal to N, which

make up the main cycle, with predicate cycle step, and the steps after N, with

predicate after cycle step (lines 41–43).

36 % Steps in the whole path

37 step(0..n).

38 % Length of the main cycle (i.e., a cycling sub-path)

39 1 {main_cycle_length(N) : step(N), N > 0 } 1.

40 % Steps in the main cycle

41 cycle_step(0..N) ← main_cycle_length(N).

42 % Steps after the main cycle

43 after_cycle_step(N+1..n) ← main_cycle_length(N).

In order to enumerate all the possible paths, step 0 should take the value of all

the possible (global) initial states, in a similar way to the stable state enumeration.

For this, the cardinality construct in lines 45–46 allows to create as many candidate

solutions as there are possible initial states by activating exactly one local state for

45

each automaton, and thus all combinations are tested. Here and in the following, the

fact that local state L of automaton A is active in a given step S is denoted by a

predicate: active(level(A, L), S).

44 % Select randomly one initial state (step 0)

45 1 { active(level(Automaton, Level), 0) : automaton_level(Automaton, Level) } 1 ←

46 automaton(Automaton).

Then, identifying the successors of a given global state requires to identify the set

of its playable local transitions. We recall that a local transition is playable in a global

state when its origin and all its conditions are active in that global state (see Defini-

tion 7.2). Similarly to Section 7.5.2, we define an ASP predicate unplayable(T,S)

in lines 48–52 stating that transition T is not playable in step S, because at least one

of its conditions is not satisfied. Obviously, each local transition that is not flagged as

unplayable is playable.

47 % Compute not playable transitions for each step

48 unplayable(Transition, Step) ←

49 active(level(Automaton, LevelI), Step),

50 condition(Transition, Automaton, LevelJ),

51 LevelI != LevelJ,

52 step(Step).

At this point, one of the two semantics, asynchronous or synchronous, can be

applied in order to compute the possible paths from each of the initial states. Each

semantics comes in a different piece of ASP script, so that the chosen semantics can

be executed alongside the main script solving the attractor enumeration. We show in

the following how to compute the evolution of the model through the asynchronous

or synchronous semantics, as presented in section 7.4.3. The piece of program that

46

computes the attractors, given afterwards, is common to both semantics.

The possible evolutions of a model from a given state, that is, the different result-

ing paths after playing a set of global transitions, can be enumerated with cardinality

rules given below. Thus, the rules below reproduce all possible paths in the dynam-

ics of the model by representing each possible successor of a considered state as an

answer set, and so on. This enumeration encompasses the non-deterministic behavior

(in both semantics).

To enforce the strictly asynchronous dynamics, which requires that exactly one

automaton changes during a global transition (see Definition 7.3), we use the con-

straint of lines 54–59 to choose exactly one local transition to play in each step. This

local transition plays the role of a global transition by itself, and will be used later

to compute the contents of the following global state. From this new state, the same

constraint will be applied to compute the following state, and so on, up to n steps.

53 % Asynchronous semantics: select exactly 1 local transition to play

54 1 {

55 played(Transition, Step) :

56 local_transition(Transition),

57 not unplayable(Transition, Step)

58 } 1 ←

59 step(Step).

The second semantics corresponds to the synchronous dynamics in which a max-

imal set of playable transitions, with at most one local transition per automaton, has

to be played (see Definition 7.4). For this, in lines 61–64, we first search the au-

tomata that have at least one playable local transition in the current step with predicate

has playable. Then, the constraint of lines 66–71 selects exactly one transition for

47

each automaton in this case. Finally, we forbid “empty” global transitions, even when

no transition is playable (line 73) as this would create a self-transition, which we de-

liberately exclude here. For this, we use a cardinality construct in the body of a rule,

which does not create multiple candidate answer sets but only acts as an atom that

“verifies” that the cardinalities are verified. Here, if this cardinality construct is true,

then the constraint applies and removes the current candidate solution.

60 % Automata that have at least one playable local transition

61 has_playable(Automaton, Step) ←

62 not unplayable(Transition, Step),

63 local_transition(Transition, Automaton),

64 step(Step).

65 % Synchronous semantics: select 1 transition to play for each automaton, if possible

66 1 {

67 played(Transition, Step) :

68 not unplayable(Transition, Step),

69 local_transition(Transition, Automaton)

70 } 1 ←

71 has_playable(Automaton, Step).

72 % Constraint: play at least one local transition

73← 0 { played(_, Step) } 0, step(Step).

In a nutshell, one should choose one of both pieces of program presented above,

that is, either lines 54–59 for the asynchronous semantics, or lines 61–73 for the

synchronous one. The point of either of these pieces of programs is to produce a

collection of answer sets, where each one is a possible path of length n (that is, up to

48

step n) and starting from any initial state (at step 0).

But to actually produce each step, we first need to compute the resulting global

step following of each global transition proposed by the semantics. For this, the pred-

icate change in lines 75–78 allows to witness the fact that in a given step, a local

transition is played (because it has been chosen by the semantics) and thus the local

active state of the related automaton must be updated. If a change is witnessed, then

line 80 defines the contents of predicate active in the next step, based on the target

of the local transition. If there is no such change, then the local level of this automaton

stays the same, as stated by line 84.

74 % In Step, Automaton uses Transition to change from LevelI to LevelJ

75 change(Transition, Automaton, LevelI, LevelJ, Step) ←

76 played(Transition, Step),

77 target(Transition, Automaton, LevelJ),

78 condition(Transition, Automaton, LevelI).

79 % Change for the new active level if there is a change on Automaton

80 active(level(Automaton, LevelK), Step + 1) ←

81 change(_, Automaton, _, LevelK, Step),

82 Step < n.

83 % Keep the same active level if no change on Automaton

84 active(level(Automaton, LevelK), Step + 1) ←

85 not change(_, Automaton, _, _, Step),

86 active(level(Automaton, LevelK), Step),

87 step(Step),

88 Step < n.

49

Now that the path of length n (constant) is fully defined, it is time to check if it

actually contains a cycle of length N (variable), as this is a necessary and sufficient

condition to be a SCSG (see Lemma 7.1) and thus a necessary condition to be an at-

tractor. For this, we simply need to check if the states corresponding to steps 0 and N

are identical. As this cannot be done directly (because it would require expressing uni-

versality), we first define a predicate different states on that checks whether

a given automaton has the same local state in two different steps (lines 90–97). We

perform this computation for each automaton and each pair of steps, because this re-

sult will be used again later. Based on this, predicate different states (line 99)

generalizes this to any global pair of steps, thus witnessing globally different states.

Obviously, states that are not different are identical, which is expressed by predicate

same state (lines 101–105). As a consequence, this means that there exists a cycle

between both steps (starting from the earliest to the latest). When it is not the case

between steps 0 and N, it means that the assumption main cycle length(N) is

not true, and the current answer set must be rejected, which is done by the constraint

of line 107.

89 % States of Step1 and Step2 are different on Automaton, with Step1 < Step2

90 different_states_on(Step1, Step2, Automaton) ←

91 active(level(Automaton, LevelI), Step1),

92 active(level(Automaton, LevelJ), Step2),

93 LevelI != LevelJ,

94 step(Step1),

95 step(Step2),

96 automaton(Automaton),

97 Step1 != Step2.

50

98 % States of Step1 and Step2 are different on at least one automaton

99 different_states(Step1, Step2) ← different_states_on(Step1, Step2, _).

100 % States of Step1 and Step2 are identical (thus there is a cycle)

101 same_state(Step1, Step2) ←

102 not different_states(Step1, Step2),

103 step(Step1),

104 step(Step2),

105 Step1 != Step2.

106 % Constraint: remove answer sets that are not cyclic on the main cycle (steps 0 and N)

107← not same_state(0, N), main_cycle_length(N).

We now have the certainty that the steps in the main cycle, that is, from 0 to

N, form a strongly connected subgraph. However, we must still check that the states

after this main cycle, that is, steps N+1 to n, are part of the same strongly connected

subgraph, otherwise the rest is not applicable. For this, we simply check that each

state after the main cycle is equal to at least one state in the main cycle, with predicate

valid state after main cycle (lines 109–112). Paths containing at least one

state that does not respect this are removed by the constraint of line 114.

108 % Check that the states after the main cycle are already visited in the main cycle

109 valid_state_after_main_cycle(Step2) ←

110 same_state(Step1, Step2),

111 cycle_step(Step1),

112 after_cycle_step(Step2).

113 % Constraint: remove answer sets that visit new states after the main cycle

114← not valid_state_after_main_cycle(Step1), after_cycle_step(Step1).

51

As stated in Lemma 7.1, all remaining paths are now SCSGs. We finally need to

verify that they are trap domains (Lemma 7.3) in order to discriminate attractors.

7.5.3.2. Attractor Enumeration

Due to the non-deterministic nature of the dynamics handled in this work, each state

in the state-transition graph of a given AAN might have several successors. There-

fore, a cyclic path is not necessarily an attractor. Theoretically, the only exception is

the case of Boolean models under the synchronous semantics, which is always deter-

ministic; in this case, the computation could be stopped at this point because a cycle

is necessarily an attractor [Dubrova and Teslenko, 2009, Qu et al., 2015, Hayashida

et al., 2008]. In the following, we consider the general and non-deterministic case.

At this point, it is thus necessary to express the fact of not being a trap domain (see

Lemma 7.3) in order to filter out these cases. For instance, in the partial state-transition

graph of Figure 7.2, we can spot many cycles of various lengths but not all of them are

attractors. In particular, the initial global state is part of a cycle of length 2 which is not

an attractor, and which trace is: {〈a1, b2, c0, d1〉, 〈a1, b2, c0, d0〉}. In the following, we

will only consider the main cycle (steps 0 to N), because we have constrained above

that the part of the path after the main cycle is only made of duplicate states of the

main cycle (see lines 109–114).

The filtering that we present in the following applies fully to the asynchronous

semantics only. In the case of the synchronous semantics, however, it filters out some

legitimate attractors. More precisely:

• In the Boolean case (if all automata have only two possible levels) all attractors

are correctly returned;

• More generally, simple attractors, which are made of a simple loop and not of

52

a composition of several loops, are correctly returned;

• A complex attractor, which is made of a composition of loops, is correctly re-

turned only if there exists a covering path so that all the other global transitions

in this attractor (that are not part of this path) are composed of only one local

transition (similarly to the asynchronous semantics);

• All other complex attractors are erroneously filtered out.

This filtering is performed with a constraint, which, once again, is the most suit-

able solution. In order to define such a constraint, we need to describe the behavior

that we must not observe, namely: escaping the considered main cycle. For this, it

is necessary to distinguish, in a given step, the local transitions that were actually

chosen to build the main cycle (predicate played) and the local transitions that are

also playable but have not been chosen for this candidate solution. Such local transi-

tions are gathered with the predicate also playable given in lines 116–120. Then,

predicate evolves in main cycle of lines 122–128 checks when such a transi-

tion makes the dynamics evolve from a state of the main cycle to another state still in

the main cycle. If this predicate does not exist for any local transition in any step, it

means that this transition makes the dynamics evolve outside of the main cycle, which

is thus not a trap domain. Such a case is filtered out by the constraint of line 131.

115 % Enumerate transitions also playable in a state (but not chosen to build the path)

116 also_playable(Transition, Step) ←

117 not unplayable(Transition, Step),

118 not played(Transition, Step),

119 local_transition(Transition),

120 step(Step).

53

121 % Transition allows to go from Step1 to Step2 which is also in the path

122 evolves_in_main_cycle(Transition, Step1, Step2) ←

123 also_playable(Transition, Step1),

124 target(Transition, Automaton, LevelK),

125 active(level(Automaton, LevelK), Step2),

126 cycle_step(Step2),

127 Step2 != Step1 + 1,

128 1 = { different_states_on(Step1, Step2, _) }.

129 % Constraint: remove answer sets where a local transition is playable and

130 % allows to escape the main cycle (not an attractor)

131← also_playable(Transition, Step), not evolves_in_main_cycle(Transition, Step, _).

We stress out the limitation of the piece of code above: although it is correct for

the asynchronous case, line 128 is not completely correct for the synchronous case.

Indeed, this line makes the assumption that all global transitions are made of exactly

one local transition, which is not the case in general for the synchronous semantics.

However, as explained above, it works in several cases, some of which are predictable,

and, if it can miss legitimate solutions, it never returns erroneous ones.

Finally, the following line tells Clingo to only show the instances of the active

predicate that actually encompasses the states of the final attractors:

132 #show active/2.

To conclude, we note that at this point, an attractor will always be output in a

duplicated manner. Indeed, the pieces of code above enumerate all initial states, all

possible main cycle lengths, and all possible dynamical branchings. Any path in this

enumeration that covers an attractor is returned by the solver, and therefore a given

54

attractor will be returned under different forms as it can be covered in different man-

ners. This is due to the fact that each answer set is oblivious of the other ones, and

there is no possibility to stop the computation at the ASP scripting level when an at-

tractor has been found under at least one form. In the next section, we will provide

two ways to filter out these spurious solutions in order to output each attractor only

once.

Example 7.12: In the dynamics of the networks presented in Figure 7.1 with the

asynchronous semantics, let us consider the following cycle of length 2, which can

be seen in Figure 7.2: 〈a0, b1, c0, d0〉 →Uasyn 〈a0, b1, c0, d2〉 →Uasyn 〈a0, b1, c0, d0〉.

Since this cycle is an attractor, following the pieces of program given above, we can

use the following command line and try to enumerate it:

clingo 0 --const n=2 asynch.lp attractors.lp ../models/asp/example.lp

The two answer sets returned are given below, the predicates have been reordered for

readability:

Answer: 1

active(level("a",0),0) active(level("b",1),0)

active(level("c",0),0) active(level("d",0),0)

active(level("a",0),1) active(level("b",1),1)

active(level("c",0),1) active(level("d",2),1)

active(level("a",0),2) active(level("b",1),2)

active(level("c",0),2) active(level("d",0),2)

main_cycle_length(2) played(t10,0) played(t12,1) played(t10,2)

Answer: 2

55

active(level("a",0),0) active(level("b",1),0)

active(level("c",0),0) active(level("d",2),0)

active(level("a",0),1) active(level("b",1),1)

active(level("c",0),1) active(level("d",0),1)

active(level("a",0),2) active(level("b",1),2)

active(level("c",0),2) active(level("d",2),2)

main_cycle_length(2) played(t12,0) played(t10,1) played(t12,2)

Consider the first answer set (Answer: 1). The three states in the cycle are labeled

0, 1 and 2, and the active local states they contain are described by the predicate

active (see lines 45–46, lines 80–82 and line 84). We note that states 0 and 2

are actually identical. Two additional predicates are shown to give supplementary

information: predicate played shows the transitions (labeled t10 and t12, see

lines 17 and 19) allowing to run through all the states of the cycle, while predicate

main cycle length (see line 39) gives the size of the cycle analyzed (here equal

to n, but it could be lesser).

Consider now the second answer set (Answer: 2): it actually describes exactly

the same attractor, but covered starting from the initial state 〈a0, b1, c0, d2〉 instead of

〈a0, b1, c0, d0〉. This second answer set, although correct, can be considered spurious.

This kind of duplicated solutions is of course more present when considering answer

sets of bigger size (having more possible initial states) or with internal dynamical

branchings (i.e., complex attractors). Indeed, increasing the value of n to 4 allows to

obtain 11 answer sets that in fact represent only the two attractors of the model: four

answer sets for the attractor of size 2 (two similar to above, and two using a cycle of

size N = 4) and seven for the attractor of size 4.

56

7.5.3.3. Python Scripting

The ASP code presented up to this point consists in the complete ASP program of our

solution. However, as showed in Example 7.12, this code produces a lot of duplicated

solutions: one for each possible initial state and possible traversal. Filtering out these

duplicates is very troublesome in “pure” ASP. Given the implementation choices,

it is even impossible, as the different answer sets do not “communicate” one with

each other. Python scripting here comes in handy. In the following, we propose a

Python script that, used conjointly with the previous ASP code, offers two different

approaches to filter out unwanted solutions. In both cases, the scripting simply takes

the form of a Python for loop that awaits the production of the next answer set. Once

such an answer set is raised by Clingo, it is stored in a variable, ready to be processed

by Python’s classical imperative scripting.

Post-Filtering. With the first approach, each answer set obtained by the Python

script is processed in order to represent the contained attractor under a normalized

form, using a dictionary. This attractor is then compared to the current set of attractors

that have already been found. If it is new, then it is output to the terminal and added

to the set of found attractors; otherwise, it is simply discarded. This is a mere post-

filtering because all answer sets are still enumerated by Clingo, but only a part of them

are considered “legitimate” solutions and are actually output.

Pre-Filtering. With the second approach, every answer set obtained by the Python

script is processed: each state contained in the attractor is translated into an ASP

constraint on step 0 and added to the ASP program being solved. For instance, if an

attractor {〈a1, b1〉〈a1, b2〉} is found, the following constraints are added:

← active(level("a", 1)), 0), active(level("b", 1)), 0).

← active(level("a", 1)), 0), active(level("b", 2)), 0).

57

Each constraint allows to never visit the related states of this attractor again, thus en-

suring that no duplicate of this attractor will be returned by Clingo. These constraints

are arbitrarily applied to step 0 of the traversals, but any other step would lead to the

same result. This can be considered pre-filtering as the next answer sets enumerated

by Clingo will never be duplicates of already found attractors, because all their states

are now “forbidden”. We note that this approach is possible because attractors are all

disjoint (which can be easily proven knowing that an attractor is both a trap domain

and a SCSG). Moreover, with this pre-filtering, no more post-filtering is needed.

To call one of these scripting enhancements, simply add to the Clingo command

line the filtering-attractors.lp script, along with a special constant to de-

fine which filtering to apply:

clingo 0 --const n=<length> --const filtering={pre|post} <model.lp>

{asynch|synch}.lp attractors.lp filtering-attractors.lp

7.6. Case Studies
In this section, we exhibit several experiments conducted on biological networks. We

first detail the results of our programs on the AAN toy model of Figure 7.1, and on

another 4 components model of a real system, the bacteriophage lambda. Finally, we

sum up the results of benchmarks performed on other models up to 101 components.

In general, the time performances are good and the overall results confirm the appli-

cability of ASP for the verification of formal properties or the enumeration of some

dynamical patterns in biological systems, although the biggest model of 101 compo-

nents highlights the limits of this approach.

All experiments were performed on a desktop PC running Ubuntu 18.04 with an

58

Intel Core i7-8565U processor (8 cores at 1.80GHz) and 8 GB memory. The default

settings of Clingo were used, including multi-threading options.

7.6.1. Toy example
We first conducted detailed experiments on the 4 components model of Figure 7.1 for

the asynchronous semantics only. As detailed in Section 7.4, this network contains 4

automata and 12 local transitions. Its asynchronous state-transition graph comprises

36 different global states and some of them are detailed in the partial state-transition

graph of Figure 7.2.

The analytic study of the minimal trap domains on this small network allows to

find the following attractors and stable states for the asynchronous semantics:

• stable states: 〈a1, b1, c1, d0〉,〈a1, b1, c0, d0〉 and 〈a0, b0, c0, d1〉;

• attractor of length 2: {〈a0, b1, c0, d0〉, 〈a0, b1, c0, d2〉};

• attractor of length 4: {〈a1, b2, c1, d1〉, 〈a0, b2, c1, d1〉, 〈a0, b2, c1, d0〉, 〈a1, b2, c1, d0〉}.

When given to Clingo, the ASP programs given in the previous sections output the

expected solutions. The output for the stable state enumeration (following the scripts

of Section 7.5.2) was given in Example 7.11.

An attractor enumeration (following the scripts of Section 7.5.3) with additional

information (printing of the solutions as Python structures and computation of the

number of attractors of each size) can be performed by executing the following com-

mand line:

clingo 0 --const n=4 --const print solutions=1 --const print solution sizes=1

asynch.lp attractors.lp filtering-attractors.lp ../models/asp/example.lp

Pre-filtering is used by default. The computation ends in about 100 milliseconds and

59

the output provided by the Python filtering script is given below, slightly refactored

for readability:

*** Solutions found: 2; skipped: 0

Automata names in order:

[’a’, ’b’, ’c’, ’d’]

Unique attractors:

{frozenset({(0, 1, 0, 2), (0, 1, 0, 0)}),

frozenset({(1, 2, 1, 1), (1, 2, 1, 0), (0, 2, 1, 0), (0, 2, 1, 1)})}

Frequencies of attractor sizes:

{2: 1, 4: 1}

Each information is given under a Python-compatible format for easy re-use. The

informations given are the following:

• the name of each automaton in the order used after;

• the set of attractors under the form of frozen sets (immuable Python sets) where

each tuple gives the local state of each automaton in order;

• a dictionary giving the sizes of the attractors and the number of attractors of

this size (here: one attractor of size 2 and one of size 4).

Clingo also prints these solutions under the form of predicates (not reproduced here).

Note that when the filtering script is not used, the same results are found but each

attractor is duplicated several times.

The computation above requires the knowledge of the length of the biggest attrac-

tor (here, 4) in order to give an adequate value to n. When this value is unknown and

the model is small enough, it is possible to use bigger values of n to search for bigger

attractors. For instance, when using n = 40, the computation ends in about 6 seconds

60

and yields the same results. The total number of global states in the model can be

considered a possible higher value. However, although it is very unlikely, attractors of

bigger length might still exist. Moreover, for big models, this number of global states

is too big to give good performances.

The same analysis can be performed for the synchronous semantics by replacing

asynch.lp by synch.lp in the command line above, and the results are also

compatible with Figure 7.3, thus no attractors are missed in this case.

7.6.2. Bacteriophage Lambda
This section focuses on applying our methods in detail to a real model of small

size that has been studied in existing works, namely: the bacteriophage lambda, also

known as lambda phage.

The bacteriophage lambda is a virus of particular biological interest as it can show

two very different responses when infecting a host bacteria: either a usual “lytic” re-

sponse in which the host cell is destroyed to help the virus reproduction, or a “lyso-

genic” response, where the virus DNA is simply merged into the host’s without fatal

outcome. Four genes, named cI, cII, cro and N, have been known to be of particular

importance in this process. Among them the switch of gene cI is decisive in the choice

between the lytic and lysogenic responses.

To model this behavior, a small model containing exactly these four genes of

interest was proposed by Thieffry and Thomas [1995], where the complete dynamics

is given as a René Thomas model with discrete parameters. In this model, one of

these genes is supposed to have 4 discrete expression levels, another to have 3, and

the remaining two are Boolean (2 expression levels). Therefore, this model contains

48 different states. This state graph is explored in [Thieffry and Thomas, 1995] using

61

the classical asynchronous semantics, and the authors show the presence of a stable

state and an attractor of size 2, corresponding respectively to the lysogenic and lytic

responses.

To test this model with our implementation, we fetch it from the GINsim reposi-

tory3 and use the following tools to translate it to a logic program representation:

• The existing GINsim4 tool allows to export GINML models into the SBML-

qual5 formalism;

• The existing bioLQM library6 [Paulevé, 2016b, Naldi et al., 2015] can convert

SBML-qual models into AAN models;

• Finally, our script an2asp.py, provided with the supplementary material,

converts AAN models into ASP programs, following the principles detailed

in Section 7.5.1.

It is noteworthy that each step fully preserves the dynamics between models regarding

the asynchronous semantics [Chatain et al., 2014]; thus, the final ASP program is

bisimilar, under the asynchronous semantics, to the original GINML model.

At this point, we can apply our stable state and attractor enumerations to the final

file. The stable state enumeration outputs a unique stable state, which is valid for both

the asynchronous and synchronous semantics. This stable state is coherent with the

literature and is known to characterize the lysogenic response:

〈cI = 2; cII = 0; cro = 0; N = 0〉 .

3http://ginsim.org/node/47
4http://ginsim.org/
5http://colomoto.org/formats/sbml-qual.html
6https://github.com/colomoto/bioLQM

62

http://ginsim.org/node/47
http://ginsim.org/
http://colomoto.org/formats/sbml-qual.html
https://github.com/colomoto/bioLQM

The attractor enumeration with the asynchronous semantics has been performed

for n = 48 (the size of the state space) as it can be considered to enumerate all

attractors almost certainly. This is of course only possible because the models is small.

The computation finishes in 21 seconds and is also coherent with the literature as it

outputs the unique following attractor, corresponding to the lytic response:

{〈cI = 0; cII = 0; cro = 2; N = 0〉, 〈cI = 0; cII = 0; cro = 3; N = 0〉} .

Finally, the attractor enumeration with the synchronous semantics can also be applied,

although the original model was not originally created to be used with this semantics.

This enumeration, once again performed for n = 48, produces the two following

attractors:

{〈cI = 0; cII = 0; cro = 2; N = 0〉, 〈cI = 0; cII = 0; cro = 3; N = 0〉} ,

{〈cI = 2; cII = 0; cro = 1; N = 0〉, 〈cI = 1; cII = 0; cro = 0; N = 0〉} .

7.6.3. Benchmarks on Models Coming from

the Literature
The problem of finding attractors in a discrete network is NP-hard, therefore the im-

plementation that we give in this work also faces such a complexity. However, ASP

solvers (namely, Clingo in our case) are specialized in tackling such complex prob-

lems. This section is dedicated to the results of several computational experiments

that we performed on biological networks. We show that our ASP implementation

can notably return results in only a few seconds for attractors of small size even on

models with 100 components, which is considered large.

63

We do not give the details of the results of these experiments but rather focus on

the computation times and the number of attractors found. We used several preexisting

Boolean and multi-valued networks inspired from real organisms and found in the

literature:

• Lambda phage: as detailed in Section 7.6.2 [Thieffry and Thomas, 1995];

• Trp-reg: a qualitative model of regulated metabolic pathways of the tryptophan

biosynthesis in E. Coli [Simão et al., 2005];

• Fission yeast: a cell cycle model of Schizosaccharomyces Pombe [Davidich

and Bornholdt, 2008];

• Mamm.: a mammalian cell cycle model [Fauré et al., 2006];

• Tcrsig: a signaling and regulatory network of the TCR signaling pathway in

the mammalian differentiation [Klamt et al., 2006];

• T-helper: a model of the T-helper cells differentiation and plasticity, which

accounts for novel cellular subtypes [Abou-Jaoudé et al., 2014].

Two approaches were used to obtain the models studied in this section. The first

one consisted in downloading them from the GINsim model repository7 [Chaouiya

et al., 2012], in GINML format, and applying the automated translations detailed in

Section 7.6.2 in order to obtain a model in ASP format. The second method consisted

to simply manually translate the model from the literature into AAN, and finally only

use the final step of this process. The characteristics of each model once translated in

AAN are given in Table 7.1. The results of our benchmarks8 are given in Table 7.2

7http://ginsim.org/models repository
8All programs and benchmarks are available as additional files and at: https://zenodo.org/record/

6534531

64

http://ginsim.org/models_repository
https://zenodo.org/record/6534531
https://zenodo.org/record/6534531

Table 7.1: Brief description of the models used in our benchmarks: number of
automata (|Σ|), maximal local level in the automata (max(b(Σ))), number of local
transitions (|T |) and number of states in the state-transition graph (|S|).

Models
Model description

|Σ| max(b(Σ)) |T | |S|
Example 4 2 12 36
Lambda phage1 4 3 46 48
Trp-reg2 4 2 14 36
Fission yeast3 9 2 43 3 × 29 = 1,536
Mamm.4 10 1 34 210 = 1,024
Tcrsig5 40 1 85 240 ' 1012

T-helper6 101 2 316 2102 ' 5.7 × 1031

References of the models:
1 [Thieffry and Thomas, 1995] – http://ginsim.org/node/47
2 [Simão et al., 2005] – manually translated
3 [Davidich and Bornholdt, 2008] – http://ginsim.org/node/37
4 [Fauré et al., 2006] – manually translated
5 [Klamt et al., 2006] – http://ginsim.org/node/78
6 [Abou-Jaoudé et al., 2014] – manually translated

for the stable state enumeration, and Tables 7.3 and 7.4 for the attractor enumeration.

For stable state enumeration (Table 7.2), the following command line has been used:

clingo --quiet=1 0 stable-states.lp <model file>

in order to search for all solutions while avoiding their output on the terminal, which

considerably slows down the execution when a lot of them are found. Regarding at-

tractor enumeration, the script benchmarks.sh has been used, which itself calls

command lines of the form:

clingo 0 --const n=<length> --const filtering={no|pre|post}

--const write nbr solutions=<output file> --quiet=2 --time-limit=100

{synch|asynch}.lp attractors.lp filtering-attractors.lp <model

file>

65

http://ginsim.org/node/47
http://ginsim.org/node/37
http://ginsim.org/node/78

Table 7.2: Results of our stable states enumeration
implementation. The successive lines sum up the
information regarding models detailed in Table 7.1.
For each model, the table shows the computation
time for the enumeration of all results and the total
number of returned answer sets.

Models
Stable states enumeration

for both semantics
Time (ms) Number

Example < 5 3
Lambda phage < 5 1
Trp-reg < 5 2
Fission yeast < 5 1
Mamm. < 5 1
Tcrsig 6 7
T-helper 6,774 5,875,504

Finally, it has to be noted that the scripts can also be used to search for the mere

presence of an attractor of length at most n, by changing the first argument of Clingo

to 1 (i.e., search for one solution) instead of 0 (i.e., search for all solutions). The

computation is then much faster since the first solution found triggers the end of the

execution.

7.7. Conclusion
In this chapter, we emphasized the merits of ASP, a powerful declarative programming

paradigm, for the analysis of dynamical biological systems. Being able to verify prop-

erties on the dynamics of biological systems is crucial in many ways. First, it helps

validating the models that are designed thanks to biological expertise or raw data.

Indeed, the confrontation between the knowledge on the dynamics of a system and

the actual behavior of the constructed model allows to discriminate the valid models.

66

Table 7.3: Results of the attractor enumeration implementation. The first column gives
the model name (cf. Table 7.1), the second column (n) gives the maximum size of the
sought attractors, and the column 3 to 6 (resp. 7 to end) give the results of the computation
of the attractors with respect to the asynchronous (resp. synchronous) semantics. For each
semantics: • The three first columns (Computation time) give the total computation time
in milliseconds for each filtering mode: no filtering, post-filtering and pre-filtering. T.O.
means that the timeout of 100s has been reached, thus cutting the computation and
outputting the number of attractors already found. • The last column (|A| or inf |A|) gives
the total number of attractors computed, according to the pre-filtering. This value is the
same for post-filtering, except when there is a timeout. A trailing “+” means that more
attractors could possibly be found with more computation time.

Model n

Asynchronous Synchronous
Computation time (in ms)

by filtering type |A| Computation time (in ms)
by filtering type inf |A|1

None Post Pre Pre None Post Pre Pre

Example

2 20 14 16 1 21 16 16 2
5 25 26 22 2 24 21 19 2
10 311 307 88 2 45 49 35 2
15 7,587 7,608 224 2 67 59 53 2

Lambda

phage

2 17 16 17 1 17 17 17 2
5 65 65 63 1 35 35 36 2
10 576 567 585 1 115 262 105 2
15 773 787 788 1 206 204 171 2

Trp-reg

2 13 13 13 0 13 14 13 0
5 21 22 21 1 18 19 18 1
10 38 40 38 1 71 71 67 1
15 62 63 67 1 55 57 52 1

Fisson

yeast

2 16 17 17 0 18 17 18 1
5 57 55 55 0 34 34 34 1
10 345 340 336 0 192 105 178 1
15 1,003 1,004 972 0 185 179 178 1

Mamm.

2 16 16 16 0 16 16 16 0
5 36 36 37 0 31 31 31 0
10 237 246 243 0 123 125 114 1
15 2,945 2,903 3,024 0 221 228 187 1

Tcrsig

2 25 25 25 0 26 26 26 0
5 96 101 93 0 98 98 99 0
10 1,043 1,024 1,030 0 501 526 436 1
15 13,109 12,983 13,076 0 1,276 1,223 1,136 1

T-helper

2 154 149 150 0 T.O. T.O. T.O. 70,544+2

5 2,656 2,617 2,569 0 T.O. T.O. T.O. 73,428+2

10 92,384 92,315 92,548 0 T.O. T.O. T.O. 41,038+2

15 T.O. T.O. T.O. 0+ T.O. T.O. T.O. 21,792+2

1 As the computation for the synchronous semantics might miss some solutions, this value

is only an inferior bound of the actual value.
2 The decrease in the number of solutions is an effect of the timeout only, since increasing

the value of n can only lead to find more solutions.
67

Table 7.4: Sizes of enumerated attractors. The enumeration has been performed with
pre-filtering only and a maximum size of n = 15. The first column gives the model name
(cf. Table 7.1) and the second (resp. third) column details the sizes of attractors found for
the asynchronous (resp. synchronous) semantics. T.O. means that the timeout of 100s has
been reached, thus cutting the computation and outputting the number of attractors already
found. The “+” means that more attractors could theoretically be found with more
computation time.

Model Asynchronous Synchronous1

Example 1 attractor of size 2 and
1 attractor of size 4 2 attractors of size 2

Lambda
phage 1 attractor of size 2 2 attractors of size 2

Trp-reg 1 attractor of size 4 1 attractor of size 4

Fission
yeast no attractor 1 attractor of size 2

Mamm. no attractor 1 attractor of size 7

Tcrsig no attractor 1 attractor of size 7

T-helper no attractor (T.O.) 20512+ attractors of size 3 and
1280+ attractors of size 9 (T.O.)2,3

1 As the computation for the synchronous semantics might miss some solutions, these

values are only inferior bounds of the actual values.
2 Due to the timeout, the sum of these values does not correspond to the total in the corre-

sponding line n = 15 of Table 7.3. A possible explanation is that this benchmark included

an additional attractor size counting step which lead to less solutions found before timeout.
3 Surprisingly, no attractor of size 2 is found here, despite being found when searching

with n = 2 (see Table 7.3). This is probably due to Clingo’s internal optimization heuristics

that were left as defaults for these benchmarks.

68

Second, it gives new knowledge about the system. It is thus possible to discover pre-

viously unknown dynamical properties or to obtain useful information for conducting

new biological experiments. In this chapter, we decided to focus on a challenging, yet

rewarding, scientific issue consisting in the study of attractors.

We presented a logical approach to efficiently compute the list of all stable states

and attractors in biological regulatory networks. We formalized our approach using

the AAN framework, which is bisimilar to many logical networks [Chatain et al.,

2014]. All results given here can thus be applied to the widespread Thomas’ model-

ing [Thomas, 1973] in the asynchronous semantics and to the Kauffman modeling in

the synchronous semantics [Kauffman, 1969]. In addition, this framework could en-

compass any update rules, such as the ones represented in [Gershenson, 2004, Noual

and Sené, 2017].

In biological models, the identification of attractors is critical, as it gives an in-

sight on the long-term behavior of biological systems. By combining ASP and Python

scripting (an interaction recently introduced in the ASP solver we use, Clingo), we ex-

hibited an efficient method to enumerate stable states, cycles and attractors of large

models. The computational framework is based on the AAN formalism assuming non-

deterministic dynamics. The major benefit of such a method is to get an exhaustive

enumeration of all potential states while still being tractable for models with a hundred

of interacting components. This method covers fully the asynchronous semantics, but

only partially the synchronous semantics. Yet, even when synchronous semantics is

considered, it identifies correctly simple attractors and a subset of complex attractors.

This work could be extended by considering adaptations and optimizations of the

approach to address larger models. On the one hand, the method can be improved,

for instance by generalizing it to comprehensively tackle the synchronous semantics,

along with others, or by developing optimizations to tackle even larger models. On

69

the other hand, close problems and similar dynamical patterns can also be considered

for enumeration, such as basins of attraction, gardens of Eden or bifurcations [Fippo-

Fittime et al., 2016].

Bibliography
Wassim Abou-Jaoudé, Pedro T Monteiro, Aurélien Naldi, Maximilien Grandclaudon,

Vassili Soumelis, Claudine Chaouiya, and Denis Thieffry. Model checking to as-

sess t-helper cell plasticity. Frontiers in bioengineering and biotechnology, 2, 2014.

Tatsuya Akutsu, Sven Kosub, Avraham A Melkman, and Takeyuki Tamura. Finding a

periodic attractor of a boolean network. Computational Biology and Bioinformat-

ics, IEEE/ACM Transactions on, 9(5):1410–1421, 2012.

Réka Albert and Hans G Othmer. The topology of the regulatory interactions predicts

the expression pattern of the segment polarity genes in drosophila melanogaster.

Journal of theoretical biology, 223(1):1–18, 2003.

Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-

ing. Cambridge University Press, 2003. ISBN 0521818028.

Emna Ben Abdallah, Maxime Folschette, Olivier Roux, and Morgan Magnin. Ex-

haustive analysis of dynamical properties of biological regulatory networks with

answer set programming. In Bioinformatics and Biomedicine (BIBM), 2015 IEEE

International Conference on, pages 281–285. IEEE, 2015.

Emna Ben Abdallah, Maxime Folschette, Olivier Roux, and Morgan Magnin. Asp-

based method for the enumeration of attractors in non-deterministic synchronous

70

and asynchronous multi-valued networks. Algorithms for Molecular Biology, 12

(1):1–23, 2017.

Nikolaos Berntenis and Martin Ebeling. Detection of attractors of large boolean net-

works via exhaustive enumeration of appropriate subspaces of the state space. BMC

bioinformatics, 14(1):1, 2013.

Claudine Chaouiya, Aurelien Naldi, and Denis Thieffry. Logical modelling of gene

regulatory networks with GINsim. Bacterial Molecular Networks: Methods and

Protocols, pages 463–479, 2012.

Thomas Chatain, Stefan Haar, Loı̈g Jezequel, Loı̈c Paulevé, and Stefan Schwoon.

Characterization of reachable attractors using petri net unfoldings. In Interna-

tional Conference on Computational Methods in Systems Biology, pages 129–142.

Springer, 2014.

Stéphanie Chevalier, Christine Froidevaux, Loı̈c Paulevé, and Andrei Zinovyev. Syn-

thesis of boolean networks from biological dynamical constraints using answer-set

programming. In 2019 IEEE 31st International Conference on Tools with Artificial

Intelligence (ICTAI), pages 34–41. IEEE, 2019.

Francis S Collins, Michael Morgan, and Aristides Patrinos. The human genome

project: lessons from large-scale biology. Science, 300(5617):286–290, 2003.

Maria I Davidich and Stefan Bornholdt. Boolean network model predicts cell cycle

sequence of fission yeast. PloS one, 3(2):e1672, 2008.

Elena Dubrova and Maxim Teslenko. A SAT-based algorithm for computing attrac-

tors in synchronous boolean networks. arXiv preprint arXiv:0901.4448, 2009.

Elena Dubrova and Maxim Teslenko. A SAT-based algorithm for finding attractors in

71

synchronous boolean networks. IEEE/ACM transactions on computational biology

and bioinformatics, 8(5):1393–1399, 2011.

Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynamical

analysis of a generic boolean model for the control of the mammalian cell cycle.

Bioinformatics, 22(14):e124–e131, 2006.

Louis Fippo-Fittime, Olivier Roux, Carito Guziolowski, and Loı̈c Paulevé. Identifi-

cation of bifurcations in biological regulatory networks using answer-set program-

ming. In Constraint-Based Methods for Bioinformatics Workshop, 2016.

Maxime Folschette, Loı̈c Paulevé, Morgan Magnin, and Olivier Roux. Sufficient con-

ditions for reachability in automata networks with priorities. Theoretical Computer

Science, 608:66–83, 2015.

Abhishek Garg, Luis Mendoza, Ioannis Xenarios, and Giovanni DeMicheli. Modeling

of multiple valued gene regulatory networks. In 2007 29th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, pages 1398–

1404. IEEE, 2007.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten

Schaub, and Philipp Wanko. Theory solving made easy with clingo 5. 52, 2016.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-

gramming. In ICLP/SLP, pages 1070–1080, 1988.

Carlos Gershenson. Updating schemes in random boolean networks: Do they really

matter. In Artificial Life IX Proceedings of the Ninth International Conference on

the Simulation and Synthesis of Living Systems, pages 238–243. MIT Press, 2004.

Aitor González, Claudine Chaouiya, and Denis Thieffry. Logical modelling of the role

72

of the hh pathway in the patterning of the drosophila wing disc. Bioinformatics, 24

(16):i234–i240, 2008.

Morihiro Hayashida, Takeyuki Tamura, Tatsuya Akutsu, Shu-Qin Zhang, and Wai-

Ki Ching. Algorithms and complexity analyses for control of singleton attractors

in boolean networks. EURASIP Journal on Bioinformatics and Systems Biology,

2008(1):1, 2008.

Sui Huang, Gabriel Eichler, Yaneer Bar-Yam, and Donald E Ingber. Cell fates as

high-dimensional attractor states of a complex gene regulatory network. Physical

review letters, 94(12):128701, 2005.

David James Irons. Improving the efficiency of attractor cycle identification in

boolean networks. Physica D: Nonlinear Phenomena, 217(1):7–21, 2006.

Stuart A. Kauffman. Metabolic stability and epigenesis in randomly constructed ge-

netic nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

Tarek Khaled and Belaid Benhamou. An asp-based approach for boolean networks

representation and attractor detection. In LPAR, pages 317–333, 2020.

Steffen Klamt, Julio Saez-Rodriguez, Jonathan A Lindquist, Luca Simeoni, and

Ernst D Gilles. A methodology for the structural and functional analysis of sig-

naling and regulatory networks. BMC bioinformatics, 7(1):1, 2006.

Hannes Klarner, Alexander Bockmayr, and Heike Siebert. Computing maximal and

minimal trap spaces of boolean networks. Natural Computing, 14(4):535–544,

2015.

Konstantin Klemm and Stefan Bornholdt. Stable and unstable attractors in boolean

networks. Physical Review E, 72(5):055101, 2005.

73

Alexandre Lemos, Inês Lynce, and Pedro T Monteiro. Repairing boolean logical mod-

els from time-series data using answer set programming. Algorithms for Molecular

Biology, 14(1):1–16, 2019.

Pablo Moisset de Espanés, Axel Osses, and Ivan Rapaport. Fixed-points in random

Boolean networks: The impact of parallelism in the Barabási–Albert scale-free

topology case. Biosystems, 150:167–176, 2016.

Mushthofa Mushthofa, Gustavo Torres, Yves Van de Peer, Kathleen Marchal, and

Martine De Cock. ASP-G: an ASP-based method for finding attractors in genetic

regulatory networks. Bioinformatics, page btu481, 2014.

Aurélien Naldi, Pedro T Monteiro, Christoph Müssel, Hans A Kestler, Denis Thieffry,

Ioannis Xenarios, Julio Saez-Rodriguez, Tomas Helikar, Claudine Chaouiya, et al.

Cooperative development of logical modelling standards and tools with colomoto.

Bioinformatics, page btv013, 2015.

Mathilde Noual and Sylvain Sené. Synchronism versus asynchronism in mono-

tonic boolean automata networks. Natural Computing, pages 1–10, 2017. ISSN

1572-9796. doi: 10.1007/s11047-016-9608-8. URL http://dx.doi.org/10.1007/

s11047-016-9608-8.

Loı̈c Paulevé. Goal-oriented reduction of automata networks. In International Con-

ference on Computational Methods in Systems Biology, volume 9859 of Lecture

Notes in Bioinformatics, pages 252–272. Springer, 2016a.

Loı̈c Paulevé. Pint, a static analyzer for dynamics of automata networks. In 14th

International Conference on Computational Methods in Systems Biology (CMSB

2016), 2016b.

74

http://dx.doi.org/10.1007/s11047-016-9608-8
http://dx.doi.org/10.1007/s11047-016-9608-8

Loı̈c Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics of gene regula-

tory networks in a stochastic π-calculus framework. In Transactions on Computa-

tional Systems Biology XIII, pages 171–191. Springer, 2011.

Loı̈c Paulevé, Courtney Chancellor, Maxime Folschette, Morgan Magnin, and Olivier

Roux. Analyzing large network dynamics with process hitting. Logical Modeling

of Biological Systems, pages 125 – 166, 2014.

Hongyang Qu, Qixia Yuan, Jun Pang, and Andrzej Mizera. Improving bdd-based

attractor detection for synchronous boolean networks. In Proceedings of the 7th

Asia-Pacific Symposium on Internetware. ACM, 2015.

E Simão, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Qualitative mod-

elling of regulated metabolic pathways: application to the tryptophan biosynthesis

in e. coli. Bioinformatics, 21(suppl 2):ii190–ii196, 2005.

Thomas Skodawessely and Konstantin Klemm. Finding attractors in asynchronous

boolean dynamics. Advances in Complex Systems, 14(03):439–449, 2011.

Roland Somogyi and Larry D Greller. The dynamics of molecular networks: applica-

tions to therapeutic discovery. Drug discovery today, 6(24):1267–1277, 2001.

Denis Thieffry and René Thomas. Dynamical behaviour of biological regulatory net-

works—ii. immunity control in bacteriophage lambda. Bulletin of Mathematical

Biology, 57(2):277–297, 1995.

René Thomas. Boolean formalization of genetic control circuits. Journal of Theoret-

ical Biology, 42(3):563 – 585, 1973. ISSN 0022-5193.

René Thomas. Regulatory networks seen as asynchronous automata: a logical de-

scription. Journal of theoretical biology, 153(1):1–23, 1991.

75

Andrew Wuensche. Genomic regulation modeled as a network with basins of attrac-

tion. In Pacific Symposium on Biocomputing, volume 3, pages 89–102, 1998.

Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and Michael K

Ng. Algorithms for finding small attractors in boolean networks. EURASIP Journal

on Bioinformatics and Systems Biology, 2007(1):1–13, 2007.

Zheng Zhao, Chian-Wei Liu, Chun-Yao Wang, and Weikang Qian. Bdd-based syn-

thesis of reconfigurable single-electron transistor arrays. In Proceedings of the

2014 IEEE/ACM International Conference on Computer-Aided Design, pages 47–

54. IEEE Press, 2014.

76

	Analyzing Long-Term Dynamics of Biological Networks with ASP
	Introduction
	State of the Art
	Qualitative modeling of biological systems
	Identifying Attractors: A Major Challenge
	Answer Set Programming for Systems Biology
	Enumerating Attractors of a Biological Model Using Answer Set Programming

	Basic Notions of Answer Set Programming
	Syntax and Rules
	Predicates
	Scripting

	Dynamic Modeling Using Asynchronous Automata Networks
	Motivation: Using ASP to Analyze the Dynamics
	Definition of Asynchronous Automata networks
	Semantics and Dynamics of Asynchronous Automata Networks
	Stable States and Attractors in Asynchronous Automata Networks

	Encoding into Answer Set Programming
	Translating Asynchronous Automata Networks into Answer Set Programs
	Stable State Enumeration
	Attractors

	Case Studies
	Toy example
	Bacteriophage Lambda
	Benchmarks on Models Coming from the Literature

	Conclusion
	Bibliography

