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Abstract

Effective decision support systems are very useful management tools in many ap-
plied domains. However, such systems are still scarce or even missing in social and
medico-social establishments. This study investigates the personalized user project
planning problem in French social and medico-social establishments, whose purpose
is to optimize the assignment of multi-featured activities and resources to a group
of residents or users subject to complex imperative constraints. We focus on the
design and implementation of an innovative multi-neighborhood local optimization
algorithm that serves as the key component of a decision support system for these es-
tablishments. We assess the effectiveness of the proposed approach on realistic data
and show comparisons with other approaches including mathematical programming
and greedy search.

Keywords: Project planning; Resource assignment; Heuristics; Simulated annealing.

1 Introduction

Decision support systems are popular management tools in many applied do-
mains, especially in the healthcare sector [1–4]. However, such systems are
still scarce or non-existent in the social and medico-social sector in France.
In this study, we investigate a real-world personalized user project planning
problem in French social and medico-social establishments (called structures
hereafter), which is one key challenge for effective decision making in these
structures.
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The French law No.2002-2 ensures the right for the users of the social and
medico-social structures to participate in the elaboration and implementa-
tion of their “accompanying projects”. As the result, providing users with
a personalized support in terms of a life project has become the main mis-
sion of all social and medico-social structures. This policy aims to improve
the life quality of the aging and disabled population and lighten the financial
burden of their family. However, this evolution also brings new challenges to
decision-makers of these structures. First, since several years, there has been
a significant decrease in staff resources in the social and medico-social sector,
on the one hand, and an increase in the societal demands, on the other hand.
Second, in order to improve users’ independence and social reintegration ca-
pacity as much as possible, structures have to provide multiple and varied
services and activities requiring multidisciplinary professionals (e.g., doctors,
psychologists, educators, etc.) and resources (rooms, vehicles, medical facili-
ties, etc.), making decision-making more complex and difficult. Third, despite
the popularization of electronic health records [5], these structures are still
faced with a lack of decision support and optimization tools to improve their
management efficiency.

According to the guides issued by official organizations [6,7], the personal-
ized user project is defined by a specific document that describes the pro-
fessional, social and medico-social supports for the user according to his/her
needs, expectations and resources. Specifically, a personalized user project is
a planning of personalized activities and objectives to achieve during a pe-
riod. Meanwhile, to ensure the feasibility of this planning, the assignment of
different roles among various interveners (professionals, family members, etc)
and resources also has to be validated. There are three main phases in a per-
sonalized user project: analysis and evaluation phase, programming phase and
assessment and regulation phase.

During the analysis and evaluation phase, qualified professionals perform spe-
cial tests such as personal interview and medical examination to identify user’s
global desires, abilities and needs. The information collected in this phase is
critical to the selection of activities in the next phase. The programming phase
is the main phase of a project. The decision-making team of the structure has
to define the details of user’s project, including the objectives to achieve, the
activities to carry on and the roles of interveners. The project has to be not
only feasible, but also thoughtful according to user’s needs and desires col-
lected in the first phase. Once the project plan is validated by the user, family
and structure, the user can start executing his/her project. The assessment
and regulation phase at the end of the project aims to assess each performed
activity of the project. The evaluation results help to make better decisions
in the next project.

This study focuses on the second phase, i.e., the programming phase. This
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phase must provide a feasible activity planning for each user together with
the required resources. In current practice, structures typically elaborate their
operational planning with the help of a qualified professional or a team who
must take account into many factors and unexpected changes. Given the com-
plexity of this task, this task is typically difficult and time consuming, leading
to plannings that are often far from optimal.

According to [8], the personalized user project planning problem can be con-
sidered to belong to the general class of project scheduling and management
problems, which has been widely studied to fit various real-world applica-
tions such as urban project planning [9], IT-projects scheduling and assign-
ing [10], chemical projects human resources optimization [11] and software
maintenance projects selection and scheduling [12]. Most conventional project
management problems are aimed at optimizing the use of resources including
human resources and material resources. Therefore, the classical model called
the resource constrained project scheduling problem (RCPSP) [13] has been
widely extended to formulate different problems [14,15,10,16].

Generally, a project scheduling problem can be considered as a combination of
several subproblems (also called planning levels [10]): project (task) selection,
project (task) timetabling and resources assignment. Given the high complex-
ity of scheduling problems with multiple planning levels, decomposition-based
approaches are often applied to solve subproblems independently. Mathemati-
cal programming provides a class of popular and powerful methods for solving
this kind of problems, including mixed-integer programming [10], matrix-based
method [17,18], branch-and-bound [19], etc. Meanwhile, due to the high com-
putational cost of these exact methods and the presence of complex non-linear
constraints in real-world applications, heuristics and metaheuristics are also
investigated to find “good enough” solutions [20–22].

The user project planning problem investigated in this study was formally
defined by [8], which has a number of specific characters compared to other
project scheduling problems. In particular, the problem features a number of
complex constraints and three optimization objectives, as reviewed in Sec-
tion 2, making it quite challenging for solution methods. [8] experimented a
constructive greedy algorithm and mathematical programming. The mathe-
matical programming approach provided near optimal solutions for small-scale
instances, but its performances deteriorated greatly on middle and large-scale
instances. Moreover, its high computational cost makes this approach unprac-
tical in the real life application. The greedy approach has the advantage of
being fast, but the quality of its solutions is far from satisfactory.

This study investigates the first metaheuristic approach for the user project
planning problem, which will serve as the basis of a decision support system
for social and medico-social structures. Our approach adopts the general simu-
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lated annealing framework and introduces innovative search components with
respect to the optimization objectives as well as various imperative constraints
of the studied problem. We assess the approach on a set of realistic data and
show its effectiveness both in terms of solution quality and computational effi-
ciency compared to the previous approaches (integer programming and greedy
search).

The rest of the paper is organized as follows. Section 2 presents the formal
model of the problem in terms of constraints and objectives. Section 3 describes
the new solution approach. Section 4 reports computational experiments on
benchmark instances. Section 5 shows additional experiments to analyze the
key components of the approach. The last section draws conclusions and iden-
tifies research perspectives.

2 Personalized User Project Planning Problem

This section recalls the mathematical formulation of the personalized user
project planning problem given in [8], which serves as the basis for the current
study.

2.1 Solution representation

The basic user project planning problem is to assign the users to available
activities with the required human and facility resources with respect to a
number of constraints and optimization objectives. Based on the notations of
Table 1, we adopt a U × T matrix X and a R × T matrix Y to represent a
feasible user project schedule S such that

xut =


a user u participates in activity a at time t,

−1 user u is not available to be arranged at time t (uaut = −1),

0 user u is available at time t

yrt =


a resource r is used by activity a from time t to time t+ dura − 1,

−1 resource r is not available to be used at time t (rart = −1),

0 resource r is available at time t if it is not used by an activity earlier

Figure 1 illustrates a feasible solution, where users u1 and u3 participate in
activity a2 at timeslot t1 and t2 with resources {r1, r3} and user u2 takes part
in activity a1 from timeslot t2 to t4 with resource {r2}.
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Hereafter, we use Ω to denote the search space explored by our algorithm,
which is composed of all possible feasible solutions represented by two matrices
X and Y.

2.2 Constraints

A feasible user project must comply with the following imperative constraints
that are described using the notations of Table 1.

• C1. User availability. A user is assigned to at most one activity at the same
time and only when the user is available. This constraint is always satisfied
by adopting the representation above.
• C2. Activity availability. An activity is proposed to users only when the

activity is available and does not cross more than one day.

∀u ∈ U ;∀a ∈ A;∀t ∈ T ; (aaat = 0) ∨ (xut 6= a)

• C3. Resource availability. Only available resources are assigned and each
resource is assigned to at most one activity at the same time.

∀r ∈ R;∀ti ∈ T ;∀a ∈ A; (yrti 6= a) ∨ (
i+dura−1⋃
d=i+1

yrtd = {0})

• C4. Budget constraint. The total cost of the activities assigned to a user
must satisfy user’s budget.

∀u ∈ U ;
∑
a∈A

actua × pria ≤ budu

• C5. Activity capacity. The number of users assigned to an activity cannot
exceed the capacity of the activity.

∀a ∈ A;∀t ∈ T ;num uat ≤ capa

• C6. Feature constraint. An activity ready for assignment must have all re-
quired resources.

a2 a2 -1 0

-1 a1 a1 a1

a2 a2 0 0

u1

u2

t1 t2 t3 t4

a2 0 0 0

0 a1 0 0

a2 0 -1 0

r1

r2

t1 t2 t3 t4

u3 r3

Fig. 1. Illustrative example of solution representation with a U × T matrix X (left)
and a R× T matrix Y (right).
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Table 1
Notations used in the mathematical formulation [8].

Symbol Description

U Set of users, |U| = U , each being characterized by his/her budget, availability and
preference for each activity

A Set of activities, |A| = A, each being characterized by its price, duration (number of
timeslots needed), capacity, availability and features required

R Set of resources, |R| = R, including human and facility resources, each being charac-
terized by its availability and features

T Set of timeslots, |T | = T , during which users, activities and resources are to be
scheduled. Typically, we take 8 timeslots per day and 5 working days per week

F Set of features, |F| = F , including professional skills, room capacity, vehicle features,
etc, required by activities and provided by resources

TS Number of timeslots per day

uaut Whether user u is available at timeslot t, uaut = 0 if available, -1 otherwise

budu Budget of user u

aaat Whether activity a is available at timeslot t, aaat = 0 if available, -1 otherwise

dura Duration of activity a

pria Price of activity a

capa Capacity of activity a

rart Whether resource r is available at timeslot t, rart = 0 if available, -1 otherwise

preua Preference of user u to activity a, preu0 always equals 0

reqaf Whether activity a requires feature f , reqaf = {0, 1}

fearf Whether resource r contains feature f , fearf = {0, 1}

num uatk Number of users starting activity a at timeslot tk in a candidate solution S;

num uatk =
∑

u∈U stauatk ,

where stauatk =

{
1 if xutk = a ∧ (xutk−1 6= a ∨ k = 1),

0 otherwise.

actua Whether user u participates in activity a in a candidate solution S, actua = 1

if ∃xut ∈ S, a = xut, actua = 0 otherwise.

resat Set of resources used by activity a with start-time t in a candidate solution S

resat = {r | r ∈ R, yrt = a}

∀a ∈ A;∀t ∈ T ; ∀f ∈ F ; (num uat = 0 ∨ reqaf = 0) ∨
∑

r∈resat
fearf > 0

• C7. Preference constraint. A user provides a preference score for each in-
tended activity.

∀u ∈ U ; ∀a ∈ A; (actua = 0) ∨ (preua > 0)
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2.3 Objectives

The user project planning problem aims to optimize three objectives while
satisfying the constraints introduced in the last section. Using the notations
of Table 1 and let S be a candidate solution, we define the objectives as follows.

Suitability maximization (f1): This objective aims to satisfy as much as pos-
sible the activity preferences of the users. f1 is the main problem objective.

f1(S) =
∑
u∈U

∑
a∈A

actua × preua

Structure resource minimization (f2): This objective aims to reduce the sched-
uled resources to save costs for the structure. This is equivalent to maximize
the available timeslots of the resources.

f2(S) = R× T −
∑
r∈R

∑
t∈T

duryrt +
∑
r∈R

∑
t∈T

rart

User cost minimization (f3): This objective minimizes the cost of the scheduled
activities to save expenses for the users, which is equivalent to maximize the
unconsumed budget of users.

f3(S) =
∑
u∈U

(budu −
∑
a∈A

actua × pria)

3 Multi-Neighborhood Simulated Annealing

This section is dedicated to the presentation of the proposed multi-neighborhood
simulated annealing algorithm (MNSA) for the user project planning problem.

3.1 General procedure

The MNSA algorithm follows the general SA framework [23] and features
the combination of three complementary neighborhoods to explore candidate
solutions. As shown in Algorithm 1, MNSA starts with an initial solution S
and an initial temperature T = T0. Then it performs a number of iterations
to find solutions of increasing quality. During each iteration, MNSA first picks
a neighborhood Ni (i = 1, 2, 3) with a probability pi where p1 + p2 + p3 = 1,
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then selects randomly a neighbor solution S ′ from Ni. If S ′ is feasible, MNSA
computes the variation of the objective function between the current solution
S and the sampled neighbor solution S ′, ∆f = f(S ′)− f(S) (∆f is called the
move gain). If S ′ is better than S or as good as S (∆f > 0), then S ′ replaces the
current solution to become the new current solution. This transition is called
a move. Otherwise (∆f < 0), S ′ is accepted as the new current solution with
probability P (∆f, T ) = e∆f/T . After performing L moves with the current
temperature, where L is a controlling parameter, parameter T is decreased
by a constant cooling factor α < 1. Then MNSA starts the next round of
its search with the new temperature. MNSA terminates and returns the best
solution found during the search when a given stopping condition is met.

Algorithm 1 Multi-neighborhood simulated annealing (MNSA).
1: Input: Problem instance I, initial solution S, initial temperature T0, cooling factor
α, move counter L, probabilities p1, p2, p3 for applying neighborhoods N1, N2, N3

2: Output: The best solution found Sbest

3: T ← T0 /∗ Set initial temperature ∗/
4: Sbest ← S /∗ Record the best solution found so far ∗/
5: repeat
6: Iter ← 0 /∗ Iteration counter ∗/
7: Move← 0 /∗ Move counter ∗/
8: repeat
9: Pick neighborhood N1, N2 or N3 with probabilities p1, p2, p3

10: Pick at random a neighbor solution S′ from the selected neighborhood Ni

11: Iter ← Iter + 1
12: if S′ is feasible then
13: ∆f ← f(S′)− f(S)
14: if ∆f > 0 then
15: S ← S′; Move←Move+ 1
16: else if e∆f/T>random(0, 1) then
17: S ← S′; Move←Move+ 1
18: end if
19: Update Sbest if f(S)>f(Sbest)
20: end if
21: until Move = L
22: T ← T ∗ α /∗ Temperature cooling down ∗/
23: until a stopping condition is met
24: return Sbest

It is worth noting that each iteration of MNSA (counter Iter) does not nec-
essarily lead to a move (counter Move). After each temperature cooling, the
counters Iter and Move will be restarted from zero. As the temperature de-
creases, the acceptance probability P (∆f, T ) = e∆f/T becomes lower, leading
to a lower move acceptance rate γ = Move/Iter. MNSA uses the move ac-
ceptance rate γ as one of the stopping conditions, i.e., the algorithm stops
when the move acceptance rate drops to less than a given threshold (empir-
ically fixed to γ = 5%) for five consecutive temperature decreases. Another
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stopping condition is a cutoff time limit. In accordance with the real-life situ-
ations in different structures, we fixed the time limit to be 30 minutes, which
is an acceptable time for decision-makers. During the MNSA search process,
only feasible solutions are evaluated and accepted, therefore the best solution
found is always feasible. As we explained earlier, the user project planning
problem is defined with a set of complex constraints whose feasibility verifica-
tion is much computationally expensive. As such, the SA framework is quite
suitable because only one candidate neighbor solution (instead of all neighbor
solutions) is examined at each iteration, which possibly leads to an effective
move.

3.2 Evaluation function

A candidate solution S in the search space is a feasible user projects schedule
that satisfies all constraints (C1−C7). To assess the quality of solution S, the
algorithm uses the following weighted evaluation function f :

f(S) =
3∑
i=1

wi × fi(S) (1)

where each coefficient wi = αi × 1
fmax
i

(i = 1, 2, 3) is the relative weight given

to the objective function fi of the problem and αi takes values in [1, . . . , 5]
and is set by the decision-maker according to the actual importance. fmaxi =
max{fi(S) : S ∈ Ω} is used to normalize the objectives that are of different
nature and have different scales. The normalization is based on the upper-
bound function transformation method [24] (see [8] for more details).

3.3 Constructive greedy initialization procedure

The MNSA algorithm requires an initial solution to start its search, which
is built with the greedy procedure presented by [8]. This procedure follows
the spirit of the constructive greedy strategies [25,26] and performs several
rounds of activity arrangements, giving a high priority to preferred activities.
In every round, users are traversed according to the increasing order of budget,
which is motivated by the solidarity consideration in real-life that users with
financial difficulties are given a high priority. Specifically, for each user under
consideration, the followings steps are performed to achieve an arrangement.

(1) Select the most preferred eligible activity a of the user.
(2) Iterate through timeslots from the first one until a timeslot t is found

where a has been started at t and still has available places, if found, add
directly the user to a and move to step 5.
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(3) Iterate through timeslots from the first one until a timeslot t is found
where enough available resources can be used, if found, arrange a for the
user with resources and move to step 5.

(4) Move to the next preferred activity and repeat steps 2-4 until all eligible
activities have been considered.

(5) Move to the next user (if the current user is the last one, move to the
first user) and repeat steps 1-5.

The initialization procedure stops when all the activities of all users have been
considered and no more activity can be arranged without violating constraints.
During the constructive greedy procedure, the feasibility of each decision is
first verified and then executed. If the decision cannot satisfy all constraints,
it will not be performed. As such, the initialization procedure always provides
a feasible solution satisfying all the constraints of the problem. The time com-
plexity of this procedure is bounded by O(U ∗A∗T ∗R) where U , A, T and R
represent the number of users, activities, timeslots and resources, respectively.

3.4 Neighborhoods based on activity change, swap and exchange

It is well known that neighborhood is one key component of any SA algorithm.
We present three dedicated neighborhood operators specifically designed for
the user project planning problem. These neighborhood operators are inspired
by real-life manual project scheduling operations used by human planners.

3.4.1 Activity cancellation and activity arrangement

The cancellation and arrangement of an activity are the most basic operations
in user project planning.

The activity cancellation operation is composed of the following steps:

(1) Given the attended activity a, user u and a solution S, the start time t
and the resources set used resat are known;

(2) Set variable(s) xut . . . xut+dura−1 to 0;
(3) If no more user participates in activity a from time t, set variable(s)
{yrt | r ∈ resat} to 0.

The activity arrangement operation is composed of the following steps:

(1) Given the unattended activity a, user u and a solution S, verify con-
straints C4, C7, if feasible, continue the arrangement; else, stop the ar-
rangement;

(2) Iterate through timeslots from the first one until a timeslot t is found
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where a has been started at t and still has available places, if found, set
variable(s) xut . . . xut+dura−1 to a, stop the arrangement;

(3) Pick randomly a timeslot ti and verify other constraints until a feasible
timeslot is found or tm timeslots have been considered, where tm is a con-
trolling parameter representing the maximum number of timeslot verifi-
cations to arrange an activity. The verification of resources is achieved by
iterating through the available resources from a random start and adding
the resources with the required features into resources set resati until all
features are satisfied or all resources have been verified. If ti is feasible, set
variable(s) xuti . . . xuti+dura−1 to a and set variable(s) {yrti | r ∈ resati}
to a, stop the arrangement.

3.4.2 Single activity change neighborhood N1

The single activity change affects one user and one activity, which is a basic
operation in user project planning process. Figure 2 shows two moves that are
eligible for single activity change: a cancellation and an arrangement. For any
user and activity, the operation to achieve one move depends on whether this
user has participated in this activity.

(1) Pick a user u from U and pick an activity a from A;
(2) If u has already a arranged in his/her project, cancel a for u;
(3) Otherwise, if u doesn’t has a arranged in his/her project, arrange a for u

if it doesn’t create any conflict with respect to the constraints.

Fig. 2. Single activity changes

As explained above, the cancellation of an activity is always feasible but the
arrangement of an activity may fail. The maximum number of timeslot verifi-
cations tm is a controlling parameter, the greater it is, the more probably the
activity will be successfully arranged, but is more computationally expensive.
Hence an appropriate tm is necessary to balance feasibility and efficiency. The
single activity change will affect the number of activities in the project of the
selected user and may also affect the schedule of resources. As such, it allows
the solution to stay in a stable sparsity level because when the solution ma-
trix is too sparse, which means that users don’t have many activities selected
in their projects, unattended activities are more probably to be picked and
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then arranged. Reversely, when the solution is too dense, the cancellation of
activities is more probably to be performed. In real-life scheduling, this “sin-
gle activity change” operation is often used in the conception phase of users’
projects to establish feasible projects for every user.

3.4.3 Activity swap neighborhood N2

An activity swap for a user is performed by a cancellation of an attended
activity and an arrangement of an unattended activity. Figure 3 shows one
eligible move for activity swap.

(1) Pick a user u from U ;
(2) Swap the best activity pair (a1, a2): cancel activity a1 for u, then arrange

activity a2 for u if it doesn’t create any conflict.

Fig. 3. Activity swap

We define the best activity pair (a1, a2) to swap for user u as follows:

(a1, a2) = ( arg min
a∈A,actua=1

preua, arg max
a∈A,actua=0

preua)

In other words, we replace user’s least favorite activity in his/her project with
his/her favorite unattended activity to maximize the main suitability objective
(f1). An activity swap concerns one user and two activities which can be seen
as two particular simultaneous single activity changes. The difference is that
the activity swap will never change the number of activities in the project
of the selected user. In real-life, the “activity swap” operation is often used
during the execution phase of the project when there exists a better activity
for the user or when some selected activities become unfeasible and we want
to maintain the same number of the arranged activities.

(1)
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3.4.4 Activity exchange neighborhood N3

Unlike the two neighborhoods above, an activity exchange concerns two users.
It consists of swapping two different activities with the same start time of
two users or simply switching the activity from one user to another. Figure 4
shows two eligible moves for activity exchange.

(1) Pick a user u1 from U ;
(2) Take the best user-activity pair (u2, a1) to exchange, the start time of a1

for u1 is t1;
(3) If a user u2 starts an another activity a2 at time t1, exchange a1 and a2

of the two users ;
(4) Otherwise, if u2 is available at t1, cancel a1 for u1 and arrange a1 for u2

at t1.

Fig. 4. Activity exchanges

We define the best user-activity pair (u2, a1) to exchange for user u1 as follows:

(u2, a1) = arg max
u∈U ,a∈A

preua − preu1a + preu1xut1 − preuxut1

In other words, the best user-activity pair to exchange for u1 will lead to the
largest gain of the evaluation function f (Eq. (1)). The activity exchange will
never change the schedule of resources because there is no activity arrangement
or cancellation involved, it only changes the choice of user for an activity
already arranged. Hence, it doesn’t affect the structure resource objective
(f2) and the user cost objective (f3). As such, the variation of the evaluation
function f can be calculated quickly by calculating simply the variation of the
suitability objective f1. The “activity exchange” operation is often applied
in real-life during the conception phase and execution phase of users’ projects
because many activities need typically to be changed after the evaluation phase
to maximize the global user satisfaction and to ensure that every activity will
be attended by users who need it the most.
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3.4.5 Time complexity

(1) Single activity change: Given user u and activity a, checking if u has
participated in a requires O(1). If the operation is a cancellation, the
time complexity is bound by O(R) when the resources are involved. If
it’s an arrangement, tm timeslots will be verified where each verification
requires O(R). As such, one single activity change takes time O(tmR),
which is O(R) since the timeslots verification number tm is a constant
parameter.

(2) Activity swap: Finding the best activity pair (a1, a2) to swap for a user
requires O(A). Then, the time complexity for a cancellation and an ar-
rangement is O(R). Therefore, one activity swap takes time O(A+R).

(3) Activity exchange: To find the best user-activity pair (u2, a1) to swap
for a user, all user-activity pairs have to be evaluated, the variation of
the evaluation function f can be calculated in O(1) since only the first
objective f1 is involved. Therefore, the time complexity of one activity
exchange is bound by O(A ∗ U).

3.5 Probabilistic exploration of the neighborhoods

Given the three neighborhoods presented previously, MNSA explores them in
a probabilistic way. Specifically, at each iteration, MNSA selects neighborhood
Ni (i = 1, 2, 3) to explore with probability pi such that p1 + p2 + p3 = 1. As
explained above, these three neighborhoods have very different efficiency and
effectiveness. Compared to other neighborhood combination methods such as
neighborhood union or token-ring neighborhood exploration [27], the prob-
abilistic combination has the advantage of allowing us to adjust the impor-
tance given to each neighborhood by tuning the probability settings (p1, p2, p3),
which in turn influences the behavior of the MNSA algorithm. More informa-
tion is provided in Section 5.1.

4 Experimentations and Results

4.1 Experimental setting

Computing platform. The proposed MNSA algorithm was implemented
in C++ and compiled using the g++ compiler with the -O3 option. The
experiments were carried on an Intel Xeon E5-2670 processor with 2.5 GHz
and 200 MB RAM under the Linux operating system.
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Table 2
Settings of MNSA’s parameters.

Parameter Section Description Value

T0 3.1 initial temperature of SA 0.1

L 3.1 number of move per temperature of SA 300000

α 3.1 cooling ratio of SA 0.97

p1, p2, p3 3.1 neighborhood selection probabilities (0.8,0.1,0.1)

tm 3.4 maximum selection number of timeslots 10

We also tested the mathematical programming approach with a 0/1 program-
ming model (see the Appendix) with the CPLEX MIP solver (version 12.8),
run on an Intel Core i7-8750H 2.20 GHz processor with 32 GB RAM under
the Linux operating system with a time limit of 2 hours.

Parameter settings. We used the automatic configuration tool “irace” [28]
to calibrate the parameters of the MNSA algorithm. This was achieved by
feeding irace with six randomly selected instances with a tuning budget of
1000. We adopted the best parameter configuration given by irace and shown
in Table 2.

4.2 Test instances

Our experiments were conducted on the 20 benchmark instances introduced in
[8] 1 . These instances have different sizes and characteristics. They have been
created by a program generator with various tunable parameters (user num-
ber, activity number, scheduling length, etc.). These instances cover various
real scenarios in different structures, bases on the responses (more than 200)
received from a large-scale survey sent to more than 3600 structures in the
social and medico-social sector in France. According to the number of users
(from 10 to 100), these 20 instances include 3 small structure size instances,
12 medium structure size instances and 5 large structure size instances.

4.3 Computational results

Given the stochastic nature of the MNSA algorithm, we ran MNSA 20 times
independently with 20 random seeds to solve each test instance. Each run was
stopped when the cutoff time of 30 minutes was reached or when the move
acceptance rate γ drops below the threshold of 5% for five consecutive search
rounds (see Section 3.1).

1 These instances are publicly available at: http://www.info.univ-angers.fr/
pub/hao/userprojectplanning.html
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Table 3 shows the computational results of the proposed MNSA algorithm and
the compared approaches. Column 1 gives the instance identifier and Column 2
and 3 give the number of users U and the number of activitiesA, which indicate
the size of instance. Column 4 gives the objective function weight used for each
instance (see Eq. (1)). Columns 5 to 8 report the results of MNSA with its
best objective value fbest found among 20 runs, average objective value favg,
standard deviations std and the average time tavg in seconds to reach the best
objective value. Note fbest and favg correspond to lower bounds of the optimal
objective value. Columns 9 to 11 (0/1P) give the lower bound (LB), upper
bound (UB) and gap% (gap% = |UB − LB|/|LB|) achieved by the CPLEX
solver with the 0/1 programming model. Columns 12 and 13 (GIP) present
the results and run time of the greedy procedure. The best values among the
results of the compared approaches are highlighted in boldface. Entries with
“-” mean that CPLEX failed to output a result due to one of three reasons:
i) out of memory; ii) unknown solution status; iii) the pre-processing phase of
CPLEX cannot be finished in two hours.

From the results of Table 3, we can make the following comments. First, com-
pared to the powerful MIP solver CPLEX, among the 12 instances where
CPLEX produced a result, MNSA found a better solution for seven instances
against four cases in favor of the CPLEX. The winning cases of CPLEX con-
cerns only some small or medium scale instances. Moreover MNSA has very
small standard deviations, indicating its high robustness. Second, MNSA ob-
viously improves on the results of the constructive greedy procedure GIP for
the whole set of 20 instances. Even the average results of MNSA dominates
those of GIP. The small p-value (8.86e− 5 << 0.05) from the non-parametric
Wilcoxon signed-rank test confirms the statistical significance between the re-
sults of MNSA and those of GIP. To complement this numerical comparison,
Figure 5 summarizes the comparison using barchart, which clearly shows the
dominance of the MNSA algorithm over the reference approaches.

Finally, to further illustrate the the performance difference among the three
compared approaches in a global manner, we show in Figure 6 their per-
formance profiles [29]. Since the performance profile is defined with respect
to a minimization criterion and our problem has a maximization objective,
we first applied a transformation to convert our objective function into a
minimization case. Given a set I of problem instances and a set A of algo-
rithms, we convert the objective value fi,a on instance i by algorithm a to

f̂i,a = fi,best + ∆fi,a where fi,best is the best objective value on instance i by all
algorithms in A and ∆fi,a = fi,best−fi,a (∆fi,a > 0), which represents the gap
of the objective value of approach a relative to the very best objective value. If
∆fi,a = 0, the approach a is the best approach in A on instance i, and we have

f̂i,a = fi,a = fi,best. If ∆fi,a > 0, the approach a performs worse than the best

approach in A, and we have f̂i,a > fi,best. This transformation method thus en-
sures that all transformed objective values are greater than zero and maintain
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Table 3
Computational results of the proposed MNSA algorithm and comparison with the
reference approaches: 0/1 mathematical programming with CPLEX (0/1P) and
greedy initialization procedure (GIP).

MNSA 0/1P GIP
Ins U A α

fbest favg std tavg LB UB gap% f t (s)

0 10 10 {5,3,0} 4.8033 4.8027 0.001137 158.87 4.8033 4.8068 0.074% 4.0623 0.0003

1 10 15 {5,2,1} 4.9113 4.8990 0.010970 171.29 4.9300 5.2124 5.73% 4.2060 0.0008

2 10 15 {5,1,2} 5.4940 5.4842 0.007514 100.20 5.4966 5.5445 0.87% 5.1804 0.0003

3 30 20 {5,1,1} 4.7599 4.7494 0.005576 385.44 4.7178 5.4622 15.78% 4.2480 0.0079

4 30 30 {5,3,0} 5.1557 5.1267 0.014311 241.09 5.2055 7.2272 38.84% 3.9318 0.0059

5 30 40 {5,1,2} 4.7824 4.7708 0.005865 638.44 4.1436 5.9389 43.33% 4.1916 0.0123

6 50 15 {5,2,1} 4.1999 4.1537 0.030969 203.50 4.3155 5.6144 30.10% 3.5143 0.0136

7 50 20 {5,3,0} 5.9196 5.8732 0.029707 413.04 4.3039 130.5689 2933.77% 5.0879 0.0051

8 50 30 {5,2,1} 5.4681 5.4393 0.015094 443.30 4.1035 119.8726 2821.22% 4.7085 0.0140

9 50 30 {5,2,1} 5.3193 5.2901 0.013284 401.42 4.2911 123.7569 2783.99% 4.7456 0.0103

10 50 50 {5,1,1} 3.4648 3.4508 0.010898 772.11 2.7762 4.0878 47.24% 2.8983 0.0110

11 50 40 {5,1,1} 4.8414 4.8293 0.007239 1011.47 - - - 4.2377 0.0879

12 50 60 {5,1,1} 4.9955 4.9865 0.005668 1279.76 - - - 4.5686 0.1007

13 50 80 {5,1,2} 5.7975 5.7845 0.005673 1580.86 - - - 5.4005 0.1621

14 50 100 {5,3,0} 5.7826 5.7672 0.011426 1415.78 - - - 4.8303 0.6189

15 70 30 {5,1,2} 4.2270 4.2042 0.011491 604.31 3.4143 5.3128 55.60% 3.6945 0.0197

16 70 40 {5,3,0} 4.6985 4.6606 0.021251 939.02 - - - 3.8128 0.3053

17 70 50 {5,1,2} 5.0051 4.9885 0.007458 1497.09 - - - 4.6198 0.2827

18 100 30 {5,2,1} 4.1314 4.1107 0.011794 775.01 - - - 3.5620 0.0678

19 100 50 {5,1,1} 4.4820 4.4716 0.005591 1789.225 - - - 4.2342 0.5341

p-value 8.86e-5

the original performance quality order. Based on the transformed objective
value f̂i,a, we define the performance ratio by ri,a = f̂i,a/min{f̂i,a : a ∈ A}
to represent the performance on instance i by approach a compared to the
best performance by any approach on i. We set ri,a to +∞ if approach a does
not solve instance i. Then, to obtain an overall performance assessment of ap-
proach a, we define Pa(τ) = size{i ∈ I : ri,a ≤ τ}/|I|, which is the probability
for approach a that its performance ratio ri,a is within a factor τ . The func-
tion Pa is the (cumulative) distribution function for the performance ratio.
The value Pa(1) is the number of instances that approach a matches or wins
over other approaches. We draw the performance profiles with the software
“perprof-py” 2 . From Figure 6, we observe that MNSA dominates the other
reference approaches with the best performance profile either in terms of the
best objective value or the average objective value.

2 Available at https://ufpr-opt.github.io/perprof-py/index.html
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(a) Instances 0-9

(b) Instances 10-19

Fig. 5. Comparison summary of MNSA with 0/1 mathematical programming with
CPLEX (0/1P) and greedy initialization procedure (GIP).

Fig. 6. Performance-profile

5 Analysis and Discussions

In this section, we present an analysis of the neighborhoods and parameters
used in the proposed algorithm.
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5.1 Analysis of neighborhoods

MNSA explores three neighborhoods N1, N2, N3 in a probabilistic way. In
order to assess the benefit of this neighborhood combination strategy, we
present a comparison of MNSA with three MNSA variants where only one
single neighborhood is used. We ran these variants under the same experi-
mental conditions as for MNSA to solve the 20 instances. The computational
results are reported in Table 4 and the visual presentation is shown in Figure
7. We observe that the combination of the three neighborhoods perform sig-
nificantly better than each single neighborhood used alone. Moreover, among
the three neighborhoods, the “single activity change” neighborhood N1 per-
forms much better than the other two neighborhoods. This explains why in
MNSA, N1 is given a much higher application probability (p1 = 0.8 against
p2 = p3 = 0.1, see Table 2), allowing thus this dominant neighborhood to play
its role.

Finally, we find that the “activity swap” neighborhood N2 alone can barely
improve the results of the constructive greedy initialization. In fact, the greedy
procedure typically produces a very dense solution with all possible activities
and resources arranged. As the result, the activity swap can rarely find a
feasible move from such a solution. Interestingly, when combined with other
neighborhoods especially with N1, the variant state of solution provides N2

with more opportunities to find a feasible move. In conclusion, the combination
of neighborhoods brings highly positive effects for the search thanks to the
collective symbiosis of these complementary neighborhoods.

Fig. 7. Computational results of neighborhoods
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Table 4
Comparative results (fbest) of MNSA with the combined neighborhoods (N1 +N2 +
N3) and each individual neighborhood: “single activity change” neighborhood (N1),
“activity swap” neighborhood (N2), “activity exchange” neighborhood (N3).

Instance N1 N2 N3 N1 +N2 +N3

0 4.8033 4.0623 4.1682 4.8033

1 4.9050 4.2060 4.2179 4.9113

2 5.4874 5.1804 5.2096 5.4940

3 4.6947 4.2480 4.3150 4.7599

4 5.1088 3.9318 4.0195 5.1557

5 4.7107 4.1916 4.2361 4.7824

6 4.1559 3.5143 3.5731 4.1999

7 5.8859 5.0879 5.1509 5.9196

8 5.4326 4.7091 4.7537 5.4681

9 5.2823 4.7456 4.7936 5.3193

10 3.3632 2.8983 2.9389 3.4648

11 4.7769 4.2377 4.2905 4.8414

12 4.9326 4.5686 4.6048 4.9955

13 5.7463 5.4005 5.4172 5.7975

14 5.7448 4.8303 4.8695 5.7826

15 4.1891 3.6945 3.7509 4.2270

16 4.6488 3.8128 3.8526 4.6985

17 4.9438 4.6198 4.6610 5.0051

18 4.0512 3.5620 3.6170 4.1314

19 4.3904 4.2342 4.2933 4.4820

p-value 8.86e-05 8.86e-05 8.86e-05

Table 5
Parameter levels for the 2-level full factorial experiment.

Parameters Low level High level

T0 0.05 1.0

L 100000 500000

α 0.95 0.99

p1, p2, p3 (0.4,0.3,0.3) (0.8,0.1,0.1)

tm 10 50

5.2 Analysis of parameters

The proposed MNSA algorithm requires five parameters. The initial temper-
ature T0, the number of move per temperature L, and the cooling ratio α are
required by the SA framework, while the neighborhood probabilities (p1, p2, p3)
and the timeslots maximum selection number tm are used to define the neigh-
borhoods. To investigate the effects of these parameters and their interaction
effects, we performed a 2-level full factorial experiment [30] with the levels of
these parameters shown in Table 5.
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Table 6
Results of the analysis of variance.

Source p-value

T0 2.615913e-297

L 0.000000e+00

α 5.014828e-213

(p1, p2, p3) 3.125439e-231

tm 0.000000e+00

α*T0 3.126968e-233

α*L 2.143320e-263

T0*L 9.885850e-284

α*tm 2.727317e-107

T0*tm 6.006472e-246

L*tm 4.492402e-304

α*(p1, p2, p3) 1.734318e-29

T0*(p1, p2, p3) 1.622446e-04

L*(p1, p2, p3) 1.310061e-144

tm*(p1, p2, p3) 5.137107e-40

α*T0*L*tm*(p1, p2, p3) 1.592908e-121

We conducted the factorial experiment on six randomly selected instances
and each instance was solved 20 times independently. We recorded the aver-
age value of the best objective values found on the six instances. We applied
the multivariate analysis of variance on the results obtained with the verifica-
tion of normality distributions and the variance homogeneity. Table 6 provides
the results of the analysis with the p-values from the F -statistic test for each
parameter, all the combinations of two parameters and all five parameters. For
a significance level of 0.05, a p-value less than 0.05 indicates a significant rela-
tionship between each parameter (or parameter combination) and the results.
We observe that each parameter has a significant effect on the algorithm per-
formance according to the very small p-values. This is specially true for the
number of moves per temperature L and the timeslots maximum selection
number tm. Moreover, the interaction effects between any two parameters are
also significant, which explains why we didn’t apply the one-at-a-time sensi-
tivity analysis to determine our parameters’ values. In conclusion, the MNSA
algorithm is sensitive to the settings of its parameters and the interaction
effects between them are significant.

6 Conclusion and Perspectives

We studied the user project planning problem in social and social-medical
establishments, which is a relevant and challenging application for efficient
decision-makings. The proposed multi-neighborhood simulated annealing al-
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gorithm is the first local optimization algorithm which explores three comple-
mentary neighborhoods in a probabilistic manner. We designed these neigh-
borhoods according to real planning operations and demonstrated their effec-
tiveness on realistic benchmark instances. Within a short time, the approach
can provide feasible solutions of very good quality, even for the largest in-
stances.

This work is a part of the decision support tool “MSUsager” developed by the
Company GePI 3 for the social and medico-social establishments in French.
“MSUsager” provides an easy-to-use user interface to collect various data such
as user preferences, activity requirements, etc, which helps decision-makers
to manage complex user data efficiently. This automatic user project plan-
ning functionality can greatly facilitate the work of planners in social and
medico-social establishments and help them to design high quality individu-
alized projects for the residents of these structures.

This work provides a solution for the user project conception phase. An inter-
esting future study would be to investigate the dynamic user project planning
problem for the execution phase. Indeed, even though the project planning
is validated before execution, unexpected changes happen frequently such as
last-minute unavailability of resources or professionals, activity interruption
caused by an adverse event, additional user needs, etc. All these events would
lead to the need of adjustments of users’ projects. For these situations, a new
feasible planning with the smallest changes as possible is needed quickly. As
a result, a fast schedule adjustment mechanism could be highly relevant to
enrich the decision support system. To this end, the optimization algorithm
proposed in this study can serve as a basis to build such a project planning
tool.
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[25] Z. Lü, J.-K. Hao, Adaptive tabu search for course timetabling, European
Journal of Operational Research 200 (1) (2010) 235–244.

[26] B. Laurent, J.-K. Hao, Simultaneous vehicle and driver scheduling: A case study
in a limousine rental company, Computers & Industrial Engineering 53 (3)
(2007) 542–558.
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A Appendix: 0/1 programming model for the user project plan-
ning problem

This appendix presents the 0/1 programming model introduced in [8] for the
user project planning problem. This model was used to run the CPLEX MIP
solver to the 20 benchmark instances whose results are reported in Section
4.3.

Decision variables

• xijk Binary variable taking value 1 if user i starts activity k at timeslot j,
and 0 otherwise.
• yijk Binary variable taking value 1 if resource i starts to be used by activity
k at timeslot j, and 0 otherwise.

Maximize f(S) = w1f1(S) + w2f2(S) + w3f3(S) (A.1)

where
f1(S) =

∑
u∈U

∑
t∈T

∑
a∈A

xuta × preua (A.2)
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f2(S) =
∑
u∈U

budu −
∑
u∈U

∑
t∈T

∑
a∈A

xuta × pria (A.3)

f3(S) = R× T −
∑
r∈R

∑
t∈T

∑
a∈A

yrta × dura +
∑
r∈R

∑
t∈T

rart (A.4)

Subject to

∀u ∈ U , ∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
xuda = 0, if uaut = −1

(A.5)

∀u ∈ U , ∀t ∈ T ,
∑
a∈A

xuta ≤ 1 (A.6)

∀u ∈ U , ∀t ∈ T ,∀a ∈ A,∀d ∈ {t+ 1, . . . , t+ dura − 1},
xuda = 0, if xuta = 1

(A.7)

∀u ∈ U ,∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
xuda = 0, if aaat = −1

(A.8)

∀r ∈ R,∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
yrda = 0, if aaat = −1

(A.9)

∀u ∈ U ,∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
(xuta × ((t÷ TS) == ((t+ dura − 1)÷ TS)) > 0) ∨ xuta = 0

(A.10)

∀r ∈ R,∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
(yrta × ((t÷ TS) == ((t+ dura − 1)÷ TS)) > 0) ∨ yrta = 0

(A.11)

∀r ∈ R,∀t ∈ T ,∀a ∈ A,∀d ∈ {t− dura + 1, . . . , t},
yrda = 0, if uaut = −1

(A.12)

∀r ∈ R,∀t ∈ T ,∀a ∈ A, ∀d ∈ {t+ 1, . . . , t+ dura − 1},
yrda = 0, if yrta = 1

(A.13)

∀r ∈ R,∀t ∈ T ,
∑
a∈A

yrta ≤ 1 (A.14)

∀u ∈ U ,
∑
t∈T

∑
a∈A

pria × xuta ≤ budu (A.15)

∀a ∈ A, ∀t ∈ T ,
∑
u∈U

xuta ≤ capa (A.16)

∀u ∈ U ,∀t ∈ T ,∀a ∈ A, ∀f ∈ F , xuta × reqaf −
∑
r∈R

yrta × fearf ≤ 0 (A.17)

∀u ∈ U ,∀t ∈ T ,∀a ∈ A, xuta = 0 ∨ xuta × preua > 0 (A.18)

∀u ∈ U ,∀a ∈ A,
∑
t∈T

xuta ≤ 1 (A.19)

Equation (A.1) is the objective function combining sub-objectives (A.2)-(A.4).
Formulas (A.5)-(A.7) express constraint C1, formulas (A.8)-(A.11) define con-
straint C2, expressions (A.12)-(A.14) model constraint C3. Constraint (A.19)
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ensures that a user can only participate in an activity at most once. Formulas
(A.15-A.18) are expression of constraints C4, C5, C6, C7, respectively.
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