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Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations

We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh-Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence 1 4. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.

Introduction

The deterministic FitzHugh-Nagumo system is a simplified two-dimensional version of the famous Hodgkin-Huxley model which describes how action potentials propagate along an axon. Noise is omnipresent in neural systems and arises from different sources: it could be internal noise (such as random synaptic input from other neurons) or external noise, see for instance [START_REF] Lindner | Effects of noise in excitable systems[END_REF] for details. It was noted in [START_REF] Spagnolo | Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime[END_REF] that the addition of an appropriate amount of noise in the model helps to detect weak signals. All this has attracted a large body of works on the analysis of the influence of external random perturbations in neurons in the recent years, see for instance [START_REF] Li | Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise[END_REF][START_REF] Lindner | Effects of noise in excitable systems[END_REF][START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF][START_REF] Mishra | Effects of Noise on the Dynamics of Biological Neuron Models[END_REF][START_REF] Qin | Wong-Zakai approximations and long term behavior of stochastic FitzHugh-Nagumo system[END_REF][START_REF] Spagnolo | Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime[END_REF][START_REF] Thieullen | Deterministic and stochastic FitzHugh-Nagumo systems[END_REF][START_REF] Tuckwell | Stochastic partial differential equations in neurobiology: linear and nonlinear models for spiking neurons[END_REF][START_REF] Yamakou | The stochastic FitzHugh-Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model[END_REF].

In this article, we consider the stochastic FitzHugh-Nagumo system

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B Bt u(t, ζ) = B 2 Bζ 2 u(t, ζ) + u(t, ζ) -u 3 (t, ζ) -v(t, ζ) + B 2 BtBζ W (t, ζ), B Bt v(t, ζ) = γ 1 u(t, ζ) -γ 2 v(t, ζ) + β, B Bζ u(t, 0) = B Bζ u(t, 1) = 0, u(0, ζ) = u 0 (ζ), v(0, ζ) = v 0 (ζ),
for ζ ∈ (0, 1) and t ≥ 0. The objective of this article is to design and analyse numerical integrators, which treat explicitly the nonlinearity, for the temporal discretization of the system above, based on splitting strategies.

In the stochastic partial differential equation (SPDE) above, the unknowns u = u(t) t≥0 and v = v(t) t≥0 are L 2 (0, 1)-valued stochastic processes, with initial values u 0 , v 0 ∈ L 2 (0, 1), see Section 2 and the standard monograph [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] on stochastic evolution equations in Hilbert spaces. In addition, γ 1 , γ 2 , β ∈ R are three real-valued parameters, ∆ = B 2 Bζ 2 is the Laplace operator endowed with homogeneous Neumann boundary conditions, and W (t) t≥0 is a cylindrical Wiener process, meaning that the component u is driven by space-time white noise. The component u represents the voltage variable while the component v the recovery variable. The noise represents random fluctuations of the membrane potential, see [START_REF] Spagnolo | Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime[END_REF] for a related model with a scalar noise. Note that in the considered system only the evolution of the voltage variable u is driven by a Wiener process. Having noise for the evolution of the recovery variable v would correspond to modelling different biological phenomena which are not treated in this work.

The major difficulty in the theoretical and numerical analysis of the SPDE system above is the nonlinearity u-u 3 appearing in the evolution of the component u: this nonlinearity is not globally Lipschitz continuous and has polynomial growth. As proved in [START_REF] Beccari | Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities[END_REF], using a standard explicit discretization like the Euler-Maruyama method would yield numerical schemes which usually do not converge: more precisely, moment bounds, uniform with respect to the time step size, would not hold for such methods.

For an efficient numerical simulation of the above SPDE system, we propose to exploit a splitting strategy to define integrators and we show that appropriate moment bounds and strong error estimates can be obtained. In a nutshell, the main idea of a splitting strategy is to decompose the vector field, appearing in the evolution equation, in several parts, in order to exhibit subsystems which can be integrated exactly (or easily). One then composes the (exact or approximate) flows associated with the subsystems to define integrators applied to the original problem. Splitting schemes have a long history in the numerical analysis of ordinary and partial differential equations, see for instance [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF][START_REF] Hairer | Geometric numerical integration[END_REF][START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF][START_REF] Mclachlan | Splitting methods[END_REF] and references therein. Splitting integrators have recently been applied and analysed in the context of stochastic ordinary and partial differential equations. Without being exhaustive, we refer the interested reader to [START_REF] Ableidinger | Splitting integrators for the stochastic Landau-Lifshitz equation[END_REF][START_REF] Alamo | A technique for studying strong and weak local errors of splitting integrators[END_REF][START_REF] Bou-Rabee | Long-run accuracy of variational integrators in the stochastic context[END_REF][START_REF] Bréhier | Splitting integrators for stochastic Lie-Poisson systems[END_REF][START_REF] Cohen | Drift-preserving numerical integrators for stochastic Poisson systems[END_REF][START_REF] Leimkuhler | Molecular dynamics[END_REF][START_REF] Misawa | A Lie algebraic approach to numerical integration of stochastic differential equations[END_REF] for the finite-dimensional context and to [START_REF] Berg | Lie-Trotter splitting for the nonlinear stochastic Manakov system[END_REF][START_REF] Bréhier | Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations[END_REF][START_REF] Bréhier | Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion[END_REF][START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF][START_REF] Bréhier | Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation[END_REF][START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF][START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF][START_REF] Duboscq | Analysis of a splitting scheme for a class of random partial differential equations[END_REF][START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF][START_REF] Liu | A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise[END_REF][START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF][START_REF] Marty | Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion[END_REF][START_REF] Padgett | Convergence of an operator splitting scheme for abstract stochastic evolution equations[END_REF] for the context of SPDEs.

The main result of this paper is a strong convergence result, with rate of convergence 1 4, for easy to implement splitting integrators, see Equation [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF] in Subsection 3.2, for the time discretization of the SPDE defined above, see Theorem 3.3 for a precise statement. To the best of our knowledge, Theorem 3.3 is the first strong convergence result obtained for a time discretization scheme applied to the stochastic FitzHugh-Nagumo SPDE system. The first non-trivial step of the analysis is to obtain suitable moment bounds for the splitting scheme, see Theorem 3.1. Note that the proof of the moment bounds of Theorem 3.1 is inspired by the article [START_REF] Bréhier | Analysis of some splitting schemes for the stochastic Allen-Cahn equation[END_REF] where splitting schemes for the stochastic Allen-Cahn equation du(t) = ∆u(t) dt + (u(t) -u 3 (t)) dt + dW (t) were studied. The proof of the strong convergence error estimates of Theorem 3.3 is inspired by the article [START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF]. However, one needs a dedicated and detailed analysis since the considered stochastic FitzHugh-Nagumo system is not a parabolic stochastic evolution system, and several arguments are non trivial. Note also that the construction of the splitting scheme is inspired by the recent article [START_REF] Buckwar | A splitting method for SDEs with locally lipschitz drift: Illustration on the FitzHugh-Nagumo model[END_REF] which treats a finite dimensional version

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ du(t) = (u(t) -u 3 (t) -v(t)) dt, dv(t) = (γ 1 u(t) -γ 2 v(t) + β) dt + dB(t), u(0) = u 0 , v(0) = v 0 ,
of the stochastic FitzHugh-Nagumo system (where the finite-dimensional noise B is in the v-component).

We now review the literature related to this work. The recent article [START_REF] Buckwar | A splitting method for SDEs with locally lipschitz drift: Illustration on the FitzHugh-Nagumo model[END_REF] analyses the strong convergence of splitting schemes for a class of semi-linear stochastic differential equations (SDEs) as well as preservation of possible structural properties of the problem. Applications to the proposed schemes to the stochastic FitzHugh-Nagumo SDE are also presented. The work [START_REF] Tuckwell | Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo model neuron[END_REF] performs extensive numerical simulations on the FitzHugh-Nagumo equation with space-time white noise in 1d. A finite difference discretization is used in space, while the classical Euler-Maruyama is used in time. The article [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF] studies numerically the FitzHugh-Nagumo equation with colored noise in 2d. In particular, the authors use a finite element discretization in space and the semi-implicit Euler-Maruyama scheme in time. The two previously mentioned works employ crude explicit discretization for the nonlinearity and therefore may have the issues about moment bounds discussed above. The work [START_REF] Gyöngy | Convergence of tamed Euler schemes for a class of stochastic evolution equations[END_REF] proves convergence (without rates) of a fully-discrete numerical scheme, based on a Galerkin method in space and the tamed Euler scheme in time, for a general SPDE with super-linearly growing operators. This is then applied to the FitzHugh-Nagumo equation with space-time white noise in 1d. The articles [START_REF] Sauer | Lattice approximation for stochastic reaction diffusion equations with onesided Lipschitz condition[END_REF] and [START_REF] Sauer | Analysis and approximation of stochastic nerve axon equations[END_REF] prove strong convergence rates of a finite difference spatial discretization of the FitzHugh-Nagumo equation with space-time white noise in 1d.

This article is organized as follows. The setting is given in Section 2, in particular this allows us to state a well-posedness result for the considered stochastic FitzHugh-Nagumo system. The splitting strategy, the proposed integrators and the main results of the paper are then presented in Sections 3.1, 3.2 and 3.3 respectively. Several auxiliary results are stated and proved in Section 4. Section 5 gives the proofs of Theorems 3.1 and 3.3. Finally, numerical experiments are provided in Section 6.

Setting

This section is devoted to introducing the functional framework, the linear and nonlinear operators, and the Wiener process. This allows us to consider the stochastic FitzHugh-Nagumo SPDE system as a stochastic evolution equation in the classical framework of [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF].

Functional framework. Let us first introduce the infinite-dimensional, separable

Hilbert space H = L 2 (0, 1) of square integrable functions from (0, 1) to R. This space is equipped with the inner product ⟨⋅, ⋅⟩ H and the norm ⋅ H which satisfy

⟨u 1 , u 2 ⟩ H = 1 0 u 1 (ζ)u 2 (ζ) dζ, u H = ⟨u, u⟩ H ,
respectively, for all u 1 , u 2 , u ∈ H. Let us then introduce the product space H = H × H, which is also an infinite-dimensional, separable Hilbert space, with the inner product ⟨⋅, ⋅⟩ H and the norm ⋅ H defined by

⟨x 1 , x 2 ⟩ H = ⟨u 1 , u 2 ⟩ H + ⟨v 1 , v 2 ⟩ H , x H = u 2 H + v 2 H , for all x 1 = (u 1 , v 1 ), x 2 = (u 2 , v 2 ), x = (u, v) ∈ H.
Let also E = C 0 ([0, 1]) be the space of continuous functions from [0, 1] to R, and set E = E × E. Then E and E are separable Banach spaces, with the norms ⋅ E and ⋅ E defined by

u E = max ζ∈[0,1] u(ζ) , x E = max u E , v E for all u ∈ E and x = (u, v) ∈ E.
Let us denote the inner product and the norm in the finite-dimensional Euclidean space R 2 by ⟨⋅, ⋅⟩ and ⋅ respectively. If M is a 2×2 real-valued matrix, let ~M ~= sup

x∈R 2 ; x =1 M x .
Finally, in the sequel, N = {1, 2, . . .} denotes the set of integers and N 0 = {0}∪N = {0, 1, . . .} denotes the set of nonnegative integers. We often write j ≥ 1 (resp. j ≥ 0) instead of j ∈ N (resp. j ∈ N 0 ).

Linear operators.

This subsection presents the material required to use the semigroup approach for SPDEs, see for instance [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF].

For all j ∈ N, set λ j = (jπ) . Then e j j≥0 is a complete orthonormal system of H, and one has ∆e j = -λ j e j for all j ≥ 0, where ∆ denotes the Laplace operator with homogeneous Neumann boundary conditions. For all u ∈ H and all t ≥ 0, set [START_REF] Ableidinger | Splitting integrators for the stochastic Landau-Lifshitz equation[END_REF] e t∆ u = j≥0 e -tλ j ⟨u, e j ⟩ H e j .

Then, for any u 0 ∈ H, the mapping (t, ζ) ↦ u(t, ζ) = e t∆ u 0 (ζ) is the unique solution of the heat equation on (0, 1) with homogeneous Neumann boundary conditions and initial value u(0, ⋅) = u 0 :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Bu(t, ζ) Bt = ∆u(t, ζ), t > 0, ζ ∈ (0, 1), Bu(t, 0) Bζ = Bu(t, 1) Bζ = 0, t > 0, u(0, ζ) = u 0 (ζ), ζ ∈ (0, 1).
For all α ∈ [0, 2], set

H α = u ∈ H; j≥0 λ α j ⟨u, e j ⟩ 2 H < ∞ , (-∆) α 2 u = j≥0 λ α 2 j ⟨u, e j ⟩ H e j , u ∈ H α .
Observe that H 0 = H = L 2 (0, 1). The Laplace operator ∆ with homogeneous Neumann boundary conditions is a self-adjoint unbounded linear operator on H, with domain D(∆) = H 2 . We also let

H α = H α × H for all α ∈ [0, 2].
Let us now introduce the linear operator Λ, defined as follows: for all

x = (u, v) ∈ H 2 , set Λx = -∆u 0 .
Then Λ is a self-adjoint unbounded linear operator on H, with domain

D(Λ) = H 2 . For all x = (u, v) ∈ H and t ≥ 0, set (2) 
e -tΛ x = e t∆ u v .

Regularity estimates for this operator are presented in Section 4 below.

2.3. Nonlinear operator. Let β, γ 1 , γ 2 ∈ R be parameters of the model. Define the mapping F ∶ R 2 → R 2 such that for all x = (u, v) ∈ R 2 one has F (x) = u -u 3 -v γ 1 u -γ 2 v + β .
In order to define splitting schemes, it is convenient to introduce two auxiliary mappings

F NL ∶ R 2 → R 2 and F L ∶ R 2 → R 2 defined as follows: for all x = (u, v) ∈ R 2 , set F NL (x) = u -u 3 β F L (x) = -v γ 1 u -γ 2 v = Bx,
where the matrix B is defined by

B = 0 -1 γ 1 -γ 2 .
One then has

(3)

F (x) = F NL (x) + F L (x)
for all x ∈ R 2 . The mapping F L is globally Lipschitz continuous: for all x 1 , x 2 ∈ R 2 one has

F L (x 2 ) -F L (x 1 ) ≤ ~B~ x 2 -x 1 .
However F and F NL are only locally Lipschitz continuous, and satisfy a one-sided Lipschitz continuity property: there exists C ∈ (0, ∞) such that for all

x 1 , x 2 ∈ R 2 one has (4) ⟨x 2 -x 1 , F NL (x 2 ) -F NL (x 1 )⟩ ≤ C x 2 -x 1 2 , ⟨x 2 -x 1 , F (x 2 ) -F (x 1 )⟩ ≤ C x 2 -x 1 2 .
In the sequel, an abuse of notation is used for simplicity: the same notation is employed for a mapping f ∶ R 2 → R 2 and for the associated Nemytskii operator defined on H or on E by f (u, v) = f (u(⋅), v(⋅)).

2.4. Wiener process. It remains to define the noise that drives the stochastic FitzHugh-Nagumo system. Let W (t) t≥0 be a cylindrical Wiener process on H: given a sequence β j (⋅) j≥0 of independent standard real-valued Wiener processes, defined on a probability space (Ω, F, P) equipped with a filtration F t t≥0 which satisfies the usual conditions and where E[⋅] denotes the expectation operator on the probability space, set ( 5)

W (t) = j≥0 β j (t)e j .
For all t ≥ 0, define

W(t) = W (t) 0 = j≥0 β j (t) e j 0 ,
then W(t) t≥0 is a generalized Q-Wiener process on H, with the covariance operator 

Q = I 0 0 0 . Note that
∫ T 0 E[ L(t)e j 2 H ] dt < ∞ and ∑ j≥0 ∫ T 0 E[ L(t)
H dt ≤ T + j≥1 λ -1 j < ∞. 2 
Therefore, for all t ≥ 0 one can define the H-valued random variable Z(t) and the H-valued random variable Z(t), called the stochastic convolutions, by

Z(t) = t 0 e (t-s)∆ dW (s), Z(t) = t 0 e -(t-s)Λ dW(s). (6) 
The processes Z(t) t≥0 and Z(t) t≥0 are interpreted as the mild solutions of the stochastic evolution equations dZ(t) = ∆Z(t) dt + dW (t),

dZ(t) = -ΛZ(t) dt + dW(t)
with initial values Z(0) = 0 and Z(0) = 0. Note that Z(t) = Z(t) 0 for all t ≥ 0.

2.5. The stochastic FitzHugh-Nagumo SPDE system. In this work, we study numerical schemes for the FitzHugh-Nagumo stochastic system for signal propagation in nerve cells. This system is written as the stochastic evolution system

(7) ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ du(t) = ∆u(t) dt + (u(t) -u 3 (t) -v(t)) dt + dW (t), dv(t) = (γ 1 u(t) -γ 2 v(t) + β) dt, u(0) = u 0 , v(0) = v 0 ,
where the unknowns u(⋅) = u(t) t≥0 and v(⋅) = v(t) t≥0 are H-valued stochastic processes, and with initial values u 0 ∈ H and v 0 ∈ H. Recall that Neumann boundary conditions are used in the above system. Using the notation introduced above and setting X(t) = (u(t), v(t)) for all t ≥ 0, the stochastic evolution system [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF] is treated in the sequel as the stochastic evolution equation ( 8)

dX(t) = -ΛX(t) dt + F (X(t)) dt + dW(t), X(0) = x 0 ,
with the initial value x 0 = (u 0 , v 0 ) ∈ H. For all T ∈ (0, ∞), a stochastic process X(t) 0≤t≤T is called a mild solution of [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF] if it has continuous trajectories with values in H, and if for all t ∈ [0, T ] one has ( 9)

X(t) = e -tΛ x 0 + t 0 e -(t-s)Λ F (X(s)) ds + t 0 e -(t-s)Λ dW(s).
In the framework presented in this section, the stochastic evolution equation ( 8) admits a unique global mild solution, for any initial value x 0 ∈ H 2α ∩ E and for α ∈ [0, 1 4 ), see Proposition 4.5 below.

For simplicity, the initial values u 0 , v 0 , resp. x 0 , appearing in [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF], resp. ( 8), are deterministic. It would be straightforward to extend the results below for random initial values which are independent of the Wiener process and are assumed to satisfy appropriate moment bounds, using a conditioning argument.

Splitting schemes

The time-step size of the integrators defined below is denoted by τ . Without loss of generality, it is assumed that τ ∈ (0, τ 0 ), where τ 0 is an arbitrary positive real number, and that there exists T ∈ (0, ∞) and N ∈ N such that τ = T N . The notation t n = nτ for n ∈ {0, . . . , N } is used in the sequel. The increments of the Wiener processes W (t) t≥0 and W(t) t≥0 are denoted by

δW n = W (t n+1 ) -W (t n ), δW n = W(t n+1 ) -W(t n ) = δW n 0 .
The proposed time integrators for the SPDE (8) are based on a splitting strategy. Recall that the main principle of splitting integrators is to decompose the vector field of the evolution problem in several parts, such that the arising subsystems are exactly (or easily) integrated.

We define these subsystems in Subsection 3.1, then give the definitions of three splitting schemes in Subsection 3.2 and state the main results of this article in Subsection 3.3.

3.1. Solutions of auxiliary subsystems. The construction of the proposed splitting schemes is based on the combination of exact or approximate solutions of the three subsystems considered below.

• The nonlinear differential equation (considered on the Euclidean space R 2 ) (10)

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ dx NL (t) dt = F NL (x NL (t)),
x NL (0) = x 0 ∈ R 2 admits a unique global solution x NL (t) t≥0 . This solution has the following exact expression, see for instance [START_REF] Bréhier | Analysis of some splitting schemes for the stochastic Allen-Cahn equation[END_REF]Equation (3)]: for all t ≥ 0 and

x 0 = (u 0 , v 0 ) ∈ R 2 , one has (11) x NL (t) = φ NL t (x 0 ) = ⎛ ⎝ u 0 u 2 0 +(1-u 2 0 )e -2t v 0 + βt ⎞ ⎠ . • The linear differential equation (considered on the Euclidean space R 2 ) (12) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ dx L (t) dt = F L (x L (t)), x L (0) = x 0 ∈ R 2
admits a unique global solution x L (t) t≥0 . This solution has the following expression: for all t ≥ 0 and

x 0 = (u 0 , v 0 ) ∈ R 2 , one has (13) x L (t) = φ L t (x 0 ) = e tB x 0 . • The stochastic evolution equation (considered on the Hilbert space H) (14) dX s (t) = -ΛX s (t) dt + dW(t) X s (0) = x 0 ∈ H
admits a unique global solution X s (t) t≥0 . This solution has the following expression: for all t ≥ 0 and x 0 = (u 0 , v 0 ) ∈ H, one has

(15) X s (t) = e -tΛ x 0 + t 0 e -(t-s)Λ dW(s) = e t∆ u 0 + ∫ t 0 e (t-s)∆ dW (s) v 0 , see (6) 
for the expression of the stochastic convolution. For all n ∈ {0, . . . , N -1}, set X s,exact n = X s (t n ), then one has the following recursion formula

(16) X s,exact n+1 = e -τ Λ X s,exact n + t n+1 tn e -(t n+1 -s)Λ dW(s)
recalling the notation t n = nτ . Instead of using the exact solution (15) of the stochastic convolution ( 14), one can use approximate solutions X s,exp

n n≥0 = u s,exp n , v s,exp n n≥0 and X s,imp n n≥0 = u s,imp n , v s,imp n n≥0
defined by an exponential Euler scheme and a linear implicit Euler scheme respectively:

(17) X s,exp n+1 = e -τ Λ X s,exp n + δW n = e τ ∆ u s,exp n + δW n v s,exp n , and (18) 
X s,imp

n+1 = I + τ Λ -1 X s,imp n + δW n = (I -τ ∆) -1 u s,imp n + δW n v s,imp n , with initial values X s,exp 0 = X s,imp 0 = x 0 = (u 0 , v 0 ) ∈ H, u s,exp 0 = u s,imp 0 = u 0 ∈ H and v s,exp 0 = v s,imp 0 = v 0 ∈ H.

Definition of the splitting schemes.

We are now in position to introduce the three splitting schemes studied in this article. They are constructed using a Lie-Trotter strategy, where first the subsystems (10), ( 12) are solved exactly using the flow maps [START_REF] Bréhier | Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion[END_REF] and ( 13) respectively, and where the subsystem ( 14) is either solved exactly using [START_REF] Bréhier | Splitting integrators for stochastic Lie-Poisson systems[END_REF] or approximately using [START_REF] Cerrai | Second order PDE's in finite and infinite dimension[END_REF] or [START_REF] Cohen | Drift-preserving numerical integrators for stochastic Poisson systems[END_REF].

For the composition of the first two subsystems, define the mapping φ τ ∶ R 2 → R 2 as follows: for all τ ∈ (0, τ 0 ), set [START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF] φ τ = φ L τ ○ φ NL τ . Using the expression [START_REF] Buckwar | A splitting method for SDEs with locally lipschitz drift: Illustration on the FitzHugh-Nagumo model[END_REF] for the exact solution ( 15) of ( 14) leads to the definition of the following explicit splitting scheme for the stochastic FitzHugh-Nagumo SPDE system ( 7):

(20) X LT,exact n+1 = e -τ Λ φ τ X LT,exact n + t n+1 tn e -(t n+1 -s)Λ dW(s).
Using the exponential Euler scheme [START_REF] Cerrai | Second order PDE's in finite and infinite dimension[END_REF] to approximate the solution of ( 14) leads to the definition of the following explicit splitting scheme for ( 7):

(21) X LT,expo n+1 = e -τ Λ φ τ X LT,expo
n + e -τ Λ δW n . Using the linear implicit Euler scheme [START_REF] Cohen | Drift-preserving numerical integrators for stochastic Poisson systems[END_REF] to approximate the solution of ( 14) leads to the definition of the following splitting scheme for ( 7):

(22) X LT,imp n+1 = (I + τ Λ) -1 φ τ X LT,imp n + (I + τ Λ) -1 δW n .
For these three Lie-Trotter splitting schemes ( 20), ( 21) and ( 22), the same initial value is imposed:

X LT,exact 0 = X LT,expo 0 = X LT,imp 0 = x 0 ∈ H.
Before proceeding with the statements of the main results, let us give several observations and auxiliary tools.

Observe that the three schemes ( 20), ( 21) and ( 22) can be written using the single formulation ( 23)

X n+1 = A τ φ τ (X n ) + t n+1 tn B t n+1 -s dW(s)
which is used in the analysis below. The expressions of the linear operators A τ and B t n+1 -s for each of the three schemes are given by: A τ = e -τ Λ , B t n+1 -s = e -(t n+1 -s)Λ for the scheme (20) A τ = B t n+1 -s = e -τ Λ for the scheme [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF], and A τ = B t n+1 -s = (I + τ Λ) -1 for the scheme [START_REF] Duboscq | Analysis of a splitting scheme for a class of random partial differential equations[END_REF].

For any value τ ∈ (0, τ 0 ) of the time-step size, introduce the mapping

ψ τ ∶ R 2 → R 2 defined as follows: for all x ∈ R 2 , (24) ψ τ (x) = φ τ (x) -x τ .
The Lie-Trotter splitting scheme ( 23) is then written as

X n+1 = A τ X n + τ A τ ψ τ (X n ) + t n+1 tn B t n+1 -s dW(s)
and can thus be interpreted as a numerical scheme applied to the auxiliary stochastic evolution equation

(25) dX τ (t) = -ΛX τ (t) dt + ψ τ (X τ (t)) dt + dW(t), X τ (0) = x 0 .
Note that the SPDE ( 25) is similar to the original problem [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF], however the nonlinearity F is replaced by the auxiliary mapping ψ τ .

Main results.

In this subsection, we state the main results of this article. First, we give moment bounds for the three splitting schemes [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF], see Theorem 3.1. Then, we give strong error estimates, with rate of convergence 1 4, for the numerical approximations of the solution of the stochastic FitzHugh-Nagumo SPDE system [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF], see Theorem 3.3.

Theorem 3.1. For all T ∈ (0, ∞) and p ∈ [1, ∞), there exists C p (T ) ∈ (0, ∞) such that for all x 0 ∈ E one has [START_REF] Jentzen | Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise[END_REF] sup

τ ∈(0,τ 0 ) sup 0≤n≤N E[ X n p E ] ≤ C p (T ) 1 + x 0 p E ,
where X n n≥0 is given by (23) (with initial value X 0 = x 0 ), and where T = N τ with N ∈ N.

The proof of this theorem is postponed to Section 5.

Remark 3.2. The nonlinear mapping F is not globally Lipschitz continuous and has polynomial growth. Therefore, if one employs a standard implicit-explicit scheme applied directly to the original SPDE

X n+1 = A τ X n + τ A τ F (X n ) + t n+1 tn B t n+1 -s dW(s)
with X 0 = x 0 , where the same notation as for the scheme ( 23) is used, one has

sup τ ∈(0,τ 0 ) sup 0≤n≤N E[ X n p E ] = sup τ ∈(0,τ 0 ) sup 0≤n≤N E[ X n p H ] = ∞,
see for instance [START_REF] Beccari | Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities[END_REF] for the stochastic Allen-Cahn equation and [START_REF] Gyöngy | Convergence of tamed Euler schemes for a class of stochastic evolution equations[END_REF]. As a consequence Theorem 3.1 is not a trivial result and illustrates the superiority of the proposed explicit splitting scheme compared with a crude explicit discretization method.

We are now in position to state our strong convergence result. Its proof is given in Section 5.

Theorem 3.3. For all T ∈ (0, ∞), p ∈ [1, ∞) and α ∈ [0, 1 4 ), there exists C α,p (T ) ∈ (0, ∞) such that for all x 0 = (u 0 , v 0 ) ∈ H 2α ∩ E, all τ ∈ (0, τ 0 ), one has

(27) sup 0≤n≤N E[ X(t n ) -X n p H ] 1 p ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E .
The order of convergence 1 4 obtained in Theorem 3.3 is consistent with the temporal Hölder regularity property of the trajectories t ↦ X(t) ∈ H. It is also consistent with the strong convergence rate obtained in [START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF] for the stochastic Allen-Cahn equation. However new arguments are required to study the FitzHugh-Nagumo system which is not a parabolic SPDE problem, and which has a cubic nonlinearity.

Let us state two of the main auxiliary results which are used in the proofs of the main results. These propositions are proved in Subsection 4.2.

Proposition 3.4. For all τ ∈ (0, τ 0 ), the mapping φ τ ∶ R 2 → R 2 defined by [START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF] is globally Lipschitz continuous. In addition, for all τ ∈ (0, τ 0 ) and all x 1 , x 2 ∈ R 2 one has

(28) φ τ (x 2 ) -φ τ (x 1 ) ≤ e (1+~B~)τ x 2 -x 1 .
Proposition 3.5. There exists C(τ 0 ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ), the mapping ψ τ ∶ R 2 → R 2 defined by (24) satisfies the following properties: for all x 1 , x 2 ∈ R 2 , one has

⟨x 2 -x 1 , ψ τ (x 2 ) -ψ τ (x 1 )⟩ ≤ C(τ 0 ) x 2 -x 1 2 (29) ψ τ (x 2 ) -ψ τ (x 1 ) ≤ C(τ 0 ) 1 + x 1 3 + x 2 3 x 2 -x 1 , (30) 
and for all x ∈ R 2 one has

(31) ψ τ (x) -F (x) ≤ C(τ 0 )τ 1 + x 5 .
Finally, one has

(32) sup τ ∈(0,τ 0 ) ψ τ (0) < ∞.
The inequality [START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF] states that ψ τ satisfies a one-sided Lipschitz continuity property which is uniform with respect to τ ∈ (0, τ 0 ). This is similar to the property (4) satisfied by F . It is straightforward to check that ψ τ is in fact globally Lipschitz continuous for any fixed τ ∈ (0, τ 0 ), however this property does not hold uniformly with respect to τ ∈ (0, τ 0 ). Instead, one has the one-sided Lipschitz continuity property [START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF] and the local Lipschitz continuity property [START_REF] Li | Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise[END_REF] which are both uniform with respect to τ ∈ (0, τ 0 ).

Preliminary results

In this section we state and prove several results which are required for the analysis of the three splitting schemes of type [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF]. In particular, we give properties of the semigroup (Proposition 4.1), we then prove the properties of the auxiliary mappings φ τ (Proposition 3.4) and ψ τ (Proposition 3.5), and finally we study the well-posedness and moment bounds for the mild solution of the considered SPDE.

Properties of the semigroup.

In this subsection, we study properties of the semigroup generated by the linear operator Λ in the stochastic FitzHugh-Nagumo system [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF]. In addition, estimates for the operator (I+τ Λ) -1 used in the semi-linear splitting schemes [START_REF] Cohen | Drift-preserving numerical integrators for stochastic Poisson systems[END_REF] and ( 22) are also provided.

Proposition 4.1. The semigroup e -tΛ t≥0 defined by (2) satisfies the following properties:

• For all t ≥ 0, e -tΛ is a bounded linear operator from H to H and from E to E. In addition, for all t ≥ 0 one has [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF] sup

x∈H∖{0} e -tΛ x H x H = 1, sup x∈E∖{0} e -tΛ x E x E = 1.
• Smoothing property. For all α ∈ [0, ∞), there exists a real number C α ∈ (0, ∞) such that, for all (u, v) ∈ H and all t ∈ (0, ∞), one has

(34) e -tΛ (-∆) α u v H ≤ C α min(1, t) -α (u, v) H .
• Temporal regularity. For all µ, ν ≥ 0 with µ + ν ≤ 1, there exists a real number C µ,ν ∈ (0, ∞) such that, for all x = (u, v) ∈ H 2ν and all t 1 , t 2 ∈ (0, ∞), one has

(35) e -t 2 Λ x -e -t 1 Λ x H ≤ C µ,ν t 2 -t 1 µ+ν min(t 2 , t 1 ) µ (-∆) ν u H .
Proof. • On the one hand, since the eigenvalues λ j j≥0 of -∆ are nonnegative, it is straightforward to see that for all x = (u, v) ∈ H and t ≥ 0 one has e -tΛ x ∈ H, and

e -tΛ x 2 H = e t∆ u 2 H + v 2 H ≤ u 2 H + v 2 H = x 2
H . This proves that e -tΛ is a bounded linear operator from H to H for all t ≥ 0, and that

sup x∈H∖{0} e -tΛ x H x H ≤ 1.
On the other hand, using the formula for the Green function of the heat equation with homogeneous Neumann boundary conditions, the semigroup e t∆ t≥0 defined by (1) satisfies the following properties: for all t ≥ 0 and u ∈ E, one has e t∆ u ∈ E and e t∆ u E ≤ u E . As a consequence, for all x = (u, v) ∈ E, one has e -tΛ x = (e t∆ u, v) ∈ E and

e -tΛ x E = max e t∆ u E , v E ≤ max u E , v E = x E .
To conclude the proof of [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF], it suffices to check that for x = (0, v) and all t ≥ 0 one has e -tΛ x = x.

• The smoothing property ( 34) is a straightforward consequence of the smoothing property for the semigroup e t∆ t≥0 : for all α ∈ [0, ∞), t ≥ 0 and u ∈ H, one has (recall that

λ 0 = 0) e t∆ (-∆) α u 2 H = j≥1 e -2tλ j λ 2α j ⟨u, e j ⟩ 2 H ≤ sup ξ∈(0,∞) ξ 2α e -2ξ t -2α u 2 H .
As a consequence, for all α ∈ [0, ∞), t ≥ 0 and x = (u, v) ∈ H, one has

e -tΛ (-∆) α u v 2 H = e t∆ (-∆) α u 2 H + v 2 H ≤ C 2 α t -2α u 2 H + v 2 H ≤ C 2 α min(1, t) -2α x 2 H .
• The regularity property [START_REF] Marty | Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion[END_REF] is a straightforward consequence of the following regularity property for the semigroup e t∆ t≥0 : for all µ, ν ∈ [0, 1] with µ + ν ≤ 1, 0 ≤ t 1 ≤ t 2 and u ∈ H 2ν , one has

e t 2 ∆ u -e t 1 ∆ u 2 H = (e (t 2 -t 1 )∆ -I)e t 1 ∆ u 2 H = j≥1 e -(t 2 -t 1 )λ j -1 2 e -2t 1 λ j ⟨u, e j ⟩ 2 H ≤ 2 2(µ+ν) (t 2 -t 1 ) 2(µ+ν) j≥1 λ 2(µ+ν) j e -2t 1 λ j ⟨u, e j ⟩ 2 H ≤ 2 2(µ+ν) sup ξ∈(0,∞) ξ 2µ e -2ξ (t 2 -t 1 ) 2(µ+ν) t 2µ 1 j≥1 λ 2ν j ⟨u, e j ⟩ 2 H ≤ 2 2(µ+ν) sup ξ∈(0,∞) ξ 2µ e -2ξ (t 2 -t 1 ) 2(µ+ν) t 2µ 1 (-∆) ν u 2 H .
As a consequence, for all µ, ν ∈

[0, 1] with µ + ν ≤ 1, 0 ≤ t 1 ≤ t 2 and x = (u, v) ∈ H 2ν × H, one has e -t 2 Λ x -e -t 1 Λ x H = e t 2 ∆ u -e t 1 ∆ u H ≤ C µ,ν t 2 -t 1 µ+ν t µ 1 (-∆) ν u H .
The proof of Proposition 4.1 is thus completed.

In the sequel, the following properties are also used for the analysis of the splitting scheme [START_REF] Duboscq | Analysis of a splitting scheme for a class of random partial differential equations[END_REF] for which a linear implicit Euler method is used for the approximation (18) of the stochastic convolution: for all t ≥ 0, (I + tΛ) -1 is a bounded linear operator from H to H and from E to E, and one has [START_REF] Mclachlan | Splitting methods[END_REF] sup

x∈H∖{0} (I + tΛ) -1 x H x H = 1, sup x∈E∖{0} (I + tΛ) -1 x E x E = 1.
The proof of the inequality (36) is straightforward. Indeed, for all x ∈ H or x ∈ E, and all t ≥ 0, one has

(I + tΛ) -1 x = ∞ 0 e -(I+tΛ)s x ds.
Using [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF], one then obtains the inequalities

(I + tΛ) -1 x H ≤ ∞ 0 e -s e -tsΛ x H ds ≤ ∞ 0 e -s ds x H = x H (I + tΛ) -1 x E ≤ ∞ 0 e -s e -tsΛ x E ds ≤ ∞ 0 e -s ds x E = x E .
Like in the proof of [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF], choosing x = (0, v) gives (I + tΛ) -1 x = x for all t ≥ 0, and thus concludes the proof of (36).

4.2. Proofs of Propositions 3.4 and 3.5. In order to prove Propositions 3.4 and 3.5 which state properties of the mappings φ τ ∶ R 2 → R 2 and ψ τ ∶ R 2 → R 2 defined by ( 19) and [START_REF] Gyöngy | Convergence of tamed Euler schemes for a class of stochastic evolution equations[END_REF], it is convenient to introduce the auxiliary mappings

φ AC t ∶ R → R and ψ AC t ∶ R → R, defined as follows: for all t ∈ (0, ∞) and u ∈ R, set (37) φ AC t (u) = u u 2 + (1 -u 2 )e -2t
, ψ AC t (u) =

φ AC t (u) -u t .
The mapping φ AC t is the flow map associated with the nonlinear differential equation, see the subsystem [START_REF] Bréhier | Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations[END_REF],

du AC (t) dt = u AC (t) -(u AC (t)) 3 ,
meaning that u AC (t) = φ AC t (u AC (0)) for all t ≥ 0. The properties of the mappings φ AC Lemma 4.2. There exists C(τ 0 ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ), the mappings

φ AC τ ∶ R → R and ψ AC τ ∶ R → R satisfy the following properties: • For all τ ∈ (0, τ 0 ) and u 1 , u 2 ∈ R, one has (38) φ AC τ (u 2 ) -φ AC τ (u 1 ) ≤ e τ u 2 -u 1 .
• For all τ ∈ (0, τ 0 ) and u 1 , u 2 ∈ R, one has

u 2 -u 1 ψ AC τ (u 2 ) -ψ AC τ (u 1 ) ≤ C(τ 0 ) u 2 -u 1 2 , ( 39 
)
ψ AC τ (u 2 ) -ψ AC τ (u 1 ) ≤ C(τ 0 ) 1 + u 1 3 + u 2 3 u 2 -u 1 , (40) 
and for all τ ∈ (0, τ 0 ) and u ∈ R, one has

(41) ψ τ (u) -(u -u 3 ) ≤ C(τ 0 )τ 1 + u 5 .
We are now in position to prove Proposition 3.4. The result is straightforward: φ τ is the composition of the two globally Lipschitz continuous mappings φ L τ and φ NL τ . The proof is given to exhibit the dependence of the Lipschitz constant with respect to the time-step size τ ∈ (0, τ 0 ).

Proof of Proposition 3.4. Note that for all τ ∈ (0, τ 0 ) and x = (u, v) ∈ R 2 one has

φ NL τ (x) = φ AC τ (u) v + βτ .
Using the definition [START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF] and the inequality (38) from Lemma 4.2, one then obtains the following inequality: for all τ ∈ (0, τ 0 ) and all

x 1 = (u 1 , v 1 ), x 2 = (u 2 , v 2 ) ∈ R 2 , one has φ τ (x 2 ) -φ τ (x 1 ) 2 = φ L τ (φ NL τ (x 2 )) -φ L τ (φ NL τ (x 1 )) 2 = e τ B φ NL τ (x 2 ) -φ NL τ (x 1 ) 2 ≤ e 2τ ~B~ φ NL τ (x 2 ) -φ NL τ (x 1 ) 2 ≤ e 2τ ~B~ φ AC τ (u 2 ) -φ AC τ (u 1 ) 2 + v 2 -v 1 2 ≤ e 2τ ~B~ e 2τ u 2 -u 1 2 + v 2 -v 1 2 ≤ e 2τ (1+~B~) x 2 -x 1 2 .
This concludes the proof of Proposition 3.4.

In order to prove Proposition 3.5, the main tool is the following expression for the mapping ψ τ defined by [START_REF] Gyöngy | Convergence of tamed Euler schemes for a class of stochastic evolution equations[END_REF]: for all τ ∈ (0, τ 0 ) and x ∈ R 2 , one has [START_REF] Sauer | Lattice approximation for stochastic reaction diffusion equations with onesided Lipschitz condition[END_REF] ψ τ (x) = ψ L τ (φ NL τ (x)) + ψ NL τ (x), where the mappings ψ L τ and ψ NL τ are given by

ψ L τ (x) = φ L τ (x) -x τ = e τ B -I τ x ψ NL τ (x) = φ NL τ (x) -x τ = ψ AC τ (u) β for all τ ∈ (0, τ 0 ) and x = (u, v) ∈ R 2 .
The proof of the equality ( 42) is straightforward: using ( 19), one has

ψ τ (x) = φ τ (x) -x τ = φ L τ (φ NL τ (x)) -φ NL τ (x) τ + φ NL τ (x) -x τ = ψ L τ (φ NL τ (x)) + ψ NL τ (x).
Having the identity (42) at hand, we are now in position to prove Proposition 3.5.

Proof of Proposition 3.5. Note that the mapping ψ L τ ∶ R 2 → R 2 is linear and therefore is globally Lipschitz continuous. In addition, for all τ ∈ (0, τ 0 ) and

x 1 , x 2 ∈ R 2 , one has (43) ψ L τ (x 2 ) -ψ L τ (x 1 ) ≤ ~eτB -I τ ~ x 2 -x 1 ≤ e τ 0 ~B~-1 τ 0 x 2 -x 1 ,
using the inequalities

~eτB -I τ ~= ~∞ k=1 τ k-1 k! B k ~≤ ∞ k=1 τ k-1 k! ~B~k ≤ ∞ k=1 τ k-1 0 k! ~B~k = e τ 0 ~B~-1 τ 0 .
Let us first prove the one-sided Lipschitz continuity property [START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF]: for all τ ∈ (0, τ 0 ) and x 1 , x 2 ∈ R 2 , using the identity [START_REF] Sauer | Lattice approximation for stochastic reaction diffusion equations with onesided Lipschitz condition[END_REF], then the Cauchy-Schwarz inequality and ( 43), one has

⟨x 2 -x 1 , ψ τ (x 2 ) -ψ τ (x 1 )⟩ = ⟨x 2 -x 1 , ψ L τ (φ NL τ (x 2 )) -ψ L τ (φ NL τ (x 1 ))⟩ + ⟨x 2 -x 1 , ψ NL τ (x 2 ) -ψ NL τ (x 1 )⟩ ≤ e τ 0 ~B~-1 τ 0 x 2 -x 1 φ NL τ (x 2 ) -φ NL τ (x 2 ) + ⟨x 2 -x 1 , ψ NL τ (x 2 ) -ψ NL τ (x 1 )
⟩. On the one hand, using the same arguments as in the proof of Proposition 3.4, one has

φ NL τ (x 2 ) -φ NL τ (x 1 ) ≤ e τ x 2 -x 1 ≤ e τ 0 x 2 -x 1 .
On the other hand, for all x = (u, v) ∈ R 2 one has

ψ NL τ (x) = ψ AC τ (u) β .
Using the inequality (39) from Lemma 4.2, one then obtains

⟨x 2 -x 1 , ψ NL τ (x 2 ) -ψ NL τ (x 1 )⟩ ≤ e τ x 2 -x 1 2 ≤ e τ 0 x 2 -x 1 2 .
Gathering the results then gives

⟨x 2 -x 1 , ψ τ (x 2 ) -ψ τ (x 1 )⟩ ≤ e τ 0 ~B~-1 τ 0 + 1 e τ 0 x 2 -x 1 2 ,
which concludes the proof of the inequality [START_REF] Leimkuhler | Simulating Hamiltonian dynamics[END_REF].

Let us now prove the local Lipschitz continuity property [START_REF] Li | Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise[END_REF]. Using the identity (42) and the inequality [START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF], for all τ ∈ (0, τ 0 ) and

x 1 = (u 1 , v 1 ), x 2 = (u 2 , v 2 ) ∈ R 2 , one has ψ τ (x 2 ) -ψ τ (x 1 ) ≤ ψ L τ (φ NL τ (x 2 )) -ψ L τ (φ NL τ (x 1 )) + ψ NL τ (x 2 ) -ψ NL τ (x 1 ) ≤ e τ 0 ~B~-1 τ 0 φ NL τ (x 2 ) -φ NL τ (x 1 ) + C(τ 0 ) 1 + u 1 3 + u 2 3 u 2 -u 1 ≤ e τ 0 ~B~-1 τ 0 e τ 0 + C(τ 0 ) 1 + x 1 3 + x 2 3 x 2 -x 1 .
Let us now prove the error estimate [START_REF] Lindner | Effects of noise in excitable systems[END_REF]. Using the identities (3) and ( 42), for all τ ∈ (0, τ 0 ) and x = (u, v) ∈ R 2 , one has

ψ τ (x) -F (x) ≤ ψ L τ (φ NL τ (x)) -F L (x) + ψ NL τ (x) -F NL (x)
. On the one hand, using the inequality [START_REF] Sauer | Analysis and approximation of stochastic nerve axon equations[END_REF], the expressions of the linear mappings F L and ψ L τ and the definition of ψ NL τ , one has

ψ L τ (φ NL τ (x)) -F L (x) ≤ ψ L τ (φ NL τ (x)) -F L (φ NL τ (x)) + F L (φ NL τ (x)) -F L (x) ≤ ~eτB -I -τ B τ ~ φ NL τ (x) + τ ~B~ ψ NL τ (x) .
Note that φ NL τ (0) = (φ AC τ (0), βτ ) = (0, βτ ) and ψ NL τ (0) = (ψ AC τ (0), β) = (0, β). In addition, one has

~eτB -I -τ B τ ~≤ ∞ k=2 τ k-1 k! ~B~k ≤ τ ∞ k=2 τ k-2 0 k! ~B~k = τ e τ 0 ~B~-1 -τ 0 ~Bτ 0 .
Therefore, using the inequalities (28) from Proposition 3.4 and (40) from Lemma 4.2, one has

ψ L τ (φ NL τ (x)) -F L (x) ≤ C(τ 0 )τ (1 + x 4
). On the other hand, using the inequality (41) from Lemma 4.2, one has

ψ NL τ (x) -F NL (x) = ψ AC τ (u) -(u -u 3 ) ≤ C(τ 0 )τ 1 + u 5 .
Gathering the estimates then gives the inequality

ψ τ (x) -F (x) ≤ C(τ 0 )τ (1 + x 5 ),
which concludes the proof of [START_REF] Lindner | Effects of noise in excitable systems[END_REF].

It remains to prove the inequality [START_REF] Liu | A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise[END_REF]. The proof is straightforward: using ( 42) and the equalities φ AC τ (0) = ψ AC τ (0) = 0, one has

ψ τ (0) = e τ B -I τ φ NL τ (0) + ψ NL τ (0) = e τ B 0 β .

Therefore one gets sup

τ ∈(0,τ 0 ) ψ τ (0) ≤ e τ 0 ~B~ β .
The proof of Proposition 3.5 is thus completed.

Let us conclude this subsection with a remark concerning the order of the composition of the two subsystems to define the splitting schemes, see equation [START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF].

Remark 4.3. Let φτ ∶ R 2 → R 2 be defined as follows: for all τ ∈ (0, τ 0 ), set

(44) φτ = φ NL τ ○ φ L τ .
Compared with the definition (19) of φ τ , the order of the composition of the integrators φ L τ and φ NL τ associated with the subsystems (12) and (10) respectively is reversed. Define also [START_REF] Thieullen | Deterministic and stochastic FitzHugh-Nagumo systems[END_REF] ψτ (x) = φτ (x) -x τ for all τ ∈ (0, τ 0 ) and x ∈ R 2 . Using the mapping φτ , modifying the definition of the scheme [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF] gives the alternative splitting scheme

(46) Xn+1 = A τ φτ ( Xn ) + t n+1 tn B t n+1 -s dW(s)
for the approximation of the stochastic evolution equation [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF]. Precisely, alternatives of the splitting schemes (20), ( 21) and ( 22) are obtained from the formulation [START_REF] Tuckwell | Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo model neuron[END_REF]. However, the analysis performed in this paper does not encompass the case of the scheme (46), due to missing properties for the mapping ψτ , compared with ψ τ , as explained below.

Note that the result of Proposition 3.4 also holds with φ τ replaced by φτ . However, it is not clear whether the one-sided Lipschitz continuity property (29) from Proposition 3.5 holds also with ψ τ replaced by ψτ (uniformly with respect to τ ∈ (0, τ 0 )). The proof of the inequality (29) exploits the global Lipschitz continuity property (43) of the auxiliary mapping ψ L τ , which is a linear mapping from R 2 to R 2 . Instead of the identity (42), one has [START_REF] Tuckwell | Stochastic partial differential equations in neurobiology: linear and nonlinear models for spiking neurons[END_REF] ψτ (x) = ψ NL τ (φ L τ (x)) + ψ L τ (x), and since ψ NL τ is not globally Lipschitz continuous uniformly with respect to τ ∈ (0, τ 0 ), the arguments of the proof above cannot be repeated for the splitting scheme (46).

4.3.

Moment bounds for the solutions of the stochastic evolution equations [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF] and [START_REF] Hairer | Geometric numerical integration[END_REF]. Let us first state the moment bounds for the stochastic convolution defined by [START_REF] Bou-Rabee | Long-run accuracy of variational integrators in the stochastic context[END_REF].

Lemma 4.4. Let Z(t) t≥0 be defined by [START_REF] Bou-Rabee | Long-run accuracy of variational integrators in the stochastic context[END_REF]. For all T ∈ (0, ∞) and p ∈ [1, ∞), one has

sup 0≤t≤T E[ Z(t) p E ] < ∞.
Proof. Let us only provide the sketch of the proof. To deal with homogeneous Neumann boundary conditions, it is convenient to introduce Z 0 (t) = ⟨Z(t), e 0 ⟩e 0 = β 0 (t)e 0 and Z ⊥ (t) = Z(t) -Z 0 (t) for all t ≥ 0. Let also Z 0 (t) = Z 0 (t) 0 and Z ⊥ (t) = Z(t) -Z 0 (t). On the one hand, one has

sup 0≤t≤T E[ Z 0 (t) p E ] = sup 0≤t≤T E[ Z 0 (t) p E ] ≤ sup 0≤t≤T E[ β 0 (t) p ] e 0 p E ≤ CT p 2 .
On the other hand, applying the temporal and spatial increment bounds [21, Lemma 5.21] and the Kolmogorov regularity criterion [START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF]Theorem C.6] gives

sup 0≤t≤T E[ Z ⊥ (t) p E ] = sup 0≤t≤T E[ Z ⊥ (t) p E ] ≤ C(T ) < ∞.
Combining the moment bounds for Z 0 (t) and Z ⊥ (t) then concludes the proof of Lemma 4.4.

We now state well-posedness and moment bounds properties, first for the solutions to the stochastic FitzHugh-Nagumo SPDE system [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF], second for the solutions to the auxiliary SPDE (8). Proposition 4.5. For any initial value x 0 ∈ H, the stochastic evolution equation (8) admits a unique global mild solution X(t) t≥0 , in the sense that (9) is satisfied. Moreover, for all T ∈ (0, ∞) and all p ∈ [1, ∞), there exists C p (T ) ∈ (0, ∞) such that for all x 0 ∈ E one has

(48) sup 0≤t≤T E[ X(t) p E ] ≤ C p (T ) 1 + x 0 p E .
Proposition 4.6. For any initial value x 0 ∈ H and for all τ ∈ (0, τ 0 ), the stochastic evolution equation (25) admits a unique global mild solution X τ (t) t≥0 , in the sense that

(49) X τ (t) = e -tΛ x 0 + t 0 e -(t-s)Λ ψ τ (X τ (s)) ds + t 0 e -(t-s)Λ dW(s)
is satisfied for all t ≥ 0. Moreover, for all T ∈ (0, ∞) and all p ∈ [1, ∞), there exists C p (T, τ 0 ) ∈ (0, ∞) such that for all x 0 ∈ E one has (50)

sup τ ∈(0,τ 0 ) sup 0≤t≤T E[ X τ (t) p E ] ≤ C p (T ) 1 + x 0 p E .
The detailed proofs of Propositions 4.5 and 4.6 are omitted. However let us emphasize that the main arguments used in the proofs are, on the one hand, the one-sided Lipschitz continuity properties ( 4) and ( 29) of F and ψ τ respectively, and on the other hand, the moment bounds on Z(t) from Lemma 4.4. Observe that the mapping ψ τ is globally Lipschitz continuous for any τ > 0, therefore the existence and uniqueness of the mild solution X τ (t) t≥0 satisfying (49) follows from standard fixed point arguments, see for instance [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]Theorem 7.5]. The proof of the moment bounds (50) requires some care: indeed, one needs to obtain upper bounds which are uniform with respect to τ ∈ (0, τ 0 ), and applying [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF]Theorem 7.5] would not be appropriate since the Lipschitz constant of ψ τ is unbounded for τ ∈ (0, τ 0 ). Introducing Y τ (t) = X τ (t) -Z(t), one obtains the moment bounds (50) using the one-sided Lipschitz continuity property (29) from Proposition 3.5, which is uniform with respect to τ ∈ (0, τ 0 ). Similar arguments are used to prove Proposition 4.5. Propositions 4.5 and 4.6 are variants of [13, Propositions 1 and 2] for the analysis of the stochastic Allen-Cahn equation and we refer to [17, Proposition 6.2.2] for a more general version. Some arguments need to be adapted since the considered systems ( 8) and ( 25) are not parabolic systems.

Finally, let us state the following result which is required in Section 5 below.

Lemma 4.7. For all T ∈ (0, ∞), p ∈ [1, ∞) and α ∈ [0, 1 4 ), there exists C α,p (T ) ∈ (0, ∞) such that for all

x 0 = (u 0 , v 0 ) ∈ H 2α ∩ E, all τ ∈ (0, τ 0 ) and t 1 , t 2 ∈ [0, T ], one has (51) E[ X τ (t 2 ) -X τ (t 1 ) p H ] 1 p ≤ C α,p (T ) t 2 -t 1 α 1 + (-∆) α u 0 4 H + x 0 4 E . Proof. Let 0 ≤ t 1 < t 2 ≤
T , using the mild form (49) of the auxiliary stochastic evolution equation, we obtain the estimate

E [ X τ (t 2 ) -X τ (t 1 ) p H ] 1 p ≤ e -t 2 Λ x 0 -e -t 1 Λ x 0 H + E [ Z(t 2 ) -Z(t 1 ) p H ] 1 p + t 1 0 E e -(t 2 -s)Λ -e -(t 1 -s)Λ ψ τ (X τ (s)) p H 1 p ds + t 2 t 1 E e -(t 2 -s)Λ ψ τ (X τ (s)) p H 1 p ds,
where we recall that Z(t) denotes the stochastic convolution [START_REF] Bou-Rabee | Long-run accuracy of variational integrators in the stochastic context[END_REF].

The first term on the right-hand side is estimated using the inequality [START_REF] Marty | Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion[END_REF] in order to get

e -t 2 Λ x 0 -e -t 1 Λ x 0 H ≤ t 2 -t 1 α (-Λ) α x 0 H .
The second term corresponds to the temporal regularity of the stochastic convolution

E [ Z(t 2 ) -Z(t 1 ) p H ] 1 p ≤ t 2 -t 1 α .
This is obtained combining the proofs of Lemma 4.4 and of [START_REF] Bréhier | A short introduction to Stochastic PDEs[END_REF]Theorem 4.4].

The last two terms are estimated using the polynomial growth ψ τ (x) ≤ C(τ 0 ) (1 + x ) 4 , see equations ( 30) and (32) in Proposition 3.5. Indeed, one has

e -(t 2 -s)Λ -e -(t 1 -s)Λ ψ τ (X τ (s)) H ≤ C α t 2 -t 1 α t 1 -s α ψ τ (X τ (s)) H ≤ C α (τ 0 ) t 2 -t 1 α t 1 -s α 1 + X τ (s) 4 E and e -(t 2 -s)Λ ψ τ (X τ (s)) H ≤ 1 + X τ (s) 4 E
for the last term. One concludes the proof using the moment bounds of the solution of the auxiliary stochastic evolution equation, see Proposition 4.6.

Proofs of the main results

In this section, we provide the detailed proofs for the main results of the present work. We start by proving moment bounds for the three splitting schemes (Theorem 3.1). We then prove the strong error estimates with rate of convergence at least 1 4 (Theorem 3.3).

5.1. Proof of Theorem 3.1. The proof of the moment bounds [START_REF] Jentzen | Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise[END_REF] given below is inspired by the proof of [13, Proposition 3] and requires some auxiliary tools.

Given the time-step size τ ∈ (0, τ 0 ), introduce the auxiliary scheme Z n n≥0 defined as follows: for all n ≥ 0,

(52) Z n+1 = A τ Z n + t n+1 tn B t n+1 -s dW(s)
with initial value Z 0 = 0, using the same notation as for the general expression ( 23) of the three splitting schemes ( 20), ( 21) and ( 22). One has the following moment bounds for the solution of the scheme (52). Recall that one has T = N τ for some integer N ∈ N.

Lemma 5.1. For all T ∈ (0, ∞) and p ∈ [1, ∞), one has

(53) sup τ ∈(0,τ 0 ) sup 0≤n≤N E[ Z n p E ] < ∞.
Lemma 5.1 is a variant of [13, Lemma 3.5], using the same arguments as in the sketch of proof of Lemma 4.4 above. The proof of Lemma 5.1 is therefore omitted.

We are now in position to provide the proof of Theorem 3.1.

Proof of Theorem 3.1. For all n ∈ {0, . . . , N }, set (54)

r n = X n -Z n .
Using the definitions ( 23) and ( 52) and the definition (24) of the mapping ψ τ , for all n ∈ {0, . . . , N -1}, one has

r n+1 = X n+1 -Z n+1 = A τ φ τ (X n ) -Z n = A τ φ τ (r n + Z n ) -φ τ (Z n ) + τ A τ ψ τ (Z n ).
On the one hand, using the inequalities [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF] and [START_REF] Mclachlan | Splitting methods[END_REF] and the global Lipschitz continuity property (28) of φ τ (see Proposition 3.4), one has

A τ φ τ (r n + Z n ) -φ τ (Z n ) E ≤ φ τ (r n + Z n ) -φ τ (Z n ) E ≤ e τ (1+~B~) r n E .
On the other hand, using the inequalities ( 33) and ( 36), the local Lipschitz continuity property (30) of ψ τ (see Proposition 3.5) and the upper bound [START_REF] Liu | A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise[END_REF], one has

A τ ψ τ (Z n ) E ≤ C(τ 0 ) 1 + Z n 4 E .
Therefore one obtains the following inequality

r n+1 E ≤ e τ (1+~B~) r n E + C(τ 0 ) 1 + Z n 4 
E , and by a straightforward argument, using the fact that N τ = T , one has the estimate:

r n E ≤ C(T, τ 0 ) r 0 E + n-1 k=0 1 + Z k 4 E
, for all n ∈ {0, . . . , N }.

Finally, for all p ∈ [1, ∞), using the moment bound (53) from Lemma 5.1, one obtains for all n ∈ {0, . . . , N }

E[ r n p E ] 1 p ≤ C(T, τ 0 ) r 0 E + n-1 k=0 1 + E[ Z k 4p E ] 1 p ≤ C p (T, τ 0 ) r 0 E + 1 .
Since X n = r n +Z n owing to (54), using the moment bound above and the moment bound (53) from Lemma 5.1 then concludes the proof of the moment bound [START_REF] Jentzen | Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise[END_REF]. The proof of Theorem 3.1 is thus completed. 5.2. Proof of Theorem 3.3. Recall that the numerical scheme is given by [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF]. It is straightforward to check that for all n ≥ 0 one has (55)

X n = A n τ x 0 + τ n-1 k=0 A n-k τ ψ τ (X k ) + n-1 k=0 t k+1 t k A n-k-1 τ B t k+1 -s dW(s).
Let us introduce the auxiliary process X aux n n≥0 which is defined as follows: for all n ≥ 0 one has (56)

X aux n = A n τ x 0 + τ n-1 k=0 A n-k τ ψ τ (X τ (t k )) + n-1 k=0 t k+1 t k A n-k-1 τ B t k+1 -s dW(s),
where we recall that t k = kτ and that X τ (t) t≥0 is the unique mild solution of the auxiliary stochastic evolution equation [START_REF] Hairer | Geometric numerical integration[END_REF]. Note that for all n ≥ 0 one has (57)

X aux n+1 = A τ X aux n + τ A τ ψ τ (X τ (t n )) + t n+1 tn B t n+1 -s dW(s).
Lemma 5.2. For all T ∈ (0, ∞) and p ∈ [1, ∞), there exists C p (T ) ∈ (0, ∞) such that for all x 0 ∈ E one has

(58) sup τ ∈(0,τ 0 ) sup 0≤n≤N E[ X aux n p E ] ≤ C p (T ) 1 + x 0 p E .
Proof of Lemma 5.2. Using the discrete mild formulation (56) of X aux n , the inequalities ( 33) and ( 36), the local Lipschitz continuity property (30) of ψ τ and the upper bound [START_REF] Liu | A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise[END_REF] (see Proposition 3.5), for all τ ∈ (0, τ 0 ) and n ≥ 0 one has

X aux n E ≤ x 0 E + C(τ 0 )τ n-1 k=0 1 + X τ (t k ) 4 E + Z n E .
It suffices to use the moment bounds (50) for the auxiliary process X τ from Proposition 4.6 and (53) for the Gaussian random variables Z n from Lemma 5.1, and the Minkowskii inequality, to conclude the proof of the moment bounds (58). The proof of Lemma 5.2 is thus completed.

Observe that for all n ∈ {0, . . . , N } the error X(t n ) -X n can be decomposed as follows:

(59)

X(t n ) -X n = X(t n ) -X τ (t n ) + X τ (t n ) -X aux n + X aux n -X n .
In order to prove Theorem 3.3, it suffices to prove error bounds for the three error terms appearing in the right-hand side of (59). They are given in Lemma 5.3, Lemma 5.4 and Lemma 5.5 respectively. The proofs of these technical lemmas are presented at the end of the section. Lemma 5.3. For all T ∈ (0, ∞) and p ∈ [1, ∞), there exists C p (T, τ 0 ) ∈ (0, ∞) such that for all x 0 ∈ E and all τ ∈ (0, τ 0 ), one has [START_REF] Berg | Lie-Trotter splitting for the nonlinear stochastic Manakov system[END_REF] ), there exists C α,p (T ) ∈ (0, ∞) such that for all x 0 = (u 0 , v 0 ) ∈ H 2α ∩ E, all τ ∈ (0, τ 0 ), one has

(60) sup t∈[0,T ] E[ X(t) -X τ (t) p H ] 1 p ≤ C p (T, τ 0 )τ 1 + x 0 5 E . Lemma 5.4. For all T ∈ (0, ∞), p ∈ [1, ∞) and α ∈ [0, 1 
(61) sup 0≤n≤N E[ X τ (t n ) -X aux n p H ] 1 p ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E . Lemma 5.5. For all T ∈ (0, ∞), p ∈ [1, ∞) and α ∈ [0, 1 4 ), there exists C α,p (T ) ∈ (0, ∞) such that for all x 0 = (u 0 , v 0 ) ∈ H 2α ∩ E, all τ ∈ (0, τ 0 ), one has (62) sup 0≤n≤N E[ X aux n -X n p H ] 1 p ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E .
With the auxiliary error estimates given above, it is straightforward to give the proof of Theorem 3.3.

Proof of Theorem 3.3. Using the decomposition of the error (59), using the Minkowskii inequality and the error estimates (60), (61) and (62), one obtains the following result: for all α ∈ [0, 1 4 ) and p ∈ [1, ∞), there exists C α,p ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has

sup 0≤n≤N E[ X(t n ) -X n p H ] 1 p ≤ sup 0≤n≤N E[ X(t n ) -X τ (t n ) p H ] 1 p + sup 0≤n≤N E[ X τ (t n ) -X aux n p H ] 1 p + sup 0≤n≤N E[ X aux n -X n p H ] 1 p ≤ C p (T, τ 0 )τ 1 + x 0 5 E + C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E + C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 
E . This concludes the proof of the inequality [START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF] and the proof of Theorem 3.3 is thus completed.

Let us now give the proofs of the auxiliary error estimates. Note that the proof of Lemma 5.5 requires the error estimate (61) from Lemma 5.4.

Proof of Lemma 5.3. For all t ≥ 0 and τ ∈ (0, τ 0 ), set R τ (t) = X τ (t) -X(t).

The auxiliary process R τ (t) t≥0 is the unique solution of the evolution equation

dR τ (t) dt = -ΛR τ (t) + ψ τ (X τ (t)) -ψ τ (X(t)) + ψ τ (X(t)) -F (X(t))
with the initial value R τ (0) = 0. Therefore one obtains, almost surely, for all t ≥ 0

1 2 d R τ (t) 2 H dt = ⟨R τ (t), -ΛR τ (t)⟩ H + ⟨R τ (t), ψ τ (X τ (t)) -ψ τ (X(t))⟩ H + ⟨R τ (t), ψ τ (X(t)) -F (X(t))⟩ H . First, one has ⟨R τ (t), -ΛR τ (t)⟩ H ≤ 0.
Second, using the one-sided Lipschitz continuity property (29) from Proposition 3.5 for ψ τ (uniformly with respect to τ ∈ (0, τ 0 )), one has

⟨R τ (t), ψ τ (X τ (t)) -ψ τ (X(t))⟩ H ≤ C(τ 0 ) R τ (t) 2
H . Finally, using the Cauchy-Schwarz and Young inequalities and the error estimate (31) from Proposition 3.5 , one has

⟨R τ (t), ψ τ (X(t)) -F (X(t))⟩ H ≤ R τ (t) H ψ τ (X(t)) -F (X(t)) H ≤ 1 2 R τ (t) 2 H + 1 2 ψ τ (X(t)) -F (X(t)) 2 H ≤ 1 2 R τ (t) 2 H + C(τ 0 )τ 2 1 + X(t) 10 E .
Gathering the upper bounds above and using Gronwall's lemma, one obtains, almost surely, for all t ∈ [0, T ] R τ (t) 2 H ≤ C(T, τ 0 )τ 2 T 0 1 + X(s) 10 E ds. Using the moment bound (48) from Proposition 4.5, one then obtains for all t ∈ [0, T ] and all p ∈ [2, ∞)

E[ R τ (t) p H ] 2 p ≤ C(T, τ 0 )τ 2 T 0 1 + E[ X(s) 5p E ] 2 p ds ≤ C(T, τ 0 )τ 2 1 + sup s∈[0,T ] E[ X(s) 5p E ] 2 p ≤ C p (T, τ 0 )τ 2 1 + x 0 10 
E . This estimate has been proved for p ∈ [2, ∞), however it is also valid for p ∈ [START_REF] Ableidinger | Splitting integrators for the stochastic Landau-Lifshitz equation[END_REF][START_REF] Alamo | A technique for studying strong and weak local errors of splitting integrators[END_REF]. This concludes the proof of the error estimate (60) and of Lemma 5.3.

In order to prove Lemma 5.4, let us recall the following useful standard inequality:

(63) sup n∈N,z∈[0,∞) n 1 (1 + z) n -e -nz + sup n∈N,z∈[0,∞) 1 (1+z) n -e -nz min(1, z) < ∞.
In addition, for all α ∈ [0, 1], n ∈ N and z ∈ [0, ∞), one has min(1, z) ≤ z α . See Section A in the appendix for a proof.

Proof of Lemma 5.4. Using the mild formulations (49) for X τ (t n ) and (56) for X aux n , one obtains the following decomposition of the error: for all n ≥ 0, one has

(64) X τ (t n ) -X aux n = E τ,1 n + E τ,2 n + E τ,3 n + E τ,4 n + E τ,5 n
, where

E τ,1 n = (e -nτ Λ -A n τ )x 0 (65) E τ,2 n = Z(t n ) -Z n (66) E τ,3 n = n-1 k=0 t k+1 t k e -(tn-s)Λ ψ τ (X τ (s)) -ψ τ (X τ (t k )) ds (67) E τ,4 n = n-1 k=0 t k+1 t k e -(tn-s)Λ -e -(tn-t k )Λ ψ τ (X τ (t k )) ds (68) E τ,5 n = τ n-1 k=0 e -(tn-t k )Λ -A n-k τ ψ τ (X τ (t k )). (69) 
Let us now give estimates for those five error terms.

• If the splitting schemes ( 20) and ( 21) are considered, one has A τ = e -τ Λ and thus E τ,1 n = 0 for all n ≥ 0. If the splitting scheme ( 22) is considered, one has A τ = (I + τ Λ) -1 , thus using the inequality (63), for all n ∈ {0, . . . , N }, one has

E τ,1 n 2 H = e nτ ∆ -((I -τ ∆) -1 ) n u 0 2 H = ∞ j=1 ( 1 (1 + τ λ j ) n -e -nτ λ j 2 ⟨u 0 , e j ⟩ 2 H ≤ C α ∞ j=1 (τ λ j ) 2α ⟨u 0 , e j ⟩ 2 H ≤ C α τ 2α (-∆) α u 0 2
H . Therefore one obtains the following upper bound: for all α ∈ [0, 1 4 ), there exists C α ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has (70)

sup 0≤n≤N E[ E τ,1 n p H ] 1 p ≤ C α τ α (-∆) α u 0 H
• Note that if the splitting scheme (20) is considered (X n = X LT,exact n for all n ≥ 0), one has E τ,2 n = 0 for all n ≥ 0. If the splitting schemes ( 21) and ( 22) are considered, for all n ≥ 0 one has

E τ,2 n = Z(t n ) -Z n = Z(t n ) -Z n 0 , with Z n = Z LT,expo n (resp. Z n = Z LT,imp n
) if the scheme (21) (resp. the scheme ( 22)) is considered. Here, we denote

Z LT,expo n+1 = e τ ∆ Z LT,expo n + δW n Z LT,imp n+1 = (I -τ ∆) -1 Z LT,imp n + δW n .
One has the following mean-square error estimate, which are standard results in the analysis of numerical schemes for parabolic semilinear stochastic partial differential equations, see for instance [START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF]Theorem 3.2]: for all α ∈ [0, 1 4 ), there exists . Since Z(t n ) -Z n is a H-valued Gaussian random variable, one obtains the following upper bound: for all α ∈ [0, 1 4 ) and p ∈ [1, ∞), there exists C α,p ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has ( 71)

C α ∈ (0, ∞) such that sup n≥0 E[ Z(t n ) -Z n 2 H ] ≤ C α τ 2α , if Z n = Z LT,expo
sup 0≤n≤N E[ E τ,2 n p H ] 1 p ≤ C α,p τ α .
• Using the inequality [START_REF] Lv | Limit dynamics for the stochastic FitzHugh-Nagumo system[END_REF] and the local Lipschitz continuity property [START_REF] Li | Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise[END_REF] of ψ τ (Proposition 3.5), one obtains

E τ,3 n H ≤ n-1 k=0 t k+1 t k e -(tn-s)Λ ψ τ (X τ (s)) -ψ τ (X τ (t k )) H ds ≤ n-1 k=0 t k+1 t k ψ τ (X τ (s)) -ψ τ (X τ (t k )) H ds ≤ C(τ 0 ) n-1 k=0 t k+1 t k 1 + X τ (s) 3 E + X τ (t k ) 3 E X τ (s) -X τ (t k ) H ds.
Using the Minkowskii and Cauchy-Schwarz inequalities, the moment bound (50) (Proposition 4.6) and the regularity estimate (51) (Lemma 4.7), one has

E[ E τ,3 n p H ] 1 p ≤ C(τ 0 ) n-1 k=0 t k+1 t k 1 + sup r∈[t k ,t k+1 ] E[ X τ (r) 6p E ] 1 2p E[ X τ (s) -X τ (t k ) 2p H ] 1 2p ds ≤ C α,p (T )τ α (1 + x 0 3 E ) 1 + (-∆) α u 0 4 H + x 0 4 
E . Therefore one obtains the following upper bound: for all α ∈ [0, 1 4 ), p ∈ [1, ∞) and T ∈ (0, ∞), there exists C α,p (T ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has ( 72)

sup 0≤n≤N E[ E τ,3 n p H ] 1 p ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E .
• Using the inequality (35) from Proposition 4.1 (with µ = α ∈ [0, 1) and ν = 0) and the local Lipschitz continuity property [START_REF] Li | Stochastic dynamic behavior of FitzHugh-Nagumo neurons stimulated by white noise[END_REF] of ψ τ combined with the bound (32) (Proposition 3.5), one has for all s

∈ [t k , t k+1 ] e -(tn-s)Λ -e -(tn-t k )Λ ψ τ (X τ (t k )) H ≤ C α s -t k α (t n -s) α ψ τ (X τ (t k )) H ≤ C α τ α (t n -s) α 1 + X τ (t k ) 4 E .
Using the Minkoswskii inequality, the moment bounds (50) from Proposition 4.6, and the fact that ∫ T 0 s -α ds < ∞ for α ∈ [0, 1), one obtains the following upper bound: for all α ∈ [0, 1 4 ), p ∈ [1, ∞) and T ∈ (0, ∞), there exists C α,p (T ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has ( 73)

sup 0≤n≤N E[ E τ,4 n p H ] 1 p ≤ C α,p (T )τ α 1 + x 0 4 E .
• Note that if the splitting schemes ( 20) and ( 21) are considered, one has A τ = e -τ Λ and thus E τ,5 n = 0 for all n ≥ 0. If the splitting scheme ( 22) is considered, one has A τ = (I + τ Λ) -1 . Using the inequality (63), for all x = (u, v) ∈ H and all 0 ≤ k ≤ n -1 one has

(e -(tn-t k )Λ x -A n-k τ x H = e (n-k)τ ∆ u -((I -τ ∆) -1 ) n-k u H ≤ C u H (n -k) ≤ C x H (n -k) α .
As a consequence, using the Minkowskii inequality, the local Lipschitz continuity property (30) of ψ τ combined with the bound (32) (Proposition 3.5) and the moment bounds (50) from Proposition 4.6, one has

E[ E τ,5 n p H ] 1 p ≤ τ n-1 k=0 C (n -k) α 1 + E[ X τ (t k ) 4p E ] 1 p ≤ C p (T )τ n =1 1 t α τ α 1 + x 0 4 E .
Using the fact that for all α ∈ [0, 1) one has

sup τ ∈(0,τ 0 ) τ N =1 1 t α < ∞,
one obtains the following upper bound: for all α ∈ [0, 1 4 ), p ∈ [1, ∞) and T ∈ (0, ∞), there exists C α,p (T ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has ( 74)

sup 0≤n≤N E[ E τ,5 n p H ] 1 p ≤ C α,p (T )τ α 1 + x 0 4 E .
We are now in position to conclude the proof: using the decomposition of the error (64) and the upper bounds (70), (71), (72), ( 73) and (74), one obtains the following upper bound: for all α ∈ [0, 1 4 ), p ∈ [1, ∞) and T ∈ (0, ∞), there exists C α,p (T ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has

sup 0≤n≤N E[ X τ (t n ) -X aux n p H ] 1 p ≤ C α,p (T )τ α 1 + (-∆) α u 0 7 H + x 0 7 E .
This concludes the proof of the inequality (61) and the proof of Lemma 5.4 is completed.

Note that the proof of Lemma 5.4 above does not use Gronwall inequalities arguments.

Proof of Lemma 5.5. Using the expressions (57) and ( 23) for X aux n and X n , and the definition (24) of the mapping ψ τ , for all n ∈ {0, . . . , N -1} one obtains

X aux n+1 -X n+1 = A τ X aux n -X n + τ A τ ψ τ (X τ (t n )) -ψ τ (X n ) . Writing ψ τ (X τ (t n )) = ψ τ (X τ (t n )) -ψ τ (X aux n ) + ψ τ (X aux n )
, and using again the identity [START_REF] Gyöngy | Convergence of tamed Euler schemes for a class of stochastic evolution equations[END_REF], one obtains (75)

X aux n+1 -X n+1 = A τ φ τ (X aux n ) -φ τ (X n ) + τ A τ ψ τ (X τ (t n )) -ψ τ (X aux n
) . On the one hand, using the inequalities (33) (Proposition 4.1), if A τ = e -τ Λ and (36), if A τ = (I + τ Λ) -1 , and the global Lipschitz continuity property (28) of φ τ (Proposition 3.4), one obtains

A τ φ τ (X aux n ) -φ τ (X n ) H ≤ φ τ (X aux n ) -φ τ (X n ) H ≤ e τ (1+~B~) X aux n -X n H .
On the other hand, using the inequalities (33) (Proposition 4.1), if A τ = e -τ Λ and (36), if A τ = (I + τ Λ) -1 , and the local Lipschitz continuity property (30) of ψ τ (Proposition 3.5), one obtains

A τ ψ τ (X τ (t n )) -ψ τ (X aux n ) H ≤ ψ τ (X τ (t n )) -ψ τ (X aux n ) H ≤ C(τ 0 ) 1 + X τ (t n ) 3 E + X aux n 3 E X τ (t n ) -X aux n H . By a straightforward argument, since X aux 0 = X 0 = x 0 , for all n ∈ {0, . . . , N }, one has X aux n -X n H ≤ C(τ 0 )e T (1+~B~) τ N k=1 1 + X τ (t k ) 3 E + X aux k 3 E X τ (t k ) -X aux k H .
Using the Minkowskii and Cauchy-Schwarz inequalities, the moment bounds (50) and (58) from Proposition 4.6 and Lemma 5.2 respectively, and the error estimate (61) from Lemma 5.4, one obtains the following strong error estimate: for all α ∈ [0, 1 4 ), p ∈ [1, ∞) and T ∈ (0, ∞), there exists C α,p (T ) ∈ (0, ∞) such that for all τ ∈ (0, τ 0 ) one has

sup 0≤n≤N E[ X aux n -X n p H ] 1 p ≤ C(T )τ N k=1 1 + E[ X τ (t k ) 6p E ]) 1 2p + X aux k 6p E ] 1 2p × E[ X τ (t k ) -X aux k 2p H 1 2p ≤ C α,p (T )τ α 1 + x 0 3 E 1 + (-∆) α u 0 4 H + x 0 4 
E . This concludes the proof of the inequality (62) and the proof of Lemma 5.5 is thus completed.

Numerical experiments

This section presents numerical experiments to support and illustrate the above theoretical results. To perform these numerical experiments, we consider the stochastic FitzHugh-Nagumo SPDE system [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF] with Neumann boundary conditions on the interval [0, 1]. The spatial discretization is performed using a standard finite difference method with mesh size denoted by h. In order to obtain a linear system with a symmetric matrix, we use centered differences for the numerical discretization of the Laplacian, while first order differences are used for the discretization of the Neumann boundary conditions. The initial values are given by u 0 (ζ) = cos(2πζ) and v 0 (ζ) = cos(2πζ). For the temporal discretization, we use the three Lie-Trotter splitting integrators (20), ( 21) and [START_REF] Duboscq | Analysis of a splitting scheme for a class of random partial differential equations[END_REF] studied in this paper, denoted below by LTexact, LTexpo, LTimp respectively.

Evolution plots.

Let us first display one sample of the numerical solutions of the stochastic FitzHugh-Nagumo system [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF] with the parameters γ 1 = 0.08, γ 2 = 0.8γ 1 and β = 0.7. The SPDE is discretized with finite differences with mesh h = 2 -10 . We consider the time interval [0, T ] = [0, 1] and apply the integrators with time step size τ = 2 -15 . The results are presented in Figure 1. The general behaviour of the numerical solutions given by the three splitting schemes is the same. However, one can observe a spatial smoothing effect in the u component of the solution when the schemes LTexpo- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] or to some extent LTimp-( 22) are applied: for a given time step size, the spatial regularity of the numerical solution is increased compared with the one of the exact solution. On the contrary, the scheme LTexact- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] preserves the spatial regularity of the solution for any value of the time step size. We refer to the recent preprint [START_REF] Bréhier | Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs[END_REF] for the analysis of this phenomenon for parabolic semilinear SPDEs. Let us emphasize that the phenomenon is due to the way the stochastic convolution is computed, exactly for the scheme LTexact- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] or approximately for the schemes LTexpo-(20) and LTimp- [START_REF] Duboscq | Analysis of a splitting scheme for a class of random partial differential equations[END_REF].

6.2. Mean-square error plots. To illustrate the rates of strong convergence for the Lie-Trotter splitting schemes stated in Theorem 3.3, we consider the stochastic FitzHugh-Nagumo system [START_REF] Boulakia | Simulation of SPDEs for excitable media using finite elements[END_REF] with the parameters γ 1 = γ 2 = β = 1, with T = 1 and apply a finite difference method with h = 2 -9 for spatial discretization. We apply the Lie-Trotter splitting schemes with time steps ranging from 2 -10 to 2 -18 . The reference solution is computed using the scheme LTexact- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] with time step size τ ref = 2 -18 . The expectation is approximated using M s = 100 samples. We have checked that the Monte Carlo error is negligible. A plot in logarithmic scales for the mean-square errors

E[ X(t N ) -X N 2 H ] 1 2
is given on the left-hand side of Figure 2. We observe that the strong rate of convergence for the three considered Lie-Trotter splitting schemes is at least 1 4, which illustrates the result stated in Theorem 3.3. Furthermore, the numerical experiments suggest that for the scheme LTexact- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] the order of convergence is 1 2, which is not covered by Theorem 3.3. The fact that using an accelerated exponential Euler scheme where the stochastic convolution is computed exactly yields higher order of convergence is known for parabolic semilinear stochastic PDEs driven by space-time white noise, under appropriate conditions, see for instance [START_REF] Jentzen | Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise[END_REF] or [START_REF] Bréhier | Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs[END_REF]Proposition 7.3]. However, the stochastic FitzHugh-Nagumo equations considered in this article are not parabolic systems therefore it is not known how to prove the observed higher order strong rate of convergence. This question may be studied in future works.

The right-hand side of Figure 2 shows the errors for the variant (46) of the splitting scheme [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF] introduced in Remark 4.3: the mapping φ τ = φ L τ ○ φ NL τ given by ( 19) is replaced by φτ = φ NL τ ○ φ L τ given by [START_REF] Spagnolo | Influence of noise sources on FitzHugh-Nagumo model in suprathreshold regime[END_REF]. As explained in Remark 4.3, this type of Lie-Trotter schemes is not covered by the results in 3.3, more precisely the moment bounds in Theorem 3.1 cannot be proved by the techniques used in this article. However, the numerical experiments are similar to those on the left-hand side of Figure 2 and suggest that the strong order of convergence for this variant is at least 1 4, and that higher order convergence with rate 1 2 may be obtained for the variant of the scheme LTexact- [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF].
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(1 + z) -e -z + sup z∈[0,∞) 2 1 
(1 + z) 2 -e -2z < ∞. This concludes the proof of the first inequality. To prove the second inequality, observe first that one has sup n∈N,z∈[0,∞)
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(1 + z) n -e -nz ≤ 2. In addition, for all n ≥ 2 and @miscz ∈ [0, ∞), one has Gathering the results concludes the proof of the second inequality.
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 2 and e j (ζ) = √ 2 cos(jπζ) for all ζ ∈ [0, 1]. In addition, set λ 0 = 0 and e 0 (ζ) = 1 for all ζ ∈ [0, 1]
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 2 ] dt < ∞ respectively. Observe that for all T ≥ 0 one has
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 1 Figure 1. Space-time evolution plots of u and v using the Lie-Trotter splitting schemes LTexact, LTexpo, and LTimp.

Figure 2 .

 2 Figure 2. Mean-square errors as a function of the time step: Lie-Trotter splitting schemes: left (φ τ = φ L τ ○φ NL τ ) and right (φ τ = φ NL τ ○φ L τ ) (◇ for LTexact, ◻ for LTexpo, ☆ for LTimp). The dotted lines have slopes 1 2 and 1 4.
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 111111121222 Appendix A. Proof of the inequality (63) Let us first state two elementary inequalities:• for all 0 ≤ a ≤ b and n ∈ N, one has 0 ≤ b na n ≤ nb n-1 (b -a), • for all z ∈ [0, ∞), one has 0 ≤ 1 1+z -e -z ≤ C min(1, z 2). As a consequence, for all n ∈ N and z ∈ [0, ∞) one has0 ≤ z) n -e -nz ≤ n + z -e -z .Proof of (63). For all n ≥ 3 and z ∈ [0, ∞), one hasn z) n -e -nz ≤ z) n-1 ≤ Cn 2 z 2 1 + (n -1)z + (n-1)(n-2) n -1)(n -2) ≤ C.The cases n = 1 and n = 2 are treated separately, one has sup z∈[0,∞)

1 (

 1 The case n = 1 is treated separately: using the inequality min(1, z 2 ) ≤ z one hassup z∈[0,∞) 1 1+z -e -z z ≤ C.
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