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Dynamic nuclear polarization (DNP) is an NMR hyperpolarization technique that mediates polarization
transfer from unpaired electrons with large thermal polarization to NMR-active nuclei via microwave (mw)
irradiation. The ability to generate arbitrarily shaped mw pulses using arbitrary waveform generators opens
up the opportunity to remarkably improve the robustness and versatility of DNP, in many ways resembling
the early stages of pulsed NMR. We present here novel design principles based on single-spin vector effective
Hamiltonian theory to develop new broadband DNP pulse sequences, namely an adiabatic version of XiX-
DNP and a Broadband Excitation by Amplitude Modulation (BEAM)-DNP experiment. We demonstrate
that the adiabatic BEAM-DNP pulse sequence may achieve a 1H enhancement factor of ∼ 360, which is
better than ramped-amplitude NOVEL at ∼ 0.35 T and 80 K in static solids doped with trityl radicals.
Additionally, the bandwidth of the BEAM-DNP experiments is about 3 times the 1H Larmor frequency (∼50
MHz). The generality of our theoretical approach will make the design principles outlined here helpful in the
development of new pulsed DNP sequences.

I. INTRODUCTION

Dynamic nuclear polarization (DNP) is a powerful tool
to increase the sensitivity of nuclear magnetic resonance
(NMR) by transferring the much higher polarization of
electron spins to nuclear spins with a theoretical max-
imum enhancement factor ε ∼ 6581,2 for 1H. The hy-
perpolarization method allows one to study systems that
suffer from poor NMR sensitivity with reduced measure-
ment time or cost. For instance, a DNP experiment with
ε ∼ 100 performed in one hour would have taken ∼ 1
year without mw irradiation for the same-quality spec-
trum. This opens up the possibility to extract important
structural information from small molecules, biological
samples, or inorganic materials that are otherwise inac-
cessible due to poor NMR sensitivity.

Since the discovery of DNP in the fifties3 tremendous
progress has been made, and there are two main DNP
methods: dissolution DNP4 and in situ magic-angle spin-
ning (MAS) solid-state DNP NMR5. For the former cat-
egory, static samples are typically polarized at low tem-
peratures (< 2 K) and moderate magnetic fields (3.4-10.1
T)6, where the electron polarization approaches unity.
Following that, the sample undergoes a dissolution pro-
cess before it is transported to a high-resolution NMR
magnet or MRI system for detection in solution state.
The in situ static sample or MAS DNP NMR approach
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performs the hyperpolarization and NMR detection pro-
cess on solid samples in the same high-resolution magnet
typically at temperatures below 100 K. These contem-
porary DNP approaches use continuous-wave (CW) mw
irradiation, where the amplitude, phase, and frequency
are not modulated at all, or only slowly. Hence, only
four main CW-DNP mechanisms have been discovered
so far, namely: the Overhauser effect (OE)3, the solid
effect (SE)7,8, the cross effect (CE)9,10, and thermal mix-
ing (TM)11,12. In comparison, hundreds of NMR pulse
sequences have been invented to date, for purposes rang-
ing from polarization transfer, distance measurement, to
determination of dynamics and chemical environments,
etc. Even in electron paramagnetic resonance (EPR) ex-
periments at low fields, where high-power mw sources are
available, there is only one experiment that uses DNP as
a polarization transfer step13 to detect hyperfine-coupled
nuclei. Although pulsed mw irradiation is expected to
improve DNP performances14, the effect of modulated
pulsed irradiation can be complicated, and a generalized
theoretical approach is required to design the right pulse
sequences. An important aspect in pulse sequence de-
sign is the excitation bandwidth. The EPR line widths
of many radicals are often broad, especially at high fields
due to large g-anisotropy. For instance, the linewidth of
a typical nitroxide radical is ∼ 1GHz at 9.4T,15 which is
orders of magnitude higher than the electron Rabi fields
conferred by the currently available mw power. The aim
of this study is to demonstrate - albeit at lower field -
ways to design broadband and efficient DNP techniques
exploiting shaped pulses generated by arbitrary wave-
form generators (AWG) using different mw powers.
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Several pulsed DNP techniques have been described
earlier16–27, where nuclear spin orientation via electron
spin locking (NOVEL)16–19 is the DNP analogue of cross-
polarization (CP) except that there is no rf irradiation
on the nuclei. We would like to emphasize that the de-
sign principle of the TOP-DNP sequence27 is substan-
tially different from others, i.e., the initially truncated
electron-nuclear dipolar couplings by the nuclear Zee-
man term are strategically reintroduced by pulsed mw
irradiation to mediate DNP. The way that TOP-DNP
reintroduces these couplings is mathematically similar to
and inspired by the dipolar recoupling techniques in MAS
solid-state NMR spectroscopy, where rf irradiation inter-
feres with the rotational averaging of dipolar couplings.
Following this, a phase-alternating low-power X-inverse
X (XiX)-DNP sequence (Figure 1) has been designed re-
cently using operator-based Floquet theory28.

mw
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FIG. 1. Schematic diagram of various pulsed DNP
sequences (NOVEL, XiX, and BEAM) repeated by h
loops before 1H-NMR detection with a solid echo.

In this work, we introduce a new design strategy based
on single-spin vector effective Hamiltonian theory29,30,
which incorporates Fourier coefficients (exploited in
operator-based Floquet theory31) into average Hamilto-
nian theory (AHT) and — more importantly — is appli-
cable to sequences that lead to an arbitrary overall rota-
tion of the spins. This theoretical framework is applicable
to any arbitrary periodic mw irradiation scheme, and will
be used here for designing broadband DNP experiments
on static samples. We exemplify this for two simple se-
quences. First, we make the previously introduced XiX-
DNP adiabatic by modulating the pulse lengths. Sec-

ond, we increase the bandwidth of NOVEL by employing
an amplitude-modulation (or phase-inversion) scheme,
yielding the BEAM sequence shown in Figure 1. We
will examine these sequences by numerical simulations
and experiments at 0.35T/ 9.8GHz/ 15MHz on OX063
trityl radicals doped in a glycerol-water mixture at 80 K.

II. THEORY

An efficient DNP experiment requires a fast transfer
of a large fraction of thermal electron spin polarization
to the nuclear spins. By applying time-dependent in-
stead of continuous microwave (mw) irradiation, pulsed
DNP provides a much larger parameter space for opti-
mizing this transfer. On the downside, this approach
generates a more complicated time dependence of the
spin Hamiltonian. This time dependence carries over to
the equation of motion for the spin states, preventing in-
tuitive understanding of the polarization transfer. While
the simple time dependence of cw irradiation can be re-
moved in a simple rotating-wave approximation, removal
of the time dependence for pulsed DNP requires more so-
phisticated approaches, such as AHT or Floquet theory.
Here, we introduce an approach that directly provides
the DNP matching conditions and the effective Hamil-
tonians – which contain scaling factors that dictates the
DNP performances. To achieve this, we subject the over-
all spin Hamiltonian to a series of transformations that
lead to a convergent effective Hamiltonian. By expand-
ing this Hamiltonian as a Fourier series, we can easily
characterize the resonance conditions and the effective
couplings. This approach is inspired by the single-vector
effective Hamiltonian approaches introduced recently for
the description of solid-state NMR dipolar recoupling29
and liquid-state NMR isotropic mixing30.

We show in the appendix that the effective Hamilto-
nian of an electron-nuclear two-spin system (S and I,
respectively) subject to a periodic mw irradiation with
modulation frequency ωm can be written as

Heff =
Ba∓

4

(
S̃−I± + S̃+I∓

)
−ω(S)

eff S̃z + ω
(I)
eff Iz , (1)

where B is the pseudo-secular hyperfine coupling, which
originates from the electron-nuclear dipolar coupling and
averages to zero in solution. The scaling factor a∓ de-
pends only on the pulse sequence and determines the
DNP transfer efficiency. It can be positive or negative,
because both a zero-quantum (ZQ) and double-quantum
(DQ) transfer is possible, leading to opposite signs of the
nuclear polarization. The effective field of the electron
spin is denoted by ω(S)

eff S̃z and describes the overall ro-
tation of the electron spin over one basic element of the
periodic pulse sequence. In the case of CW irradiation,
the effective field is simply the vector sum of the Rabi
field in the transverse plane and offset frequency along z,



3

but it can be generalized to arbitrary periodic sequences.
Note that the direction of the effective field does not usu-
ally coincide with the usual z-axis of the rotating frame.
This is important, because only the projection of elec-
tron polarization along the effective field is transferred
to the nuclei. The analogous quantity of the nuclear spin
is given by ω

(I)
eff Iz. In the absence of rf-irradiation, it

only depends on the nuclear Zeeman frequency ωI and
the modulation frequency ωm

ω
(I)
eff = ωI − kIωm with kI = round

(
ωI
ωm

)
. (2)

Note that AHT usually only deals with sequences
where the spins end up at their starting position after a
small number of cycles, and our approach does not have
such a limitation (see appendix).

The form of the effective Hamiltonian is well known in
NMR, and appears in virtually every discussion of het-
eronuclear polarization transfer, most notably CP. It is
thus not surprising that many sequences and concepts
from (solid-state) NMR can be adapted for DNP. For
example, NOVEL is the DNP analogue of CP, and the
idea of ramped-amplitude NOVEL is similar to ramped-
amplitude CP. The notable major differences between the
two magnetic resonance cases are the magnitudes of the
couplings and the presence of a significant pseudo-secular
coupling in DNP.

To design an efficient polarization transfer experiment,
we need to fulfill three criteria, (1) the scaling factor a∓
should be large, (2) the initial density operator ρ0 should
be aligned with the electron effective field, and (3) the
mismatch of the effective fields should be minimal. To
address the first two points, we introduce the transfer
parameter f∓:

f∓ = 〈ρ0|S̃z〉 a∓ . (3)

For point (3), we express the mismatch as

∆ω∓eff = ω
(S)
eff ± ω

(I)
eff . (4)

A maximal transfer can be achieved when the resonance
condition is exactly fulfilled ∆ω∓eff = 0. While it is easy
to satisfy the resonance condition for a single spin packet,
it becomes more challenging when multiple spin packets
with different offset frequencies ΩS are present. Addi-
tionally, the presence of microwave power inhomogene-
ity will result in distributions of the electron nutation
frequency ω1 across the sample. The electron effective
field ω

(S)
eff (ΩS , ω1), and hence the mismatch is governed

by these two parameters:

∆ω∓eff = ∆ω∓eff(ΩS , ω1) (5)

Accordingly, sequence design aims at maximizing the
scaling factor while minimizing the mismatch. To de-
termine the mismatches (Equation (5)), one needs to
calculate the electron effective field for all possible ΩS

and ω1 values. The calculation of the effective field is
particularly fast, since it only involves classical three-
dimensional rotations. If the effective field, and subse-
quently the resonance mismatch, are calculated for a set
of electron offsets, the bandwidth of a sequence can be
determined quite easily. Under the specific conditions
outlined in the appendix, our approach thus reduces a
two-spin problem to a single-spin problem, which reduces
the complexity and facilitates design. In this work, we
provide a simple program that calculates the scaling fac-
tors and effective fields from a given irradiation scheme
(including an explicit offset ΩS). This allows for easy
evaluation of resonance conditions and a direct quantifi-
cation of the bandwidth. For the particular sequences
studied in this work, it is possible to express the scaling
factors and effective fields analytically in some limiting
cases. However, the numerical program can treat arbi-
trary cases where it will be tedious or impossible in other
known approaches.

A. Adiabatic sweeps

So far we assumed that the basic pulse sequence ele-
ment is repeated periodically with the same parameters.
But it is known in NMR that an adiabatic sweep through
the resonance condition can significantly improve the se-
quence robustness towards offsets and inhomogeneities.
Note that the process not only needs to be adiabatic for
the electron spin, i.e. it needs to follow the effective field,
but the process also has to correspond to an adiabatic in-
version in the ZQ-subspace (or DQ, depending on the res-
onance condition). To achieve this, the mismatch of the
effective fields has to be swept (see appendix for detailed
mathematical description) from large positive, through
zero, then to large negative values (or vice-versa). In
simple terms, the z-operator in the ZQ-subspace corre-
sponds to the difference of electron and nuclear polariza-
tion, and the inversion of this operator corresponds to an
adiabatic electron-nuclear polarization transfer.

Figure 2(a) shows the ZQ-subspace for time-
independent effective fields. The mismatch (red) cor-
responds to a z-offset in this subspace, while the effec-
tive coupling (blue) corresponds to a transverse field. If
the mismatch is non-zero, the effective field in the ZQ-
subspace (purple) is not in the transverse plane. Thus,
the z-component of the ZQ subspace can never be fully
inverted (illustrated by the black dashed cone) and only
a small amount of polarization is transferred. On the
other hand, Figure 2(b) shows the case were the mis-
match is slowly swept through zero, which adiabatically
inverts the z-component and leads to a full polarization
transfer. Most importantly, this does not strongly de-
pend on the value of the mismatch at the start and end
of the sweep, i.e., This is were the robustness of many
adiabatic sequences originates from.

We want to emphasize that the electron effective fields,
ω

(S)
eff and thus the mismatch can be expressed for any pe-
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FIG. 2. Diagram of the effective (fictitious) spin-1/2
subspaces involved in DNP in the zero-quantum (ZQ)
subspace. (a) Diabatic (’sudden’) sequence with a constant
mismatch. (b) Adiabatic sequence with slowly changing mis-
match of the nuclear and electron effective fields. The effective
”mismatch” field is slowly dragged from +z to −z, correspond-
ing to full polarization transfer. Note that a∓ can be slowly
time-dependent, too. For simplicity, terms proportional to
IZQy are ignored in this illustration.

riodic sequence. This implies that one can sweep many
parameters including the offset, amplitude, phase, pulse
lengths, etc. to implement an adiabatic sweep. In this
work, we modulate the pulse lengths in a two-pulse se-
quence to achieve an adiabatic transfer.

III. MATERIALS AND METHODS

A. Numerical calculation of effective fields and scaling
factors

All numerical calculations were implemented in MAT-
LAB (The MathWorks Inc) and follow the treatment out-
lined in the appendix. An example script that calculates
the effective fields and scaling factors can be found in
the SM. First, the trajectory of the electron spin under a
given irradiation scheme is calculated using quaternions,
which directly yield the overall flip angle and the effec-
tive field. Then, the trajectory is then transformed into
a cyclic frame, where it is Fourier transformed to gener-
ate the coefficients (see appendix). One of the Fourier
coefficients corresponds to the scaling factor a±. The
same procedure can be applied to cases when an offset is
present. MATLAB functions from EasySpin32 were used
for quaternion calculations.

B. Spinach simulations

The numerical simulation of BEAM-DNP was per-
formed using SPINACH33. A three-spin electron-proton-
proton system was used, with a g-tensor of [2.0046 2.0038
2.0030], e-n distances of r1=4.5Å and r1=6.5Å, polar

angles of θ1=0◦ and θ2=90◦ and azimuthal angles φ1=0◦

and φ2=70◦. The relaxation effect was implemented
via the Levitt-Di Bari approach34 with T1,e=2.5ms,
T2,e=5µs and T1,n=36 s, T2,n=1ms. A two-angle Lebe-
dev grid35 with 194 orientations was used.

C. Sample preparation

A 5 mM sample of OX063 trityl radical in DNP juice
(glycerol-d8:D2O:H2O, 6:3:1 by volume) at 80 K was
used for all experiments. In detail, 1.65mg trityl rad-
ical (MW=1359 g mol−1, 1.2µmole) were dissolved in
24.3µL of H2O and 72.9µL D2O. Of the resulting solu-
tion, 48.6µL were then added to 72.9µL of gly-d8. 40µL
of the final solution were transferred to a 3mm outer di-
ameter quartz capillary and flash frozen in liquid nitrogen
before the measurements.

D. Instrumentation and EPR/NMR spectroscopy

All experimental data were acquired on a home-built
X-band spectrometer which is based on the design de-
scribed by Doll et al.36. Notable differences compared
to the earlier design are that a 1.8 GSa/s digitizer (SP
Devices ADQ412) was used and that the temperature of
80K was achieved with a cryogen-free cryostat (Cryo-
genic Limited). Mw pulses were generated with an
arbitrary waveform generator (AWG) model M8190A
(Keysight) and amplified with a 1 kW traveling wave
tube (TWT) amplifier (Applied Systems Engineering).
A standard Bruker EN4118A-MD4 ENDOR resonator
was used, with an external rf tuning and matching cir-
cuit. NMR experiments were performed using a Stelar
PC-NMR spectrometer. An Arduino board was used to
count TWT gate triggers of the EPR spectrometer, each
corresponding to an h increment (Fig. 1). The Arduino
board triggers the NMR acquisition after h loops.

FT EPR spectra were acquired by a chirp echo se-
quence with linear chirp pulses spanning 300MHz, a du-
ration of 200 ns (π/2) and 100 ns (π) and an inter-pulse
delay of 2µs. All EPR and NMR signals were processed
in MATLAB. All experimental results presented in this
work were acquired within a single session, i.e., the sam-
ple was not moved between different DNP experiments.

E. Pulse sequences and enhancements

The DNP pulse sequences used in this work are shown
in Figure 1. A train of 1H saturation pulses (eleven
100◦ pulses spaced by 1ms) was applied in the begin-
ning. Each DNP element was repeated h times, with a
total build-up time TDNP = h · trep. The contact time
tcontact, during which the mw is turned on, is gener-
ally much shorter than the repetition time trep, due to
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a 1% duty cycle limit of the TWT. The 1H NMR sig-
nal was then read out with a solid echo sequence com-
prised of two 2.5µs 90◦ pulses separated by a delay of
tSE=80µs. A conventional eight-step phase cycle was
used with {x, x, y, y,−x,−x,−y,−y} for the first pulse
and detection and {y,−y, x,−x, y,−y, x,−x} for the sec-
ond pulse. The proton spectrum at thermal equilibrium
was acquired using similar parameters except without
mw irradiation, and a delay of 180 s ≈ 5 ·T1,n was used in
between the 660 accumulated scans. The T1,n=36 s was
determined both with a saturation recovery sequence,
and by the decay of polarization after DNP (see SM).

For most cases, we report the polarization enhance-
ment εP , given by the ratio of the DNP-enhanced signal
intensity divided by the signal intensity at thermal equi-
librium. These values can be different from simple mw
on/off signal enhancements recorded with the same delay,
because the DNP build-up time TB can be much shorter
than T1,n. For most parameter optimizations, we used a
repetition time trep of 1ms, and a build-up time TDNP of
2 s. Build-up curves were acquired by changing the value
of h, and with variable repetition times mentioned in the
respective figures and tables.

IV. RESULTS

In this section, we apply the theory and design proce-
dures outlined earlier for DNP experiments at X-band
frequencies (9.5GHz) using both low-power and high-
power mw. The former involves variants of the recently
published XiX-DNP experiments28, while the latter in-
volves development of a new pulse sequence, Broadband
Excitation by Amplitude Modulation (BEAM), with im-
proved performance relative to previous NOVEL-DNP
experiments16,17,19.

A. Low-power XiX-DNP

Figure 3(a) shows the mw part of the XiX-DNP
pulse sequence consisting of two oppositely phased pulses
repeated n times, leading to a total contact time of
tcontact = n · τm = n · (tp,1 + tp,2). Assuming a mw field
with an amplitude of ν1=4MHz (we use ω for angular
frequencies and ν = ω/2π for linear frequencies), and an
offset slightly above 40MHz, tp,1 = tp,2 = 9 ns, this leads
to the calculated transfer profiles shown in Figure 3(b)
when using fully numerical simulations (black circles) or
only the effective Hamiltonian in Equation (1). This good
agreement between the two curves confirms that the de-
rived effective Hamiltonian is correct.

Next, Figure 3(c) shows the electron and nuclear effec-
tive fields as well as the matching conditions as a func-
tion of the electron offset. In this example, ν(I)

eff = νI and
kI = 0 for all resonance conditions. Since low-power mw
irradiation is used, the electron effective field is mainly
dominated by the electron offset. We note the reflection

at νm/2, which is a consequence of our particular choice
of convention for the effective field.

When a low-power sequence is applied at frequency
ΩS/2π and modulated with frequency νm = 1/τm, one
can treat it like a multi-frequency irradiation with fre-
quencies ΩS/2π±m · νm, where m is an integer number.
For low-power irradiation and narrow EPR lines, only one
of these components will lead to DNP, namely the ones
that hit the usual SE resonance condition ΩS ≈ ±ωI .
While this approach breaks down if the nutation fre-
quency ν1 becomes comparable to νm, our general ap-
proach still holds.

Figure 3(d) shows the experimental results and calcu-
lated f∓ (Equation (3), evaluated on the resonance con-
ditions) for different combinations of tp,1 and tp,2 (but
with a constant sum tp,1 + tp,2). The bottom case with
tp,1 = tp,2 corresponds to the sequence introduced by
Mathies et al.28. Clearly, both the positions and the rel-
ative intensities of the matching conditions are well pre-
dicted. The small peaks visible in the experimental data
correspond to a three-spin electron-1H-1H transition (see
SI). If both pulses have the same length (the bottom trace
in Figure 3(d)), the resonance condition at the usual SE
offset (ΩS/2π ≈ νI) is still fulfilled, but the scaling factor
is zero. This is consistent with the multi-frequency irradi-
ation view, because the intensity at ΩS/2π±0 ·νm is zero
if tp,1 = tp,2. In conclusion, this figure shows that the
resonance conditions alone are not enough to character-
ize the DNP performance and that the theoretical scaling
factors reliably predict the relative DNP enhancement.

The performance of the XiX-DNP experiment may
be further improved by adiabatically sweeping the effec-
tive fields through the resonance condition, i.e., slowly
increase tp,2 upon increasing the loop number n (Fig-
ure 3(a)). The improved enhancement is demonstrated
in DNP experiments (Figure 4(a)), where the adiabatic
version of XiX-DNP with the second pulse swept from 8–
10 ns (red line) clearly outperforms its diabatic counter-
part proposed by Mathies and coworkers28 (black line).
Figure 4(b) shows the time-dependence of the effective
field mismatch ∆νeff(t) for the diabatic and adiabatic
variants. The black lines correspond to the diabatic vari-
ant with fixed timing. Exactly at the offset of 40.89MHz,
the effective field mismatch is exactly zero (black solid
line), and it does not change over time. Under these con-
ditions, the transfer is optimal. However, if the offset is
2MHz off — a reasonable value given that the FWHM
of trityl is ∼5MHz — the effective fields are also mis-
matched by about 2MHz (black dashed line). Conse-
quently, the DNP matching condition is not fulfilled and
the DNP transfer is entirely quenched for a system with
small hyperfine couplings. On the contrary, it is evi-
dent that the effective field of the adiabatic variant (red)
crosses zero in both cases, leading to polarization trans-
fer for a broader distribution of electron offsets. Finally,
Figure 4(c) shows the experimental build-up curve of the
two XiX-DNP sequences, which clearly shows the advan-
tages of implementing adiabatic XiX-DNP. A compari-
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FIG. 3. Numerical and experimental analysis of the XiX-DNP experiment. (a) Pulse sequence for the mw part of
the DNP experiment. (b) Comparison of Sz → Iz polarization transfer efficiencies calculated using the effective Hamiltonian in
Equation (1) (red) with a full numerical simulation (black circles). A two-spin e-1H spin pair with a distance ren = 4.5 Å is used
in the numerical simulations. (c) and (d) Resonance conditions and theoretical and experimental enhancements for XiX-DNP
with ν1=4MHz, tcontact=8µs τrep=1ms, TDNP=2 s as function of the electron offset frequency. (c) The absolute value of
the effective fields ν(S)

eff (blue) and ν(I)eff (black) as a function of the mw offset, for tp,1 = tp,2 = 9 ns. Resonance conditions are
indicated as black circles. (d) Experimental enhancements for different combinations of tp,1 and tp,2 (given in brackets) with
fixed total modulation period (black), and theoretical predictions based on Equation (3), evaluated on the resonance conditions
(red). Small additional peaks are due to higher-order processes involving two protons. The calculation in (b) was done at an
electron offset of 40.89MHz.
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(∆νeff = 0) resonance condition around 40MHz, whereas the dashed line describes a scenario of a shifted resonance condition
by 2 MHz. All lines except the black dashed line cross the ∆νeff = 0 line, and hence DNP will take place. This clearly shows
the mismatch compensating feature exhibited by adiabatic sequences. (c) Experimental 1H build-up curves with a repetition
time of trep = 1ms. XiX-DNP: εmax = 261, TB = 19.0 s, adiabatic XiX-DNP: εmax = 327, TB = 15.1 s

son of enhancement and build-up times of SE, XiX and
adiabatic XiX-DNP for two different repetition times is
shown in Table I, together with the results of the high-
power sequences.

B. High-power BEAM-DNP

We will now analyze high-power pulsed DNP se-
quences. We start with NOVEL (nuclear spin orien-
tation via electron spin locking)16–18 and its adiabatic
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version, the ramped-amplitude RA-NOVEL-DNP19 (Fig-
ure 5(a)). We will then show how a simple amplitude
modulation can be used to improve its bandwidth.

For NOVEL, the electron spinlock strength has to
match the nuclear Zeeman frequency, ν1 ≈ νI , while for
RA-NOVEL the nutation frequency is slowly increased
from below the matching condition to above it in a linear
fashion. Although other amplitude modulation regimes
were examined, no major improvement was observed at
long contact times19. Figure 5(b) and (c) compare the
DNP performances of the NOVEL sequences as function
of the (average) Rabi field ν1 and the offset ΩS/2π. The
plots shows that RA-NOVEL is more tolerant towards ν1

mismatch, and hence leads to higher DNP enhancements.
Additionally, the calculated mismatch plot (Figure 5(d))
also predicts that the adiabatic sequence can moderately
improve the bandwidth for small couplings. Neverthe-
less, RA-NOVEL experiments did not show an improved
offset compensation, most likely due to the more dom-
inant mw Rabi field inhomogeneity (about 18%) across
the sample.

Motivated by these results and also our previous works
in designing broadband ssNMR recoupling sequences37,
we hypothesized that a broadband pulsed DNP sequence
can be designed by combining XiX and NOVEL, i.e.,
a Broadband Amplitude modulated Signal Enhanced
(BEAM) DNP (Figure 6(a)). Similar to NOVEL (but
unlike the XiX-DNP), BEAM-DNP is a spin-locked ex-
periment. Additionally, the sequence can be made adia-
batic by slowly varying tp,2 through one of the matching
conditions, which are shown as dashed lines in the 2D
plot of a theoretical prediction using the Hamiltonian in
Eq.(1) (Figure 6(c), see also Eq. (A11) in the appendix).
This calculation included distributions of electron offsets
and Rabi fields. The intensity and width of the reso-
nance conditions already hint at the robustness of them
with respect to these parameters.

Note that in the particular case of on-resonance
BEAM, there is again a conceptually simple way of deter-
mining the resonance condition. On such a condition, the
effective fields are the same. From this it follows that also
the effective flip angles have to match (up to a multiple of
2π). In BEAM, the effective flip angle of the nuclear spin
is given by β(I)

eff = ωI(tp,1+tp,2) while the effective flip an-
gle of the electron spin is given by β(S)

eff = ω1(tp,1 − tp,2).
Thus, the resonance conditions in Figure 6(c-e) follow the
equation ωI(tp,1+tp,2) = ω1(tp,1−tp,2)+m ·2π, where m
is again an integer. While such analytical treatments are
possible for simple sequences performed with ideal pa-
rameters, it becomes non-trivial when offsets are present
or when more complicated modulation schemes are used.

Figure 6(b) shows the DNP enhancement as a func-
tion of tp,2 with a fixed value of tp,1=20ns. One can
see that the position of the resonance conditions is well-
predicted, and that the calculated f∓ (Eq. (3)) matches
the relative DNP performance well, despite the fact that
the Rabi field inhomogeneity and mw offsets were sim-
ply neglected in these calculations. We have labeled the

two different resonance conditions (kI = 0 and kI = 1)
for later reference (vide infra), and the sweep range of
the adiabatic variants are indicated by gray bars. The
experimental enhancement as a function of both pulse
lengths is shown in Figure 6(d). Again the positions of
the resonance conditions are well predicted by the the-
ory. There are some differences in the width and intensity
that are expected from the simplistic two-spin model we
are using. Additionally, numerical results (Figure 6(e))
using Spinach33 shows that our theory reliably predicts
the resonance conditions for BEAM-DNP. While numer-
ical simulations of small spin systems can include more
details, such as electronic relaxation, they are still not en-
compassing all the details in the complete DNP process.
In this case, our (semi-)analytical theory is very helpful
in planning and setting up preliminary experiments.

The BEAM-DNP enhancement as a function of ν1 is
shown in Figure 7(a), it is evident that the adiabatic
BEAM outperforms its diabatic counterpart. For one of
the resonance conditions, the best transfer was achieved
with the highest power available. A closer inspection
at the kI = 0 and kI = 1 resonance conditions reveals
that the latter condition is more robust with respect to
the spin-lock field strength, in agreement with the ex-
perimental data (Figure 7(a)). Figure 7(b) shows the
BEAM DNP frequency profile (constant B0 field with
varying mw center frequency) for the kI = 1 case. A
maximum mw power was used for the π/2 pulse for a
maximum bandwidth, but the spin-lock field was ad-
justed at each offset position according to the mw res-
onator (see SM). Note that the mw power adjustment
was not possible for the adiabatic BEAM due to the lim-
ited mw power available. The small enhancements at
larger offsets (ΩS

2π = ±60 MHz) are due to the matched
resonance conditions during the adiabatic sweep, where
the offset-dependent mismatch during the contact period
is explicitly calculated (Figure 7 (c)).

As discussed in the analysis performed for RA-
NOVEL, DNP occurs when the mismatch is zero (dia-
batic case) or passes zero (adiabatic case). The theory
shows that the mismatch for BEAM DNP is quite offset-
tolerant, as visible in Figure 7 (c). In other words, the
mismatch hardly varies by more than 1 MHz over the
|Ωs/2π| < 30 MHz range. Hence, the theory implies that
BEAM will be a broadband sequence, and indeed this
was verified experimentally. It is evident that the in-
creased Rabi field ν1 employed in BEAM has resulted
in a ∼ 3× higher bandwidth compared to RA-NOVEL
(Figure 8). Moreover, we also measured the build-up
curves (Figure 8(b)), and the results are summarized
in Table I. In summary, adiabatic BEAM has outper-
formed RA-NOVEL with a higher εmax of ≈ 361 and
εmax ·

√
T1,n/TB ≈ 701, compared to εmax of ≈ 335

and εmax ·
√
T1,n/TB ≈ 671 for RA-NOVEL. Although

the improvement of adiabatic BEAM over RA-NOVEL
is marginal (≤ 8%), a larger relative gain can be envis-
aged when applied to other more generic DNP polarizing
agents—which usually have broader lines than OX063,
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FIG. 5. Results obtained with the NOVEL and Ramped Amplitude (RA) NOVEL sequences. (a) Pulse sequence
for NOVEL and RA-NOVEL (dashed) DNP. (b) Experimental DNP enhancement as a function of the spin lock strength
(Rabi frequency) ν1 after 2 s of DNP (applied on resonance). Note that the microwave inhomogeneity inside the resonator
is quite pronounced, the given value of ν1 is the maximum of the nutation spectrum. Off-resonance effects in the nutation
experiment can lead to a slight overestimation of ν1. (c) DNP mw offset profiles for both NOVEL sequences (blue) and the
EPR spectrum (black) with an arbitrary scale. Optimized power parameters determined from (b) were used. (d) Calculated
resonance mismatch (Eq. (4)) as a function of the offset for RA-NOVEL. The adiabatic sequence begins with a large negative
∆νeff � 0 (blue), which slowly increases towards ∆νeff ∼ 0 (gray), and ends with a large positive ∆νeff � 0 (black). DNP
occurs whenever the lines cross ∆νeff = 0.

and, hence, offset compensation becomes critical. Ta-
ble I also shows a comparison with NOVEL, and the
low-power sequences mentioned above. Note that RA-
NOVEL and BEAM are efficient enough that they are
mostly limited by T1,e and the spin diffusion rate be-
tween the nuclear spins. The low-power sequences can
thus partially compensate the lower efficiency by using
a faster repetition rate. This would not be possible for
faster relaxing electron spins or in single-contact DNP
experiments.

V. DISCUSSION

We have demonstrated a general theoretical treatment
applicable to periodic mw DNP sequences in static sam-
ples. This is realized by analyzing the resonance con-
ditions and determining the scaling factors, which en-
code the details in a sequence — Rabi fields, phases,
amplitudes, and mw offsets. We showed here an ex-
ample of how theory can help to improve existing se-
quences, such as XiX-DNP, and an example of how to
design a broadband sequence that is robust against mw
offsets. We show that adiabatic BEAM has outper-
formed RA-NOVEL by obtaining εmax of ≈ 361 and
εmax ·

√
T1,n/TB ≈ 701 on trityl radicals at a temperature

of 80K, a field of 0.35T, and in static conditions. While
the adiabatic solid effect can achieve similar maximal
enhancements of 360,23 it has a slightly longer buildup
time TB (and thus a lower sensitivity enhancement of
εmax ·

√
T1,n/TB ≈ 629). The ASE is mostly suitable for

narrow-line radicals, because it is inherently limited to
a bandwidth equal to or lower than the nuclear Larmor
frequency. Accordingly, we expect BEAM to perform
better than the other sequences discussed in this work
for radicals with broader EPR spectra.

Our theory implies that adiabatic BEAM (and the
other sequences used in this work) only shows field-
independent performance if the modulation frequency of
the sequence and the mw Rabi fields are also scaled lin-
early with the external magnetic fields. As the mw power
requirement for adiabatic BEAM performed here requires
that the electron Rabi frequency is at least twice as large
as the 1H Larmor frequency, it will be challenging to ex-
ploit it for high-field (> 5 T) DNP NMR applications.
Nevertheless, it could be satisfactorily fulfilled for po-
larizing 13C in diamond nitrogen-vacancy (NV) centers.
For example, PulsePol, which requires an order of magni-
tude more mw power than adiabatic BEAM, was demon-
strated to polarize 13C nuclei in diamond NVs at ∼ 0.17
T26. In such situations, a broadband sequence that is ro-
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FIG. 6. Resonance conditions of BEAM. (a) Pulse sequence of BEAM-DNP. (b) Experimental (black) and calculated
(red) DNP performance as a function of tp,2 with fixed tp,1=20ns. The ranges for the adiabatic sweeps are marked by gray
bars. (c) Calculated relative enhancement (Equation (A11), based on the effective Hamiltonian) including offset distributions
(5MHz FWHM) and ν1 inhomogeneity (6MHz FWHM centered at 32MHz). (d) Experimental BEAM-DNP enhancement
as a function of tp,1 and tp,2 with TDNP=1 s. The observed resonance conditions matches well with the theory (black and
white dashed lines). The solid gray line indicates the position of (b). (e) SPINACH simulation on a spin system described
in Materials and Methods. The experiments were performed using on-resonance (ΩS = 0) mw irradiation and a Rabi field of
ν1 ∼ 32 MHz, which is twice of that used for NOVEL. Other experimental details include tcontact=8µs, trep=1ms.

TABLE I. Enhancements εmax, build-up times TB , and sensitivity per unit time (i.e., signal per square root of time) εmax ·√
T1,n/TB for different DNP pulse sequences, optimized individually. (RA)-NOVEL and ad. BEAM were measured with an

additional flip-back pulse after the DNP contact. ASE: Adiabatic solid effect23. T1,n = 36.2 s. T1,e = 2.5 ms.

SE ASE XiX ad. XiX NOVEL RA-NOVEL ad. BEAM
εmax 300 360 261 327

trep = 1 ms TB / s 15.9 11.9 19.0 15.1

εmax ·
√

T1,n

TB
453 629 361 507

εmax 269 360 221 301 314 321 342
trep = 2 ms TB / s 19.5 14.1 22.9 18.3 10.1 8.3 8.7

εmax ·
√

T1,n

TB
367 578 278 424 593 671 701

εmax 190 309 297 335 361
trep = 5 ms TB / s 25.4 18.3 14.9 12.1 12.1

εmax ·
√

T1,n

TB
227 435 463 580 626

bust against mw power inhomogeneity and offsets could
be advantageous for quantum computing applications38.

Lastly, we emphasize that our generalized theoretical
framework is not only applicable to the design and un-
derstanding of pulsed DNP experiments, but also in a
much broader range of magnetic resonance, e.g. liquid-
and solid-state NMR29,30, pulsed EPR experiments using
matching conditions13,39, and possibly pulsed MAS-DNP

experiments in the future.
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FIG. 7. Robustness of the BEAM experiment. Exper-
imental BEAM-DNP enhancement as a function of (a) the
Rabi field ν1 for the diabatic and adiabatic versions of the
respective resonance conditions and (b) offset ΩS/2π, and
an EPR spectrum is included here for reference (black). The
BEAM parameters were tp,1=20ns, tcontact=8µs, τrep=1ms,
TDNP=2 s. The pulse length of the second pulse, tp,2 was fixed
in the case of (diabatic) BEAM (’◦’) to 7 ns (kI = 0) and
29 ns (kI = 1), while it was swept over 4.75–9.25 ns (kI = 0)
or 26–32 ns (kI = 1) for adiabatic BEAM (’x’). (c) Calcu-
lated offset-dependent mismatch for kI = 1 condition. The
adiabatic sweep begins with tp,2 = 26 ns (red), through the
intermediate stages (gray), and ends at tp,2 = 32 ns (black).

Appendix A: Detailed Theory

1. Deriving the effective Hamiltonian

In this section we give a detailed derivation of the ef-
fective Hamiltonian in Eq.(1). This will allow interested
readers to follow exactly how the scaling factors are calcu-
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FIG. 8. Comparison of RA-NOVEL and BEAM. (a)
DNP frequency profile of RA-NOVEL and adiabatic BEAM
(kI = 1) DNP with 2 s build up time. (b) DNP build-
up curve using a repetition time of 5ms. The build-up
curves were fitted with exponential functions εP(TDNP) =
εmax (1− exp(−TDNP/TB)). The build-up curves were mea-
sured using different repetition times τrep 1-20ms, where
trep = 5 ms yield the largest ε, and trep ∼ 2 ms resulted in the
highest εmax/

√
T1,n/TB . 90◦ flip-back pulses were applied af-

ter each DNP contact to replenish the electron Zeeman spin
bath. Exact BEAM parameters are given in Figure 7.

lated, and use the provided MATLAB scripts to develop
their own DNP sequences.

The theory outlined in the following is extendable to
systems with multiple electrons and nuclei. For simplic-
ity, we stick to a two-spin system comprised of one elec-
tron spin (S) and one nuclear spin (I). The laboratory-
frame Hamiltonian is given by

H = ωSSz +Hmw + ~S ·A · ~I + ωIIz , (A1)

with ωS = −γeB0 and ωI = −γnB0 being angular fre-
quencies for the electron and nuclear Zeeman interac-
tions, respectively (for an e-1H system ωS > 0 and ωI<0).
γ, A, Hmw, and B0 refer to the gyromagnetic ratio, the
hyperfine coupling tensor, the Hamiltonian of the mw ir-
radiation, and the external static magnetic field along the
z-axis, respectively. We first transform to the electron
rotating frame, thus removing the fast time dependence
at the mw frequency within the rotating-wave approxi-
mation. We further employ the high-field approximation
with respect to the electron spin to obtain the first-order
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effective Hamiltonian

¯̃H = ΩSSz + H̃mw︸ ︷︷ ︸
Hcontrol

+AzzSzIz +BSzIx + ωIIz︸ ︷︷ ︸
H′

, (A2)

where ΩS = ωS − ωmw is the mw offset frequency; Azz
and B =

√
A2
zx +A2

zy are the secular and pseudosec-
ular coupling, respectively. Note that the B term origi-
nates purely from the dipolar coupling, which is averaged
to zero in solution state. We will restrict our discus-
sions to spin systems in the weak coupling regime where
|Azz|, |B| � |ωI |.

At this point, H̃mw still features the slower time de-
pendence arising from amplitude, phase, and frequency
modulation of the mw irradiation. We remove this time
dependence by transformation into the interaction frame
with the control fieldHcontrol, which contains information
on the amplitude- and frequency-modulation function of
an irradiation waveform:

H̃′ =U†controlH′ Ucontrol

=
∑

χ=x,y,z

R(control)
χz (t)Sχ(AzzIz +BIx) + ωIIz ,

(A3)

where Ucontrol(t) = T̂ exp (−i
∫ t

0
Hcontrol(τ)dτ) and T̂ is

the Dyson time-ordering operator. The time-dependent
rotation matrix R

(control)
χz represents the interaction-

frame trajectory of the electron spin under the irradi-
ation waveform. For the special case of a pulse sequence,
the waveform features jumps in phase, amplitude, or fre-
quency. The effective time-independent Hamiltonian can
be computed using standard average Hamiltonian the-
ory, provided Hcontrol(t) is periodic over a given period
τm = 2π/ωm (where ωm is the modulation frequency of
the pulse sequence), i.e., Hcontrol(t) = Hcontrol(t + τm).
We note that a periodic control Hamiltonian does not
necessarily lead to a periodic time dependence of the spin
states. In mathematical terms this means that the con-
trol propagator Ucontrol over one cycle, which is equiva-
lent to R(control)

χz , is not necessarily an identity operator.
Intuitive understanding of the polarization transfer is

simplest in a periodicity-adapted frame where the con-
trol propagator is an identity operator, as in this case,
time dependence can be completely removed by apply-
ing AHT, as we shall demonstrate below. The z axis of
this frame is aligned with the effective field (ωeff)29,30,
whose magnitude and direction can be determined us-

ing quaternion algebra40–42. We indicate the periodicity-
adapted frame in the following with a tilde on the S̃-spin
operators. This leads to

H̃′ =
∑

χ=x,y,z

R(eff)
χz (t)S̃χ(AzzIz +BIx)− ω(S)

eff S̃z + ωIIz

(A4)
with

R(eff)
χz (t) =[Rz(−ω(S)

eff t) ·R(flip)(β) ·R(control)]χz(t)

=

∞∑
k=−∞

a(k)
χz e

ikωmt . (A5)

At this point, we have found a three-step transforma-
tion that leads to a time-independent description for
irradiation that lasts over a large number of periods.
This transformation is comprised of (1) going into the
control frame; (2) flipping the coordinate system by an
angle β so that it is aligned with ω

(S)
eff S̃z; (3) rotating

the frame by an angle ω(S)
eff t around the new z axis29,30.

The time-dependent rotation matrix R(eff)
χz (t) defined by

Eq. (A5) has the desired property of being cyclic, i.e.,
[R

(eff)
χz (t + τm)]χz = R

(eff)
χz (t). The program in the SM

performs the above transformation numerically and sub-
sequently calculates the Fourier coefficients a(k)

χz . More
details can be found in the SM. Up to periodicity, a time-
independent description is achieved in the second line of
Eq. (A5) by expansion into a Fourier series, which pro-
vides the coefficients a(k)

χz as performance parameters of
the irradiation waveform. The term −ω(S)

eff S̃z incorpo-
rates the Coriolis term originating from step (3) above.

While the periodicity-adapted frame provides a simple
and easy-to-average description of the time dependence
of electron spin irradiation, it is still complicated to see
how polarization builds up on the nuclear spin. We solve
this problem by transforming the nuclear part (I) of the
Hamiltonian into a periodicity-matching frame by finding
the multiple kI of the nuclear Larmor frequency ωI that
most closely matches the mw modulation frequency ωm.
The remaining mismatch is the I-spin effective field

ω
(I)
eff = ωI − kIωm with kI = round

(
ωI
ωm

)
, (A6)

which is conceptually similar to a resonance offset.
Transformation into the periodicity-matching frame is
achieved by a propagator Ueff = exp (−ikIωmtIz), yield-
ing

˜̃H′ = U†eff H̃′ Ueff − kIωmIz

=
∑

χ=x,y,z

∞∑
k=−∞

a(k)
χz e

ikωmtS̃χ ×
(
AzzIz +

B

2

(
eikIωmtI+ + e−ikIωmtI−

))
− ω(S)

eff S̃z + ω
(I)
eff Iz . (A7)
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Finally, we remove the remaining periodic time depen-
dence by first-order AHT. In this step, all terms of the

sum over k vanish, except for the ones with k being either
= ±kI or = 0. The time-independent Hamiltonian is

¯̃̃H(1) = Azz
∑

χ=x,y,z

a(0)
χz S̃χIz +

B

2
S̃z

(
a(−kI)
zz I+ + a(kI)

zz I−
)

+
B

4

(
a

(−kI)
+z S̃+I+ + a

(−kI)
−z S̃−I+ + a

(kI)
+z S̃

+I− + a
(kI)
−z S̃

−I−
)
− ω(S)

eff S̃z + ω
(I)
eff Iz , (A8)

where we have defined a
(q)
xz S̃x + a

(q)
yz S̃y = 1

2 (a
(q)
+zS̃

+ +

a
(q)
−zS̃

−) and a(q)
±z = a

(q)
xz ∓ ia(q)

yz . Since any spin Hamilto-

nian is Hermitian, we must have a(q)
−z =

(
a

(−q)
+z

)∗
. Repre-

sentation of the transfer terms by ladder operators pro-
vides an intuitive classification of the transfer pathways.

2. Identifying resonance conditions and scaling factors

We note that the form of the effective Hamiltonian
¯̃̃H(1)

(Eq. (A8)) applies to any periodic mw waveform act-
ing on a two-spin electron-nucleus system in the regime
where |Azz|, |B| � |ωI |. The details of the waveform (or
pulse sequences) are encoded in the scaling factors aχz
that are specific to a given resonance condition. We ex-
pect that differences in transfer efficiency between wave-
forms and between different resonance conditions for the
same waveform are related to these scaling factors. This
relation is discussed in the following.

In polarization-transfer experiments, contributions by
the zero- or double-quantum (ZQ or DQ) operators com-
pensate each other. Hence, it is necessary to select
only one of these types and to suppress all other non-
commuting operators. This is achieved by matching the
effective fields (−ω(S)

eff S̃z, ω
(I)
eff Iz) in Eq. (A8). At the

resonance condition ω
(S)
eff = −ω(I)

eff only the ZQ opera-
tors (S̃±I∓) contribute, because the DQ terms (S̃±I±)
are truncated by the larger non-commuting Iz+ S̃z term.
Likewise, for ω(S)

eff = ω
(I)
eff only the DQ terms remain due

to analogous truncation in the ZQ subspace. All other
terms can be neglected as long as they are much smaller
than the effective fields. This is a good approximation for
weakly coupled protons involved in DNP and was checked
by numerical simulations. The AzzS̃zIz term commutes
with the effective fields and is thus not truncated. It is,
however, inconsequential, as it shifts both energy levels
in the same direction within the respective subspace (ZQ
or DQ). Thus, the energy difference and resonance con-
ditions remain unchanged. By neglecting the terms dis-
cussed above, we obtain a simplified Hamiltonian for the
DNP ZQ and DQ resonance conditions, (ω(S)

eff ≈ ∓ω
(I)
eff ),

respectively we arrive at the Hamiltonian discussed in

Equation (1).

¯̃̃H(1)
ZQ,DQ =Heff (A9)

=
B

4

(
a

(∓kI)
−z S̃−I± + a

(±kI)
+z S̃+I∓

)
−ω(S)

eff S̃z + ω
(I)
eff Iz . (A10)

Thus, the desired transfer of electron spin polarization,
proportional to the expectation value of S̃z for the initial
density operator ρ0, to Iz can be calculated by using

U = exp

(
−i ¯̃̃H(1)

ZQ,DQt

)
:

〈Iz〉 (t) =
γe
γn
〈ρ0|S̃z〉Tr{US̃zU†Iz}/Tr{I2

z}

= ± γe
γn
〈ρ0|S̃z〉

B2a2
∓

4ω2
∓

sin2

(
1

2
ω∓t

)
. (A11)

Eq. (A11) provides two DNP performance parameters.
The unitless scaling factor

a∓ =

√
a

(∓kI)
−z a

(±kI)
+z (A12)

governs the transfer efficiency, while the DNP buildup
frequency

ω∓ =
√
B2a2

∓/4 + (∆ω∓eff)2 (A13)

increases with increasing “mismatch” of the effective
fields:

∆ω∓eff(ΩS) = ω
(S)
eff (ΩS)± ω(I)

eff . (A14)

Maximum transfer is attained at the matching condition
∆ω∓eff(ΩS) = 0, where Equation (A11) simplifies to

〈Iz〉matched (t) = ± γe
γn
〈ρ0|S̃z〉 sin2

(
1

4
Ba∓t

)
(A15)

and only the buildup rate, but not the maximum nuclear
polarization depends on the scaling coefficient a∓. Note
that the mismatch depends on, but is not the same as the
electron offset ΩS . While the buildup is faster in case of a
larger mismatch, the transfer amplitude is lower, similar
to the situation of an off-resonance pulse in a two-level
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system. The prefactor γe
γn
〈ρ0|S̃z〉 in Eq. (A11) high-

lights that only the part of the electron density opera-
tor projected onto the effective field will be transferred
to the nucleus. Therefore, we can quantify efficiency of
an irradiation scheme at the matching condition semi-
quantitatively by the transfer parameter

f∓ = 〈ρ0|S̃z〉 a∓ . (A16)

Note that choice of the effective field is not unique. With
the convention |ω(S)

eff |, |ω
(I)
eff | ≤ ωm/2 it is simples to keep

track of the resonance conditions. In the special case
|ω(I)

eff | ≈ |ω
(S)
eff | ≈ |ωm|/2, the ZQ and DQ resonance con-

ditions are fulfilled at the same time, implying that a
single scaling factor is not sufficient for describing spin
dynamics.

3. Adiabatic transfers

An adiabatic polarization transfer corresponds to an
inversion of the ZQ or DQ subspace. The relevant polar-
ization operators in these subspaces are given by

IZQ/DQ
z =

1

2
(Sz ∓ Iz) (A17)

To adiabatically invert IZQ/DQ
z → −IZQ/DQ

z , an adia-
batic sweep is implemented by varying the offset (or
resonance mismatch) in the ZQ/DQ subspace slowly
from large positive values (∆ω∓eff � 0) through zero
(∆ω∓eff = 0) to large negative values (∆ω∓eff � 0). In
general, the offset term in the ZQ/DQ subspace is not
equivalent to the electron offset ΩS . For instance, in
the adiabatic NOVEL DNP sequence, the offset in the
ZQ/DQ subspace is determined by the mismatched Rabi
field ω1S(t). Figure 2(b) shows the schematic diagram of
the described adiabatic sweep. The adiabatic sweep con-
fers the additional advantage of avoiding cyclic behavior,
i.e., backtransfer of nuclear polarization to the electron
spin is excluded.

For a more quantitative treatment, we assume (1) only
one resonance condition is swept during the experiment;
(2) the changes in the scaling factors and the electron
spin component along the effective field are sufficiently
slow relative to the change in the effective fields, i.e., an
adiabatic process. The sweep approaches this idealized
picture for large critical adiabaticity Qcrit at the moment
the resonance condition is passed43,44

Q∓crit =
1

4

(Ba∓)
2

d
dt∆ω

∓
eff(t)

. (A18)

With this critical adiabaticity, polarization-transfer effi-
ciency can be computed by the Landau-Zener formula

〈Iz〉 = ± γe
γn
〈ρ0|S̃z〉

(
1− exp

(
−π

2
Q∓crit

))
. (A19)

Relaxation of the electron spin, which we neglected so far,
imposes a lower limit on the sweep rate of ωeff and thus
an upper limit on critical adiabaticity. In practice, the
compromise between lowering critical adiabaticity and
accepting relaxation losses needs to be found experimen-
tally for each DNP scheme and sample class. Neverthe-
less, as the scaling factor a∓ and the resonance conditions
depend only on the waveform, good initial guesses and
waveform parameter ranges can be estimated theoreti-
cally.
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