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Abstract
Different approaches can be used to estimate individualized treatment effects with Individual Participant

Data Meta-Analyses (IPD-MA). We compared four one-stage models: random effects (RE), stratified inter-
cept (SI), rank-1 (R1) and fully stratified (FS) models, built with two different strategies constructed with
a Monte Carlo simulation study in which we explored different scenarios with a binary or a time-to-event
outcome. To evaluate the performance of the models, we used the c-statistic for benefit, the calibration of
predictions and the mean squared error. The different models were also used on the INDANA IPD-MA,
comparing an anti-hypertensive treatment to no treatment or placebo (N = 40 237, 836 events). Simulation
results showed that the random effects and the stratified intercept models performed well for both binary and
time-to-event outcomes. For the INDANA dataset with a binary outcome, the random effects model had the
best performance.
Keywords: Personalized medicine, individualized treatment effects, individual patient data, meta-
analysis

1 Introduction
Personalized (or stratified) medicine aims at tailoring a treatment strategy to the individual characteristics
of each patient. One key aspect for personalized medicine is to identify individuals who benefit from an
intervention. Different approaches exist with a popular one being the estimation of the so-called individualized
treatment effect (ITE). Shortly, the ITE on an additive scale is the predicted benefit under one treatment minus
the predicted benefit under the other treatment, given a set of patients’ characteristics. It represents what
treatment effect is expected for a patient with these characteristics. ITEs are generally estimated by building
prediction models or by using machine learning methods such as random forests [1].

Here, we considered meta-algorithms, which are algorithms that decompose the estimation of the ITE
into sub-regression problems [2]. We focus on two meta-algorithms: the so-called S-learner and T-learner.
Although we did not specifically use machine learning techniques in this work, we kept this terminology, as it
fairly reflects the analytical strategy.

The T-learner consists of two steps. First, two regression models are built one in the treatment group and
one in the control group. Then, the outcome is predicted for each patient using both models and the ITE is
calculated as the difference of both predictions.

The S-learner consists in estimating the treatment effect within a single regression model, where inter-
actions between an indicator variable for the treatment and relevant covariates are introduced. Again, the
ITE is calculated as the difference in predictions under both treatments. The S-learner algorithm may reduce
overfitting compared to the T-learner algorithm.

In practice, prediction models for ITE are often developed using data from a single randomized controlled
trial (RCT) or observational data [3]. RCTs benefit from randomization but are often underpowered for such
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a task, which may lead to overfitting or to the failure of capturing the effects of many relevant variables. A
solution to that problem might be to use individual participant data meta-analyses (IPD-MA) which include
larger numbers of patients and may also benefit from increased generalizability. Nevertheless, it is neces-
sary to consider the variation between studies in such data. Previous studies have tackled the incorporation
of heterogeneity when estimating the average treatment effect, the average difference of the predicted risk
between treatments, or have used IPD-MA to develop prediction models [4, 5]. Fisher et al. [6] and, more re-
cently Chalkou et al. [7], considered a framework to estimate the ITE in IPD-MA with a two-stage approach.
More specifically, Chalkou et al. used a network meta-analysis with individual participant data to estimate a
prognostic model using a one-stage approach. Heterogeneity of treatment effects according to baseline risk
predicted by this model, was then considered using a two-stage approach with treatment by baseline risk in-
teractions estimated within each trial. Seo et al. used one-stage meta-analytic approaches and focused on
methods for selecting which treatment-covariate interactions to include in a model where study-specific inter-
cepts and common effects factors were added, they concluded that shrinkage methods performed better than
non-shrinkage methods [8]. To our knowledge, no work considered a wider range of methods to estimate
ITE or identify individualized treatment rules using IPD meta-analysis data whereas (i) many approaches have
been proposed for analysing single study data, and (ii) different meta-analytic models exist for developping
risk prediction models [5].

In this study, we aimed to develop a framework that would allow estimating the ITE from an IPD-MA in a
one-stage approach with methods focusing on taking into account the heterogeneity in baseline risks. Different
methods were compared using both simulated and real data with binary and time-to-event outcomes. We also
aimed to compare the S-learner and the T-learner. Section 2 presents the different models and approaches
compared in estimating ITEs. In section 3 we describe the Monte Carlo simulation study and its results, and
the models are then applied to the data of the INDANA meta-analysis, a real individual patient data meta-
analysis evaluating anti-hypertensive treatments in section 4 [9]. Section 5 concludes with some discussion
and paths for future research.

2 Methods to estimate individualized treatment effects
In this section, we describe our framework to develop a prediction model estimating the ITE from an IPD-MA.

To estimate the ITE, we decided to use a one-stage IPD-MA. The one-stage approach consists in analyzing
the data from all trials simultaneously.

2.1 Risk prediction models in IPD-MA
Let us consider an IPD-MA where data from individual patients from J randomized controlled trials are
available, and that the outcome of interest is binary or time-to-event. Different methods to develop a single
risk prediction model using IPD-MA have been proposed [4, 5]. Four of them were compared in this work.

Let xij = (xij1, . . . , xijN ) be a vector of covariate values for subject i ∈ (1, . . . , Nj) in study j ∈
(1, . . . , J) and tij . For now, we do not differentiate the treatment effects from other covariates, and do not
specify interactions between covariates, but they could be incorporated in the definition of xij . We considered
the following four models:

• Random effects model: A first approach is to assume that the heterogeneity in the IPD-MA occurs only
on the baseline risk i.e the intercept varies between studies but the effects of all predictors are the same
in each study. In this model, we consider a random study effect to model the distribution of the intercept
across studies. In the case of a binary outcome, the underlying model can be written as:

logitpij = αj + θxij ,

with αj ∼ N (α, τ2α) and where pij refers to the probability of subjet i in trial j to develop the outcome.
For survival data, we decided to use a cox regression:

λij(t) = λ0(t) exp (θxij + ρj).

where ρj ∼ N (0, τ2ρ ).
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• Stratified intercept model: A second approach is to include a different intercept for each study, as a fixed
effect. With a binary outcome:

logitpij =
J∑

m=1

αmI(m = j) + θxij ,

where I(·) denotes the indicator function. With a time-to-event outcome:

λij(t) = λ0j(t) exp (θxij).

• Fully stratified: A third approach is to consider that there is heterogeneity across studies on both the
baseline risks and the predictors effects. In that case, we calculate different intercept and predictor
effects for each trial included in the meta-analysis. With a binary outcome:

logitpij =
J∑

m=1

(αmI(m = j) + θmI(m = j)xij),

With a time-to-event outcome:
λij(t) = λ0j(t) exp (θjxij).

• Rank-1: A final approach considers that the linear predictors share a common direction in covariate
space but that the size of their effects might be systematically different. This model can be thought as an
intermediate between the common effect models and fully stratified model. In this scenario, the effects
vary in a proportional way, modeled by a random effect ϕ. With a binary outcome:

logitpij = αj + ϕjθxij ,

with αj ∼ N (α, τ2α), ϕj ∼ N (ϕ, τ2ϕ). With a time-to-event outcome:

λij(t) = λ0(t) exp (ϕjθxij + ρj).

2.2 ITE estimation
In this section, we now individualize treatment in the models, represented by a variable zij . We do not
differentiate between the whole set of covariates and effect modifiers. To estimate the ITE with the above
models, we use the two meta-learner algorithms. Let us consider the random effects model for instance. Let
µ(x, z) represent the expected binary outcome under treatment z for an individual with covariates x and let
S(t, x, z) represent the expected time-to-event at time t under treatment z for an individual with covariates x.
The ITE for a binary outcome is estimated as:

ÎTE = µ̂(xij , 1)− µ̂(xij , 0).

The ITE for a time-to-event outcome is estimated as:

ÎTE = Ŝ(t, xij , 1)− Ŝ(t, xij , 0).

For S-learner, we use treatment-covariates interactions in the model, such that we obtain the following expres-
sion for a binary outcome :

logitµ(xij , zij) = αj + θxij + γjzij + ηxijzij .

For a time-to-event outcome, we have:

S(t, xij , zij) = exp (θxij + γjzij + ηxijzij + ρj).

For T-learner, we build one model using the treatment group and one model using the control group. With a
binary outcome:

logitµ(xij , 0) = α0
j + θ0xij ,

for individuals with zij = 0.
logitµ(xij , 1) = α1

j + θ1xij ,
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for individuals with zij = 1.
With a time-to event outcome:

S(t, xij , 0) = exp (θ0xij + γ0
j zij + ρ0j ),

for individuals with zij = 0.
S(t, xij , 1) = exp (θ1xij + γ1

j zij + ρ1j ),

for individuals with zij = 1

2.3 Model validation
We used internal-external cross-validation (IECV) to validate the models. In IECV, the model is constructed
with J−1 studies and validated with the remaining study for each permutation of J−1 studies. The intercept of
the test dataset is estimated by taking the mean of all intercepts in the train datasets. To assess the performance
of the models, both discrimination and calibration were considered. We also calculated the mean squared error.

To assess the discrimination, which is the ability of the model to distinguish between individuals who
benefit and individuals who do not benefit from taking the treatment, we used the c-statistic for benefit that
was proposed by van Klaveren et al. [10]. The c-statistic for benefit corresponds to the probability that from
two randomly chosen matched pairs with unequal observed benefit, the pair with greater observed benefit also
has a higher predicted probability where the observed benefit refers to the difference in outcomes between two
patients with the same predicted benefit but with different treatment assignments.

For the calibration, the agreement between the observed and the estimated benefit, we divided the predic-
tions into ten bins, a way to make sure we had individuals who were allocated to the treatment and individuals
who were allocated to the control. In each bin, we compared the mean of the predicted benefit to the observed
benefit and we extracted the intercept and the slope of the regression line. An intercept close to 0 and a slope
close to 1 indicates a good calibration. Calibration curves were also plotted when we applied the methods to
the INDANA dataset.

2.4 Addressing aggregation bias
An issue related to the one-stage approach, is the way treatment-covariate interactions are included. Indeed,
if the model is not correctly specified, it can lead to aggregation bias. In order to avoid aggregation bias,
only within-trial interaction should be used to estimate the treatment-covariate interactions. To make sure
only within-trial information is used, a solution to distinguish within- and across-trial information has been
proposed by Riley et al. [11]. This methos consists in centering the covariates to their study-specific mean and
adding a covariate-mean interaction term that explain between-study heterogeneity. Since within- and across-
trial information are now uncorrelated, we are able to solely use within-trial information. After conducting
some simulations (details are given in the supporting material S1) in which we compared the estimates obtained
with the models described in the next section with and without Riley’s method, we concluded that not centering
variables to their study-specific mean and not including a covariate-mean interaction term did not lead to
aggregation bias with the proposed models since the estimates were similar with and without Riley’s method.
In their paper, Belias et al. find that using Riley’s lead to very small differences [12]. Therefore, we decided
to evaluate the performance of the different models without including Riley’s method.

2.5 Implementation
All the analyses were performed in R version 3.6.1. The random effects and the stratified intercept models
were developed using glmer from the lme4 package for binary outcomes and using coxme from the coxme
package for time-to-event outcomes. For the rank-1 models, we used rrvglm in the VGAM package and
coxvc in coxvc. Finally, the fully stratified model was developed using glm and coxph from survival.

3 Monte Carlo simulation study

3.1 Setting
The performance of the models and meta-learners were evaluated in a simulation study. We considered 24
scenarios in which we changed the number of covariates, the number of patients in each trial or the type of
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outcome. The scenarios are briefly described below, and more details are given in the supporting material S2.
We simulated 1000 IPD-MAs composed of 7 trials for each scenario. All the continuous covariates were
drawn from a normal distribution and all the binary covariates were drawn from a Bernoulli distribution. For
individual i in study j, the treatment allocation tij was sampled from a Bernoulli distribution of parameter
0.5, the binary outcome yij was generated from a Bernoulli distribution of parameter pij , where logitpij =
αj + θjxij + γjtij and the time-to-event outcome was generated from a Weibull distribution f(x; k, b) =
bkxk−1

ij exp (−bxk) with k = 1.15 and b = 50
exp (θjxij)

1.15 .
In 12 scenarios, data was generated with a common treatment effect (all γj = γ), whereas in the other 12,

we included some variation in the predictor effects.

In scenario 1 to 3, we considered IPD-MAs with a total number of patients equal to 2800, 1400 and 700
respectively (for simplicity, trials were of identical sample size) composed of 3 covariates and 3 treatment-
covariate interactions and a binary outcome. Among the covariates, one of them was binary and the two others
were continuous.
In scenario 4 to 6, we computed IPD-MAs with a total number of patients equal to 2800, 1400 and 700 (for
simplicity, trials were of identical sample size) composed of 10 covariates (6 binary and 4 continuous) and 4
treatment-covariate interactions.
Scenarios 7 to 12 had the same configuration as scenarios 1 to 6 but the predictor effects varied according to
the trial for some variables.
Scenarios 13 to 18 had the same configuration as scenarios 1 to 6 and scenarios 19 to 24 were similar to sce-
narios 7 to 12 but instead of a binary outcome, we used a time-to-event outcome.
A summary of all scenarios can be found in table S3.

We also tackled the impact of variables’ selection on the performance of the meta-algorithms. We per-
formed variables’ selection using a Group lasso for scenarios 4 to 6 and 10 to 12 with the stratified intercept
model.

3.2 Results
Results of scenarios 7 to 12 and 13 to 18 are available in section 3 of the supporting material. Simulation
results for scenarios 1 to 6 are presented in Figure 1 and in Figure 2. In terms of discrimination, for the sce-
narios with 3 covariates, the models had a similar range of values whether they were built with S-learner or
T-learner; FS performed slightly worse than the other models but the difference remained small. The same
conclusion can be drawn for the scenarios in which 10 covariates were used. Overall, the choice of the model
or the choice of the meta-learner algorithm did not drastically change the results except for R1 and FS. For
those models, when the IPD-MA contained 10 covariates, the T-learner algorithm provided no results in 997
simulations when there was 100 patient per trial and in 806 simulations with 200 patients per trial. Regard-
ing calibration, intercept values were more scattered with FS. For the others models, the values were similar.
Calibration slopes for RE and SI were more condensed near 1 and the performance of those models was less
affected by the change in number of observations. For the mean squared error, we observe similar range of
values for RE, SI and R1 whereas the FS has higher MSE values which indicated that it did not perform as
well as the other models. Overall, as expected, we obtained a better performance with fewer covariates and a
higher number of patients, the comparison between the models was not modified by the number of covariates
or the size of the IPD-MA. R1 was unable to produce estimates with the two algorithms for the scenarios in
which there were 10 covariates and 1400 or 700 patients. FS was unable to give estimates for the scenarios in
which there were 10 covariates and 1400 with T-learner or 700 patients with the two algorithms. The random
effects model’s results and the stratified intercept model’s results are generally more robust given a certain
scenario no matter the size of the meta-analysis or the meta-learner algorithm used.

Results of scenarios 19 to 24 with heterogeneity of predictor effects and time-to-event outcomes are given
in Figure 3 and Figure 4. RE and SI had the c-statisitic for benefit values closer to 1. The choice of the
meta-algorithm did not impact the results. For calibration, we obtained better intercept median values with
S-learner in scenarios with 3 or 10 covariates but a more concentrated range of values with T-learner when 10
covariates were included. The slope values were similar with both algorithms but T-learner produced more
homogeneous results. Globally, using RE or SI led to better calibration results. The MSE values were compa-
rable for both algorithms except for R1 with 3 covariates where the T-learner algorithm performed better than
the S-learner. Regarding the models, R1 and FS gave a lower performance. In conclusion, using the random
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Figure 1: Boxplot of the measures of performance of the models for scenario 1 to 3.

Figure 2: Boxplot of the measures of performance of the models for scenario 4 to 6.

effects or stratified intercept models produced a higher performance. The rank-1 model was unable to generate
results in scenarios with 10 covariates.

The performances of the algorithms with and without variables’ selection for scenarios 4 to 6 using the
stratified intercept model are presented in Figure 5. For discrimination, the c-statistic for benefit values are
slightly higher when selection is performed with fewer patients. The algorithms produces similar results.
Overall,the intercept values are equivalent with both algorithms. With selection, we obtained better slope
results for T-learner. Without selection, the algorithms produced equivalent results. The MSE is lower when
selection is done for both algorithms.

The comparison of the algorithms with and without variables’ selection for scenarios 10 to 12 using the
stratified intercept model is shown in Figure 6. Similar calibration results are obtained for both algorithms. The
c-statistic values are higher without selection. For discrimination, the c-statistic for benefit values are slightly
higher when selection is performed with fewer patients. The algorithms produces similar results. When the
IPD-MA is smaller, using selection leads to better intercept results. Globaly,the intercept values are alike for
both algorithms. The range of slope values are smaller without selection. The MSE values are closer to 0 when
variables’ selection is performed.
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Figure 3: Boxplot of the measures of performance of the models for scenario 19 to 21.

Figure 4: Boxplot of the measures of performance of the models for scenario 22 to 24.

4 Illustration on real data

4.1 INDANA IPD-MA
To illustrate the different approaches, we used data from the individual data analysis of antihypertensive inter-
vention trials (INDANA) IPD-MA to evaluate the models [13]. This IPD-MA is composed of 9 randomized
controlled trials comparing an antihypertensive treatment versus no treatment or a placebo , but given that there
is a lot of disparity between trials, notably for the variable age (the figure can be found in in the supporting
material S4), we decided to compare the different methods on four of them for which the median age was
under 60 years old. The outcome used in this project was death. The dataset has 40 237 observations and
836 deaths. After comparing the calibration obtained with different combinaisons of variables, we decided to
include in the final models: the age, the sex, the systolic blood pressure (SBP), the serum creatinine and the
treatment group (Table 1). Since some values were missing, we replaced them using a simple run of a multiple
imputation procedure [14]. Considering that the dataset was only used for illustration, we considered that a
single imputed dataset would be sufficient. For clinical research, it would be recommended to use several
imputed datasets and pool the results [15]. Proper guidance for estimating ITE is lacking but could be adapted
from techniques used for building risk prediction models [16, 17].

7



Figure 5: Boxplot of the measures of performance of the models for scenario 4 to 6 with and without variables’
selection.

Figure 6: Boxplot of the measures of performance of the models for scenario 10 to 12 with and without
variables’ selection.

4.2 Results
Results of the models’ performance with a binary outcome are displayed in Table 2 and Figure 7. When
comparing the discrimination of the different models, we notice that using S-learner gave higher median c-
statistic for benefit values than when it was built with the T-learner algorithm. Overall, we observe similar
results for the four methods. All the c-statistic for benefit values are around 0.5. van Klaveren et al. mentioned
that it is usual to observe a c-statistic for benefit under 0.6 [10]. Moreover, the dataset contains only 836
event for a total of 40 237 observations which could also explains why it was difficlut to obtain models that
discriminate well. The median intercept value was close to 0 for every models, with slighlty better results
when S-learner was used. With S-learner, RE had a slighlty better median slope and FS gave the values farther
from 1. With T-learner, RE had also the median slope closer to 1. SI and R1 gave identical median slope
values with both algorithms. In general, median slope values were not really close to 1 which was confirmed
by looking at Figure ?? where we can see that some points are not close to the diagonal. The MSE values were
close to 0 and comparable for every model whatever meta-learner algorithm was used. Generally speaking, it
seems that the random effects model built with S-learner produced the best performance with the INDANA
dataset.
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Table 1: Description of the predictors in each trial of the INDANA IPD-MA. The dataset with imputed missing
data we analyzed is presented.

Variable ANBP MRFIT HDFP MRC1

Age, mean (SD) years 50.1 (9.0) 46.9 (5.9) 50.8 (9.8) 52.1 (7.5)
Male, no. (%) 2475 (63.0) 8012 (100.0) 5910 (54.0) 9048 (52.1)
SBP, mean (SD) mmHg 154.3 (19.1) 141.1 (14.4) 158.8 (22.8) 161.6 (17.1)
Serum creatinine, mean (SD) µmol/l 87.2 (21.6) 98.0 (13.4) 94.1 (23.2) 84.8 (21.1)
Antihypertensive treatment arm, no. (%) 1988 (50.6) 4019 (50.2) 5485 (50.1) 8700 (50.1)

Table 2: Median results using INDANA with a binary outcome.
S-learner T-learner

RE SI R1 FS RE SI R1 FS
C-stat 0.529 0.530 0.530 0.530 0.507 0.507 0.507 0.510

Intercept 0.001 0.002 0.002 0.001 -0.003 -0.003 -0.003 -0.003
Slope 1.453 1.460 1.460 1.961 0.727 0.569 0.569 0.596
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 Discussion
Identifying subgroups that benefit from a treatment is an essential part of medical research. Using IPD-MA
to build prediction models that estimate the ITE can reduce overfitting and can increase generalizability. In
this paper, we compared two meta-learner algorithms and four methods to build prediction models for the
ITE with IPD-MA in a one-stage approach. As mentioned before, when a one-stage approach is used, it
is preferable to add variables centered to their study-specific mean and a covariate-mean interaction term,
as described by Riley et al. [11], to avoid getting aggregation bias; in our simulation study, we found that
models without this method did not add bias and hence we decided to not include it for simplicity. Overall,
simulation results showed that the random effects and the stratified intercept models give more accurate and
harmonious results in terms of discrimination and calibration. When a binary outcome was used, the choice
of the meta-algorithm did not have an impact on the results. However, with a time-to-event outcome, the S-
learner is preferable in scenarios without heterogeneity or with heterogeneity and few covariates, whereas the
T-learner is a better choice in scenarios with heterogeneity and more covariates. The T-learner approach may
be considered as allowing nonparametric interactions between the treatment and predictors, and thus these
results differ a bit with recent reports noting that effect models with interactions were prone to overfitting [18].
Including variables’ selection did not change the performance of the algorithms. Regarding the conclusions
that were observed on the INDANA dataset using a binary outcome, the best performance is obtained with the
S-learner algorithm and the random effects model. We had hypothesized that in IPD-MA, where the number
of predictors is often limited and the sample size large, the issues related to overfitting could be less important.
Results confirmed that hypothesis.

The use of IECV allowed to identify the generalizability of the different models. Steyerberg et al. [5],
who compared two of the methods present in this paper (random effects and rank-1) to estimate the Average
Treatment Effect with an IPD-MA, concluded that rank-1 was the most appropriate method. In this paper,
we chose a one-stage approach to estimate the ITE, but a two-stage approach could also have been selected.
In a two-stage approach, Fisher et al. [6] advised to only consider within-trial interaction i.e to calculate the
difference of predicted outcomes in each trial and then compare the results between trials. Chalkou et al. [7],
who used a two-stage approach to estimate the ITE with IPD-MA with a NMA framework, found that using
a pre-specified model (a model with previously identified prognostic factors) rather than a LASSO model
yielded better results.

This study has several limitations. We decided to use regression, although other prediction techniques
could have been used, among which penalized regression such as the LASSO, random forests, or support
vector machine, for instance [1, 19]. In our simulation settings, with a large sample size, and no complex
interactions or non-linearities between variables, the regression models we used are expected to perform well,
and there might be no clear advantage of more elaborate approaches. But in more complex situations, this
may not be the case, and these remain to be investigated as a follow-up of this work. Of note, to estimate
heterogeneity in treatment effects, specific LASSO constraints for a support vector machine classifier have
been proposed to separate the sparsity constraints between pre-treatment and causal heterogeneity parameters
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of interest [19]. Extension of such an approach to IPD-MA may be worth studying. Last, other approaches
to treatment personalization exist than those based on ITE prediction. For instance, recursive partitioning
methods have been proposed to identify subgroups of patients benefitting from a treatment, that have been
extended to IPD-MA [20]. Such methods were however not considered here.

Extensions of the present work could include the use of observational data instead of randomized control
trial data. A further extension with observation data would be to develop methods to estimate this type of
prediction models (such as rank-1, for instance), whereas allowing the datasets to remain located on different
data warehouses, similar to the concept of federated learning [21, 22].

In conclusion, in this paper, we evaluated the performance of different meta-learner algorithms and meth-
ods to estimate the ITE with IPD-MA. For the choice of the algorithm, using S-learner, which consists in
consist in fitting a single regression and adding the treatment as an indicator variable, leads to slightly better
predictions in scenarios where there is a time-to-event outcome with no heterogeneity or heterogeneity and
few predictors. For the choice of the method, random effects and stratified intercept are promising approaches.
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Figure 7: Calibration plots of the models built with S-learner (left) and T-learner (right) using INDANA with
a binary outcome.
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6 Supplementary material

6.1 Potential aggregation bias
We did not simulated the fully stratified model. Since this model consists in stratifying every parameters by
trial, aggregation bias is not an issue.

6.1.1 Simulations without ecological bias

We simulated a binary outcome following a Bernoulli distribution with parameter P given by:

logit(P ) = β0 + β1x1 + β2z + (β3x1)× z,

where z denoted the binary treatment indicator, x1 was a normally distributed variable (see parameterization
in table 3). Values for the model parameters were: β0 = −1.4, β1 = 0.02, β2 = −0.3 and β3 = 0.01. A
total of 1,000 simulations with an IPD-MA sample size of 2800 was performed, and models with and without
variable centering as described in Riley et al. [11] were fitted to the data.

Table 3: Distribution of x1.

Trial
Variable 1 2 3 4 5 6 7
x1, µ (σ) 52 (4) 56 (2) 64 (1) 70 (3) 77 (4) 78 (6) 82 (2)

Table 4: Median parameter estimates (standard errors) over 1000 simulations with the S-learner.

Model Random effects Stratified intercept Rank-1
Parameter Value No centering Centering No centering Centering No centering Centering

β0 −1.4 −1.40(0.07) −1.40(0.10) −1.27(0.33) −1.42(0.86) −1.40 −1.41
β1 0.02 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.04) 0.02 0.02
β2 −0.3 −0.30(0.11) −0.31(0.11) −0.30(0.11) −0.31(0.11) −0.30 −0.30
β3 0.01 0.01(0.01) −0.00(0.01) 0.01(0.01) 0.01(0.01) 0.01 0.00
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6.1.2 Simulations with ecological bias

We simulated a binary outcome in the same way as above but added some ecological bias. Therefore, the
values for the model parameters were: β0 = −1.4, β1 = 0.02, β2 = −0.3 − ((mean(x1) − 60)/100) and
β3 = 0.01.

Table 5: Median parameter estimates (standard errors) over 1000 simulations with the S-learner.

Model Random effects Stratified intercept Rank-1
Parameter Value No centering Centering No centering Centering No centering Centering

β0 −1.4 −1.40(0.08) −1.40(0.10) −1.22(0.34) −1.42(0.88) −1.34 −1.43
β1 0.02 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.04) 0.02 0.02
β2 −0.40 −0.40(0.12) −0.40(0.12) −0.40(0.12) −0.40(0.12) −0.40 −0.40
β3 0.01 0.00(0.01) −0.00(0.01) −0.00(0.01) −0.00(0.01) 0.00 0.00

6.2 Simulation settings
6.2.1 Covariate generation

In all simulation scenarios, covariates were numbered from x1 to x3 or x1 to x10, and their distribution varied
among the trials of the meta-analysis, as detailed in the tables 6 and 7. Covariates were drawn either from
Gaussian distribution with mean µ and standard deviation σ, or from a Bernoulli distributions with parameter
π.

Table 6: Distribution parameters for covariates in scenarios with three covariates.

Trial
Variable 1 2 3 4 5 6 7
x1, µ (σ) 52 (4) 56 (2) 64 (1) 70 (3) 77 (4) 78 (6) 82 (2)
x2, π 0.8 0.4 0.5 0.6 0.5 0.7 0.5
x3, µ (σ) 186 (13) 182 (16.5) 170 (9.4) 185 (12) 190 (9) 188 (10) 197 (21)

Table 7: Distribution parameters for covariates in scenarios with ten covariates.

Trial
Variable 1 2 3 4 5 6 7
x1, µ (σ) 52 (4) 56 (2) 64 (1) 70 (3) 77 (4) 78 (6) 82 (2)
x2, π 0.8 0.4 0.5 0.6 0.5 0.7 0.5
x3, µ (σ) 186 (13) 182 (16.5) 170 (9.4) 185 (12) 190 (9) 188 (10) 197 (21)
x4, π 0.1 0.005 0.01 0.02 0.05 0.01 0.04
x5, π 0.002 0.06 0.02 0.02 0.001 0.008 0.04
x6, π 0.5 0.2 0.3 0.4 0.3 0.25 0.3
x7, π 0.03 0.001 0.002 0.07 0.003 0.01 0.002
x8, π 0.13 0.11 0.05 0.25 0.05 0.06 0.04
x9, µ (σ) 176 (6) 162 (9) 167 (10) 169 (10) 168 (10) 170 (9) 167 (9)
x10, µ (σ) 6.6 (0.01) 6.5 (0.015) 6.4 (0.011) 6.1 (0.012) 6.4 (0.012) 6 (0.012) 6.4 (0.01)
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6.2.2 Simulation scenarios

Table 8: Summary of the 24 simulation scenarios. IPD-MA: individual patients meta-analysis.

Scenario Outcome No. covariates IPD-MA sample size Heterogeneity
1 Binary 3 2800 No
2 Binary 3 1400 No
3 Binary 3 700 No
4 Binary 10 2800 No
5 Binary 10 1400 No
6 Binary 10 700 No
7 Binary 3 2800 Yes
8 Binary 3 1400 Yes
9 Binary 3 700 Yes
10 Binary 10 2800 Yes
11 Binary 10 1400 Yes
12 Binary 10 700 Yes
13 Time-to-event 3 2800 No
14 Time-to-event 3 1400 No
15 Time-to-event 3 700 No
16 Time-to-event 10 2800 No
17 Time-to-event 10 1400 No
18 Time-to-event 10 700 No
19 Time-to-event 3 2800 Yes
20 Time-to-event 3 1400 Yes
21 Time-to-event 3 700 Yes
22 Time-to-event 10 2800 Yes
23 Time-to-event 10 1400 Yes
24 Time-to-event 10 700 Yes

6.3 Simulation results
Figure 8 and Figure 9 show the results for scenarios 7 to 12 where the predictor effects varied across trials.
The c-statistic for benefit values when variation in the predictor effects was included were quite similar be-
tween models with a slightly lower range of values for FS. We observed a small increase of performance with
S-learner in the scenarios with 3 covariates, especially for SI and R1. No model strategy stood out in terms of
discrimination. Looking at calibration, we found that the models’ values obtained with S-learner were slightly
more gathered around the intended values (0 for the intercept and 1 for the calibration slope). Concerning the
MSE, there were no significant differences between the meta-learner algorithms. Choosing FS led to higher
MSE and therefore is not recommended. Increasing the size of the IPD-MA led to lower MSE values. Overall,
the models showed a good performance. Using the rank-1 model or the fully stratified when the IPD-MA con-
tains a bigger number of variables and less patients procured no estimations. Once again, the scenarios with
10 covariates led to more wide-ranging results. The random effects model and the stratified intercept models
provided steadier results across all scenarios.
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Figure 8: Boxplot of the measures of performance of the models for scenario 7 to 9.

Figure 9: Boxplot of the measures of performance of the models for scenario 10 to 12.

The results of scenarios 13 to 18, which include survival outcomes, are displayed in Figure 10 and Fig-
ure 11. RE and SI had the best discrimination with a median c-statistic for benefit value of 0.86 in the scenarios
with 3 covariates and a median value between 0.80 and 0.82 in the scenarios with 10 covariates. R1 and FS
had a lower and more heterogeneous range of values. For calibration, the values closer to 0 and to 1 ,for
the intercept and the slope respectfully, are obtained with SI built with the S-learner algorithm. However,
the T-learner algorithm gave more homogeneous calibration results in scenarios with 10 covariates. The best
MSE was reached using the RE and SI models with S-learner. In conclusion, with no heterogeneity of predic-
tor effects across trials, the stratified intercept model built with the S-learner algorithm seems to perform better.
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Figure 10: Boxplot of the measures of performance of the models for scenario 13 to 15.

Figure 11: Boxplot of the measures of performance of the models for scenario 16 to 18.
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6.4 INDANA IPD-MA

Figure 12: Distribution of age in each trial of INDANA.
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