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A Bayesian Framework for Multivariate Multifractal
Analysis

Lorena Leon, Herwig Wendt, Jean-Yves Tourneret, Patrice Abry

Abstract—Multifractal analysis has become a reference tool for
signal and image processing. Grounded in the quantification of
local regularity fluctuations, it has proven useful in an increasing
range of applications, yet so far involving only univariate data
(scalar valued time series or single channel images). Recently the
theoretical ground for multivariate multifractal analysis has been
devised, showing potential for quantifying transient higher-order
dependence beyond linear correlation among collections of data.
However, the accurate estimation of the parameters associated
with a multivariate multifractal model remains challenging, es-
pecially for small sample size data. This work studies an original
Bayesian framework for multivariate multifractal estimation,
combining a novel and generic multivariate statistical model, a
Whittle-based likelihood approximation and a data augmentation
strategy allowing parameter separability. This careful design
enables efficient estimation procedures to be constructed for two
relevant choices of priors using a Gibbs sampling strategy. Monte
Carlo simulations, conducted on synthetic multivariate signals
and images with various sample sizes and multifractal parameter
settings, demonstrate significant performance improvements over
the state of the art, at only moderately larger computational cost.
Moreover, we show the relevance of the proposed framework
for real-world data modeling in the important application of
drowsiness detection from multichannel physiological signals.

Index Terms—multifractal analysis, multivariate, Bayesian es-
timation, multiscale, wavelet leaders

I. INTRODUCTION

Context: Multivariate multifractal analysis. Over the last
decades, multifractal analysis has grown into a standard tool
that has been successfully involved in various signal/image
processing tasks (classification, detection, etc, see e.g., [1]
for a review). In essence, multifractal analysis probes the
temporal dynamics in time series, or the spatial dynamics (tex-
tures) in images, by quantifying the strengths and topological-
geometrical structures of the fluctuations of the pointwise
regularity of the data. This is achieved with the multifractal
spectrum, the object of central interest to multifractal analysis,
see [2], [3] and below for details. Numerical implementations
for the estimation of the multifractal spectrum or the associated
multifractal parameters commonly involve multiscale (e.g.,
wavelet-based) representations of the data [4]–[6]. Multifractal
analysis led to significant successes in many real-world appli-
cations in very different contexts (cf., e.g., [7]–[13] or [14]
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and references therein). However, its theoretical grounding
remained, up to a recent past, fundamentally univariate in
principle, hence tied to the independent analysis of single time
series or images. This is a severe limitation for its practical use
because many recent applications entail the joint analysis of
signals or images recorded for the same system using different
sensors, and crucial information is potentially conveyed in the
coupling and dependencies between components. While this
limitation had been recognized early on and partially addressed
in specific applicative contexts [15], [16], the theoretical
foundation for multivariate multifractal analysis was laid only
recently [17], [18]. Its first practical use showed that the
multivariate multifractal spectrum can effectively capture and
quantify transient, local dependencies in data that cannot be
considered by second order statistics [14], [19]–[21]. The first
experiments also revealed that the estimation of the associated
cross-multifractality parameters is a challenging issue, which
we propose to tackle in the present work.
Related works: Multifractal estimation. Practical mul-
tifractal analysis, or multifractal estimation, fundamentally
relies on multiscale representations of the data. While some-
times based on multifractal detrended fluctuation analysis
[22], multifractal estimation is also often based on wavelets.
In particular, elaborating on the early proposition of using
wavelet transform modulus maxima representations [4], it
is now well documented that multifractal analysis benefits
from being constructed on wavelet leaders, defined as local
nonlinear transformations of the wavelet coefficients [2], [3],
[5], [6]. Whatever the multiscale representations used, mul-
tifractal estimation relies in essence on log-log regressions,
intrinsically requiring the data to have a long enough sample
size in order to allow their dynamics to develop along a set
of scales ranging across several orders of magnitude. These
regressions lead to large estimation variances, notably for
limited sample size data, and become a critical challenge,
for example, in several bivariate settings as explored in [19]–
[21]. This limitation was first addressed for 2D images by
adopting a Bayesian approach for the estimation of the scalar-
valued multifractality parameters [23], [24]. The preliminary
work presented in [25] considered, for the first time, the joint
analysis of bivariate signals (i.e., pairs of time series) with the
recently theoretically defined bivariate multifractal spectrum
and proposed a Bayesian estimation framework for the esti-
mation of the associated multifractality parameter triplet. In
the present work, we propose and study a general framework
for the estimation of the matrix-valued parameters associated
with the joint multifractal spectrum of multivariate signals and
images.
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Goals, contributions and outline. The goal of this work is
to propose a Bayesian framework for multivariate multifractal
signal and image analysis and to assess its estimation per-
formance. To that end, a theoretical multivariate multifractal
analysis and log-log regression-based multifractal estimation
are briefly recalled in Section II. Then, the first key contribu-
tion presented in Section III consists in devising an original
Bayesian model for the multivariate log-leader representations
of the data. This model combines the validation of a multi-
variate Gaussian distribution, the multiscale modeling of its
covariances, the derivation of a Whittle-type approximation
[26] of the corresponding likelihood and a data augmentation
strategy leading to a likelihood that is separable with respect
to the multifractal parameters to be estimated. Separability
further permits, as a second main contribution, to propose effi-
cient estimation algorithms, based on relevant choices of prior
distributions, the derivation of the conditional distributions of
the joint distribution of interest simplifying the use of Gibbs
sampling strategies (Section IV). As a third contribution, the
estimation performance of the proposed Bayesian frameworks
for multivariate multifractal estimation are assessed and com-
pared against classical linear regressions, and for two different
priors, using extensive Monte Carlo simulations relying on
synthetic multivariate multifractal processes for signal and
images as defined in [19], [20]. Performance results, reported
in Section V for different multifractal parameter settings and
sample sizes, and for both signals and images, demonstrate a
significant improvement in estimation performance achieved at
moderate extra computational cost. This opens the way for the
practical use of multivariate multifractal analysis on real-world
data. Finally, as a fourth contribution, Section VI studies the
application of the proposed framework to drowsiness detection
from polysomnographic data. Our results are comparable to the
state of the art, demonstrating the relevance of our approach
for real-world data modeling. Bayesian multivariate multifrac-
tal estimation procedures (together with synthesis procedures
for multivariate multifractal processes) will be made publicly
available via a documented toolbox at the time of publication.
Notation. Bold lowercase symbols represent vectors,
whereas bold uppercase symbols denote matrices. The de-
terminant and the trace of a matrix are denoted as det(·)
and tr(·). Superscripts ·H ,·∗ and ·T denote the Hermitian
transpose, the complex conjugation and the transpose opera-
tors. The matrix denoted diag(a1, a2 . . . , aM ) is the M ×M
diagonal matrix with a1, a2, . . . , aM along its diagonal. The
element at row u and column v of a matrix A is denoted as
[A]u,v . Further, ⊗ denotes the Kronecker product, Re(·) stands
for the real part operator, Ja1, a2K is the set of integers ranging
from a1 to a2 and the operator b·c truncates to integer values.
The symbol ∼ is used for “is distributed according to” and
∝ means “up to a multiplicative constant”. The normal, log-
normal, complex normal (CN), uniform, inverse Wishart (IW)
and scaled inverse Wishart (SIW) distributions are denoted as
N , LN , CN , U , IW and SIW .

II. MULTIVARIATE MULTIFRACTAL ANALYSIS

A. Multifractal spectrum
For a univariate function X(t) ∈ R, t ∈ Rd (e.g., t ∈ R for

time series and t ∈ R2 for images), multifractal analysis pro-
vides a quantification of the fluctuations along time or space
of its regularity. The Hölder exponent h(t) ≥ 0 is used to
measure the pointwise regularity (see, e.g., [2] for details). The
closer h(t) to 0, the more irregular X around position t. For
an R-variate function X(t) = [X1(t), . . . , XR(t)]T ∈ RR, the
Hölder exponent is denoted as hX(t) , [h1(t), . . . , hR(t)]T

where hr(t) is the exponent associated with the rth component
Xr(t). The multivariate multifractal spectrum DR(h) of X
is defined as the collection of Hausdorff dimensions dimH

of the sets of points t at which hX(t) takes the value
h = [h1, . . . , hR]T , i.e.,

DR(h) , dimH

{
t : hX(t) = h

}
, (1)

see [15], [17], [18] for details. It provides a global, geometrical
description of the pointwise regularity of X. Specifically, its
precise shape, width, and orientation with respect to the h-
axes quantify the degree of local fluctuation of the regularity
of the components of X, and to what extent these fluctua-
tions are coupled between components. The state of the art
procedure for the estimation of the multifractal spectrum is
constructed from the multiscale statistics of wavelet leaders
and is summarized in the next section [2], [3], [17], [18].

B. Multifractal formalism using wavelet leaders

Wavelet leaders. For d = 1 and R = 1, let ψ denote a
mother wavelet, which is an oscillating reference pattern that
is characterized by its number of vanishing moments Nψ , a po-
sitive integer defined as ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ− 1,∫
R tnψ(t)dt ≡ 0 and

∫
R tNψψ(t)dt 6= 0. It is designed such

that the collection {ψj,k(t) = 2−j/2ψ(2−jt− k)}(j,k)∈(Z,Zd)
of its dilated and translated templates forms an orthonormal
basis of L2(R) [27]. The L1 normalized discrete wavelet
coefficients dX(j,k) of X ∈ R are defined as dX(j,k) =
2−j/2〈ψj,k,X〉, where 〈 . , . 〉 is the inner product. Then, for
d = 1, the wavelet leaders of X are defined as

LX(j,k) , sup
λ′⊂3λj,k

|dX(λ′)|,

where λj,k = [k2j , (k + 1)2j) denotes the dyadic interval
of size 2j and 3λj,k stands for the union of λj,k with its
2 neighbors. In higher dimensions d ≥ 2, Q coefficients
d
(q)
X (j,k), q=1, . . . , Q, are computed using the tensor product

of 1D transforms (see, e.g., [28] for details), and the supremum
in the definition of the wavelet leaders is also taken for q and
for all 3d−1 direct neighbors.
Multifractal formalism. Wavelet leaders reproduce Hölder
exponents in the limit of fine scales, LX(j,k)'C2−jh(t) for
C > 0, 2j → 0, k2−j → t (t fixed) [2], [3]. The empirical
moments of LX(j,k) for 2j→0 behave as [18]

1

nj

∑
k∈J1,n1/d

j Kd

R∏
r=1

LXr (j,k)pr ≈ Kp2jζR(p), (2)

where p=[p1, . . . , pR]T , Kp > 0 and nj ≈ bNd/2djc is
the number of wavelet leaders at scale j of a single data
component. The so-called scaling exponents ζR(p) in (2) are
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tightly related to DR(h) via their Legendre transform referred
to as the multivariate Legendre spectrum

LR(h) , inf
p

(d+ 〈p,h〉 − ζR(p)). (3)

Finally, LR(h) provides an upper-bound for DR(h) for large
classes of processes and is in practice used as an estimator
of DR(h), see, e.g., [18]. Let `Xr (j,k) , lnLXr (j,k)
denote the logarithm of the wavelet leaders (aka log-leaders)
associated with Xr at a fixed scale j and position k. The first
order (mean) and second order (auto- and cross-covariances)
cumulants of `Xr (j,k) and `Xr′ (j,k), with r, r′∈{1, . . . , R},
take the form [19], [29]

E[`Xr (j,k)] = c01(r) + c1(r) ln 2j , (4)

Cov(`Xr (j,k), `Xr′ (j,k)) = c02(r, r′) + c2(r, r′) ln 2j , (5)

where c0· are model adjustment parameters not related to the
multifractal properties. Similar expressions are obtained for
the higher-order R-variate cumulants [14], [30]. The use of
(4) and (5) implicitly amounts to a parabolic approximation
of the pairwise scaling exponents ζ2(pr, pr′) which yields a
pairwise parabolic approximation of the multifractal spectrum
D2(hr, hr′) around its maximum [14], [18]:

D2(hr, hr′) ≈ d+
c2(r′, r′)b

2

(
hr − c1(r)

b

)2

+
c2(r, r)b

2

(
hr′ − c1(r′)

b

)2

− c2(r, r′)b

(
hr − c1(r)

b

)(
hr′ − c1(r′)

b

)
, (6)

where c2(r, r)< 0, b, c2(r, r)c2(r′, r′)− c2(r, r′)2 ≥ 0 [20]
and

- (c1(r), c1(r′)) indicates the position of the maximum of
D2(hr, hr′), which corresponds to the average degrees of
data regularity. Note that it does not convey information
on the joint multifractality (aka joint regularity fluctua-
tions) and will not be considered in the proposed model.

- c2(r, r) quantifies the amount of pointwise regularity
fluctuations (multifractality) for the rth component.

- c2(r, r′) characterizes the coupling between the regularity
fluctuations of the rth and r′th components.

The standard estimation procedure for the coefficients c1 and
c2 relies on linear regressions of sample cumulants across scale
j, as suggested by (4) and (5).

It is natural to define the normalized coupling parameter

ρmf(r, r
′) , − c2(r, r′)√

c2(r, r)c2(r′, r′)
∈ [−1, 1]. (7)

In view of the model defined in Section II-C, it can be
interpreted as a multifractal correlation and can be shown to
quantify higher-order dependence beyond linear correlation
among the data components {Xr}Rr=1 [19]–[21]. An estimator
of ρmf can be defined by replacing the coefficients in (7) by
estimates [19]. The type of information that can be captured by
ρmf is illustrated in Fig. 1, which shows a 3-variate synthetic
multifractal image (defined in the following paragraph), and
the magnitude of its isotropic image gradients, with positive
and negative values for ρmf among its components. The linear
correlation equals zero for all components. Nevertheless, the

X1, ρmf(1, 3)=−0.99 X2, ρmf(1, 2) = 0.99 X3, ρmf(2, 3)=−0.99

Fig. 1. Illustrations for multifractal correlation: synthetic 3-variate multifractal
image (top row, defined in [19], [31] and Section II-C), magnitude of gradients
(second row) and zooms of the patch marked by red square (bottom row).
X1 and X2 have multifractal correlation ρmf(1, 2) = 0.99, and ρmf(1, 3) =
ρmf(2, 3) = −0.99 with component X3. The linear correlation equals zero
for all components.

image gradient magnitudes reveal the strong co-organization
and dependence between the components. Indeed, for com-
ponents with positive ρmf, large gradients tend to co-occur at
the same locations, while they tend to be coupled with small
gradients when ρmf is negative.

C. Multivariate multifractal random walk

The multivariate multifractal random walk (MV-MRW)
[19], [31], [32] is the canonical multifractal model process for
multivariate data and is used here to illustrate the proposed
approach and assess its performance.
Definition. The construction of an MV-MRW for R com-
ponents requires two collections of stochastic processes: (i)
a collection of increments of fractional Brownian motions
(G1(t), . . . , GR(t)), which is determined by the self-similarity
parameters H1, . . . ,HR and an R×R point covariance Σss,
with corresponding correlation coefficients ρss(r, r

′), and
(ii) a collection of Gaussian processes (ω1(t), . . . , ωR(t))
with prescribed covariance function Σmf, with entries given
by [Σmf]rr′ (k, l) = [Πmf]rr′λrλr′ ln

(
T

||k−l||2+1

)
, r, r′ ∈

{1, . . . , R}, for ||k − l||2 ≤ T − 1 and 0 otherwise, where
T is an arbitrary integral scale, equal to the data sample size
in the rest of the paper. To simplify notations, we consider
[Πmf]rr = 1 and [Πmf]rr′ = ρmf(r, r

′). These processes are
numerically synthesized as described in [33]. Each component
Xr, r ∈ {1, . . . , R}, of an MV-MRW is then defined as the
primitive of the product Greωr .
Multifractal properties. The multifractality parameters of
an MV-MRW are given by c1(r) = Hr + λ2r/2, c2(r, r) =
−λ2r , and c2(r, r′) = −ρmf(r, r

′)λrλr′ [19], [31], whereas
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Fig. 2. Gamma plots for the joint distribution of the empirical log-leaders at
scale j = 4, associated with 100 independent 210×210×R synthetic images
generated using a 2D MV-MRW, with R=2, 6, 10 (from left to right; λr =√
r/100, ρmf(r, r

′) uniform in [0, 0.5]). The closer to the red line, the better
the approximation of the distribution by an R-variate normal distribution.

its higher-order cumulants are equal to zero. Examples of
realizations of an MV-MRW (2D) for R = 3 are plotted in
Fig. 1. Typical values of c2 for real-world data range from zero
(no multifractality) down to c2 ≈ −0.25, which corresponds
to an extremely intermittent signal that is rarely observed for
a non-pathological physical signal.

III. STATISTICAL MODEL FOR MULTIVARIATE
LOG-LEADERS

Estimations based on log-log regressions lead to large
variance, in particular for the second order cumulants c2
and for ρmf [19]–[21]. Instead, we propose a second-order
statistical model for the vector of log-leaders `(j,k) ,
[`X1(j,k), . . . , `XR(j,k)]T ∈ RR for multivariate multifractal
data. This model will be shown to be useful to estimate the
multifractality parameters in multivariate scenarios using a
Bayesian framework.

A. Direct model

Marginal distributions. In the univariate case, theoretical
arguments suggest that the marginal distributions of multireso-
lution coefficients of multifractal processes are approximately
log-normal [34]. This has been studied and confirmed nume-
rically for univariate wavelet leaders in [23], [24]. It is hence
natural to extend this modeling to the multivariate case R > 1.
Numerical simulations for synthetic multivariate multifractal
processes as defined in Section II-C, for large ranges of
sample sizes and multifractal parameter values, suggest that
the empirical distribution of the log-leaders `(j,k) can indeed
be well approximated by an R-variate Gaussian distribution.
Illustrative examples are given in Fig. 2, which shows gamma
plots (cf. e.g. [35], [36]) for scale j=4, d=2 and R= 2, 6, 10.
Covariance. The theoretical results derived for univariate
random wavelet cascades in [37] suggest a linear asymptotic
decay for the auto-covariance of log-leaders, see also [23],
[24] for an empirical study for a larger class of single-variable
multifractal processes. Theoretical arguments available in, e.g.,
[32], [38] suggested similar linear asymptotic behavior also
for the cross-covariance terms for multivariate multifractal
processes. Inspired by that, we propose a generic covariance
model for log-leaders for multivariate multifractal processes,
with the key novel ingredient of a cross-term that describes
the covariance between log-leaders of different components,
parametrized by c2(r, r′). Assuming that the vector of log-
leaders associated with the signal/image under analysis is
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Fig. 3. Comparison between the proposed model (blue line) and the sample
covariance (red line) at scale j = 2, averaged over 100 independent copies
of an 210 × 210 × 3 synthetic MV-MRW image with (λ1, λ2, λ3) =
(
√

0.02,
√

0.04,
√

0.06) and ρmf(1, 2) = ρmf(1, 3) = ρmf(2, 3) = 0.5. Plots
correspond to each covariance matrix element for slice ρ =‖[0,∆k2]T ‖2.

stationary and isotropic, the R × R auto-covariance matrix
of the vectors `(j,k) at a fixed scale j can be approximated
by a radially symmetric function Sj(ρ) with ρ , ‖∆k‖2 as

Cov (`(j,k), `(j,k + ∆k)) ≈ Sj(ρ), (8)

with

Sj(ρ) = Σ1f1(j, ρ) + Σ2f2(j, ρ), (9)

where Σ1 and Σ2 are two R×R symmetric real-valued
matrices containing the unknown multifractal parameters to be
estimated. Specifically, upon a change of sign, the elements of
Σ1 equal the auto- and cross-multifractal parameters c2, i.e.,
−[Σ1]rr′ = c2(r, r′), with r, r′ ∈ {1, . . . , R}. The matrix-
valued parameter Σ2 is used for model adjustment at small
lags ρ ≤ 3, whose precise shape was found not to depend on
the multifractality parameters and was modeled by a simple
single parameter affine function. Moreover,

f1(j, ρ) = max(0,− ln((ρ+ 1)/(ρj + 1)), (10)
f2(j, ρ) = max (0, 1− ln(ρ+ 1)/ ln 4) , (11)

with ρj = bnj/κc (with κ = 5 (1D) and κ = 4 (2D)
fixed using cross-validation). For i ∈ {1, 2} and all scales j,
fi(j, ·) is a non-negative function. Therefore, assuming that Σ1

and Σ2 are positive definite (p.d.) ensures that Sj is positive
semi-definite (p.s.d.) for all scales j, as it is the sum of two
p.s.d. matrices [39]. Illustrative examples of this covariance
model are provided in Fig. 3, which indicate good fit for
the zero lag (5) and the covariance decay (10) that convey
information on the multifractal parameters, and show slightly
larger discrepancies for lags 1 and 2 covered by the model
adjustment (11).
Likelihood. Let l(j,k) denote the centered vector of the
log-leaders at a fixed scale j and position k. The vector
lj , [l(j,k1)T , . . . , l(j,knj )

T ]T ∈ RRnj stacks all the vectors
{l(j,k)} at scale j organized in lexicographic order. We
assume here that lj and lj′ at different scales j′ 6= j are
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independent.1 Together with the above model, the likelihood
of the vector l =

[
lTj1 , . . . , l

T
j2

]T
of the log-leaders at scales

j = Jj1, j2K given Σ1 and Σ2 can be written as

p(l | Σ1,Σ2) =

j2∏
j=j1

p(lj | Σ1,Σ2),

∝
j2∏
j=j1

(det Ξj)
−1/2

exp

(
−1

2
lTj Ξ−1j lj

)
, (12)

where Ξj = Σ1⊗F1j+Σ2⊗F2j is an Rnj×Rnj covariance
matrix with [Fij ]u,v = fi(j, ||ku − kv||2), i = 1, 2. For
any scale j, the positive definiteness of Fij can be assessed
numerically to check that Σi ⊗ Fij and Ξj are p.d.

B. Whittle approximation

The numerical evaluation of the likelihood (12) requires the
inversion of the matrix Ξj . For large sample size, this inversion
can become computationally and numerically challenging.
Even when the inversion is not problematic, one may want
to use a faster solution based on an approximation. Therefore,
we make use of a Whittle approximation [26] and approximate
the time-domain likelihood (12) in the frequency domain by

p(l | Σ1,Σ2) ≈
j2∏
j=j1

pW (lj | Σ1,Σ2) (13)

with

pW (lj | Σ1,Σ2) ∝
∏

m∈Ij

(
det S̃j,m

)−1
exp

(
−zHj,mS̃−1j,mzj,m

)
, (14)

where zj,m ∈ CR denotes the R-variate normalized discrete
Fourier coefficient of l(j,k) at frequency ωj,m = 2πm/n

1/d
j ,

zj,m = n
−1/d
j

∑
k∈J1,n1/d

j Kd

l(j,k) exp (−ikTωj,m),
(15)

where m ∈ Ij , Jb(−n1/dj − 1)/2c, n1/dj −bn1/dj /2cKd \ {0}.
Moreover, the power spectral matrix S̃j forms a Fourier pair
with the covariance matrix Sj [40], which can be approxima-
ted using a discrete Fourier transform of fi(j, ·),

gi(ωj,m) =
∑

k∈J−n1/d
j ,n

1/d
j Kd

fi(j, ‖k‖2) exp (−ikTωj,m),

(16)
with i = 1, 2. Thus,

S̃j,m = Σ1g1(ωj,m) + Σ2g2(ωj,m). (17)

For i ∈ {1, 2} and any scale j, fi(j, ·) is a non-negative even
function. Thus, gi(ωj,m) is real-valued and strictly positive.
Since Σ1 and Σ2 are assumed to be p.d., S̃j is a real-valued
p.d. matrix for any scale j.

1Note that the theoretical results in [37] and our numerical results suggest
that the inter scale dependence between log-leaders could also be described
by a model reminiscent of (8), with proper adjustments for decimation. This
paper assumes independence to simplify the proposed model, which leads to
reduced computational cost. The results reported in Section V demonstrate
that this assumption is reasonable and leads to excellent performance.
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0 2 4 6
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0 2 4 6 8
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sample
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Fig. 4. Comparison between the sample power spectral matrix (red line),
averaged over 100 independent realizations of a 2D MV-MRW for R =
2, N = 215, (λ1, λ2) = (

√
0.04,

√
0.08) and ρmf(1, 2) = 0.6, and the

proposed model (blue line) obtained using (17). Plots correspond to slice
ρ̃ , ‖m‖2 when m = [0,m2]T .

The coefficient zj,m has the central symmetry property
zj,m = z∗j,−m since the log-leaders l(j,k) are real-valued.
Also, the power spectral matrix S̃j,m has the same property.
Thus, the product in (14) can be taken over the positive half
of the total frequency grid.

Fig. 4 illustrates the fit between the models used for the
power spectral densities (PSDs) and the cross power spectral
density (CPSD) (computed using (17)) and their estimates.
Simulation results obtained for a wide range of multifractal pa-
rameters evidence that the proposed model yields an excellent
fit at low frequencies but larger deviation from the estimated
(C)PSDs at high frequencies because of the coarser modeling
of short time lags discussed above and potential aliasing
due to the slow decay of the correlation function. Therefore,
we propose a high-frequency cutoff introducing a bandwidth
parameter η to control the fraction of the spectral grid that
is actually used. Thus, the product in (14) is conducted using
m ∈ I†j = {m ∈ Ij : 0 < ρ̃ ≤ √ηbn1/dj /2c} with ρ̃ , ‖m‖2.
The value for η is obtained using cross validation in order to
meet a bias-variance trade-off of the estimates. In particular,
we set η = 1 (1D) and η = 0.25 (2D) in this paper.

C. Model in the Fourier domain

Expression (14) can be interpreted as a spectral likeli-
hood, see, e.g., [41], [42], leading to model the Fourier
coefficients zj,m by a frequency-independent random vector
with a non-degenerate centered circular-symmetric complex
Gaussian distribution CN (0, S̃j,m). To simplify notation, we
replace the sub-index ·j,m of Section III-B by a single sub-
index ·s defined as a bijective function of (j,m) on the set
{1, . . . ,M}, where M is the number of elements of the set
{(j,m) : j = Jj1, j2K and m ∈ I†j }. Therefore, the density of
the vector z = [zT1 , . . . , z

T
M ]T ∈ CMR, can be written as

p(z | Σ1,Σ2) ∝
M∏
s=1

(det Ωs)
−1 exp(−zHs Ω−1s zs), (18)

where Ωs , Σ1g1,s + Σ2g2,s, with gi,s , gi(ωs).

D. Data augmentation

Model (18) is simple and cheap to evaluate numerically
compared to (12). However, its main inconvenience regarding
the estimation of Σ1 and Σ2 is that these matrices are addi-
tively tied together in Ωs, so that it is not possible to design
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conjugate priors leading to simple conditional distributions
(that will be used in the estimation algorithm). To bypass this
difficulty, we use data augmentation (see, e.g., [43], [44] for
more details) and introduce a complex-valued vector of latent
variables u = [uT1 , . . . ,u

T
M ] ∈ CMR as the hidden mean of

the observed data z leading to the augmented likelihood
p(z,u | Σ1,Σ2) = p(z | u,Σ1)p(u | Σ2),

∝ (det Σ1)−M exp (− tr(Σ−11 Φ̃1)/2)

(det Σ2)−M exp (− tr(Σ−12 Φ̃2)/2), (19)

with

Φ̃1 = 2 Re(

M∑
s=1

(zs − us)(zs − us)
Hg−11,s), (20)

Φ̃2 = 2 Re(

M∑
s=1

usu
H
s g
−1
2,s). (21)

By construction, the likelihood (18) is obtained by marginali-
zing (19) with respect to u. Note that the augmented likelihood
(19) is separable in Σ1 and Σ2, which will simplify the
estimation of these matrix-valued parameters significantly.

IV. BAYESIAN ESTIMATION

The matrices Σ1 and Σ2 of the model introduced in Section
III can be estimated using Bayesian estimators. Bayesian infe-
rence consists in assigning prior distributions to the unknown
model parameters and estimating them using the resulting pos-
terior distribution. The estimation of covariance matrices using
Bayesian estimators has been considered in several studies,
motivated by the regularizing effect of the prior distribution
(see, e.g., [45]). This section presents the Bayesian model
investigated in this work and a procedure for the estimation
of Σ1 and Σ2 for an arbitrary number R of components.

A. Likelihood

The proposed Bayesian model is based on the augmented
likelihood (19), which is the product of complex Gaussian
distributions having Σ1 and Σ2 as covariance matrices.

B. Priors

Inverse Wishart. The natural conjugate prior for Σi is the
inverse Wishart (IW) prior [46], i.e., Σi ∼ IW(νi,Λi), with
probability density function (pdf)

p(Σi|νi,Λi) ∝ (det Σi)
− 1

2 (νi+R+1) exp (− tr(ΛiΣ
−1
i )/2),

(22)
where νi ∈ R is the degree of freedom and Λi is an R × R
p.d. scale matrix. The IW prior is proper for νi > R−1 and its
mean E[Σi] = Λi/(νi−R−1) only exists if νi > R+1. One
of the main disadvantages of this prior is that the uncertainty
for the variance parameters in Σi is only controlled by νi and
thus does not permit to incorporate different prior information
for the different variance components. Moreover, if νi is larger
than one, the variance estimates are biased because the implied
scaled distribution on each individual variance has extremely
low density in a region near zero [47]. Finally, the IW
prior imposes a dependency between the correlations and the

variances (since larger variances are associated with absolute
values of the correlations near one while small variances are
associated with correlations near zero [48]), which is not a
desired property.
Scaled inverse Wishart. An alternative to the IW prior is
the scaled inverse Wishart (SIW) prior proposed in [49]. The
idea is to decompose the matrix Σi, using two independent
random matrices Qi and ∆i defined as

Σi , ∆iQi∆i, (23)

where Qi ∼ IW(νi,Λi) and ∆i is a diagonal matrix such
that its diagonal elements δir = [∆i]rr are independent and
log-normal distributed, i.e., δir ∼ LN (βir, α

2
ir) with pdf

p(δir|βir, α2
ir) ∝ (δirαir)

−1 exp (−(ln δir − βir)2(2α2
ir)
−1),
(24)

for i ∈ {1, 2} and r ∈ {1, . . . , R}. The decomposition of Σi in
(23) allows the priors of the standard deviations and correlation
coefficients to be defined semi-separately, providing more
flexibility than the IW prior.

Section V will study and compare the use of the IW and
SIW priors for multivariate multifractal analysis.

C. Posterior distribution

The posterior distribution associated with the proposed
Bayesian model for Σ1, Σ2 and the latent vector u can be
computed from Bayes’ theorem

p(Σ1,Σ2,u | z) ∝ p(z,u | Σ1,Σ2)p(Σ1)p(Σ2). (25)

This distribution and can be used to define the marginal
minimum mean square error (MMSE) estimator ΣMMSE

i ,
E [Σi | z,u]. This estimator is difficult to be expressed using
a simple closed form expression. Thus, we propose to compute
an approximation resulting from a Markov chain Monte Carlo
(MCMC) algorithm [50]. In particular, we consider Gibbs
samplers for the inverse Wishart prior and its scaled version,
which are presented in the next section.

D. Gibbs sampler

The Gibbs sampler consists in generating samples
{u(λ),Σ

(λ)
1 ,Σ

(λ)
2 }

Nmc
λ=1 according to the conditional distribu-

tions of (25) when using an IW prior for Σi or its scaled
version.
Inverse Wishart prior. Assuming Σi ∼ IW(νi,Λi) for
all i ∈ {1, 2}, the conditional distribution of Σi | z,u is

p(Σi | z,u) ∝(det Σi)
−(2M+νi+R+1)/2

exp
(
− tr(Σ−1i (Λi + Φi))/2

)
, (26)

which is the following IW distribution:
Σi | z,u ∼ IW(νi + 2M,Λi + Φ̃i). (27)

The conditional distribution of u | Σ1,Σ2, z can be shown to
be the following complex normal distribution:

u | z,Σ1,Σ2 ∼ CN (y, Σ̃), (28)

where Σ̃ is a block diagonal matrix whose sth block is
defined as Σ̃s =

[
(g1,sΣ1)−1 + (g2,sΣ2)−1

]−1
and y =

[yT1 , . . . ,y
T
M ]T with ys = Σ̃s(g1,sΣ1)−1zs. Using the condi-

tional distributions (27) and (28), Algorithm 1 summarizes the
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ALGORITHM 1: Gibbs sampler using the IW prior
Initialization:
Set u = 0 and draw Σ

(0)
i ∼ IW(νi,Ωi) for i = 1, 2

MCMC iterations:
for λ = 1 : Nmc do

for i = 1 : 2 do
Draw Σ

(λ)
i from the IW distribution (27)

end
Draw u(λ) according to the CN distribution (28)

end
return {Σ(λ)

1 ,Σ
(λ)
2 }

Nmc
λ=1

different steps of the proposed Gibbs sampler used to generate
samples according to the posterior of interest (25).
Scaled inverse Wishart prior. The SIW prior used for
Σi is defined by independent priors for the scale parameters
{δir}Rr=1 and the matrix parameter Qi [49]:

p(Σi) = p(Qi)

R∏
r=1

p(δir). (29)

Thus, the posterior distribution (25) can be rewritten after
substituting both Σ1 and Σ2 by their decompositions (23).
For i = {1, 2}, assuming Qi ∼ IW(νi,Λi), the following
result is obtained

p(Qi |∆i,z,u) ∝ (det Qi)
−(2M+νi+R+1)/2

exp
(
− tr(Q−1i (Λi + ∆−1i Φi∆

−1
i ))/2

)
, (30)

which means that the conditional distributions of Qi |∆i, z,
u are IW distributions:

Qi |∆i, z,u ∼ IW(νi + 2M,Λi + ∆−1i Φ̃i∆
−1
i ). (31)

Similarly, after some manipulations of (25), the log-
conditional posterior distribution of δir (rth diagonal element
of ∆i) can be determined:

ln p(δir | Qi, {δir′}Rr′=1,r′ 6=r, z,u) = −(2M + 1) ln δir

− (ln δir − βir)2/(2α2
ir)− [Q−1i ]rr[Φ̃i]rr(2δ

2
ir)
−1

− δ−1ir
∑
r′ 6=r

δ−1ir′ [Q−1i ]rr′ [Φ̃i]rr′ + constant, (32)

which is not a standard distribution. To sample according to
(32) a Metropolis-Hastings random walk procedure is used for
updating each component δir in turn. The proposal distribution
is chosen here as a real-valued Gaussian distribution whose
location parameter is the current value δ◦ir and the scale
parameter σ2

δir
is adaptively chosen to ensure an acceptance

rate between 0.4 and 0.6 [50]. The draws of Qi and {δir}Rr=1

are finally used to generate samples of Σi using (23).
Finally, the conditional distribution of u | Σ1,Σ2, z is the

same as in (28). Algorithm 2 summarizes the different steps
of the proposed sampling method.
Approximation of the Bayesian estimator. Observe that
since both Σ1 and Σ2 are generated from IW distributions or
their scale versions, these matrices are guaranteed to be p.d.
matrices along the iterations. Therefore, for i ∈ {1, 2} after
a burn-in period (where the first Nbi samples are discarded),

ALGORITHM 2: Gibbs sampler using the SIW prior
Initialization:
Set u = 0 and draw Q

(0)
i ∼ IW(νi,Ωi) and δ(0)ir , 1 for

all i = 1, 2 and r = 1, . . . , R
MCMC iterations:
for λ = 1 : Nmc do

for i = 1 : 2 do
Draw Q

(λ)
i from the IW distribution (31)

Set δ◦ir = δ
(λ−1)
ir for all r = 1, . . . , R

for r = 1 : R do
Draw δ?ir ∼ N (δ◦ir, σ

2
δir

) and µ ∼ U[0,1]
Compute the acceptance ratio a using (32):

a =
p(δ?ir | {δ◦ir}Rr=1,r 6=r′ , βir, σ

2
ir)

p(δ◦ir | {δ◦ir}Rr=1,r 6=r′ , βir, σ
2
ir)

Set δ(λ)ir =

{
δ?ir if µ < a

δ◦ir otherwise
end
Set ∆

(λ)
i = diag(δ

(λ)
i1 , . . . , δ

(λ)
iR )

Compute Σ
(λ)
i = ∆

(λ)
i Q

(λ)
i ∆

(λ)
i

end
Draw u(λ) according to the CN distribution (28)

end
return {Σ(λ)

1 ,Σ
(λ)
2 }

Nmc
λ=1

the MMSE estimator of Σi is approximated by computing the
averages of the matrices {Σ(λ)

i }
Nmc
λ=Nbi+1, i.e.,

Σ̂i =
1

Nmc −Nbi

Nmc∑
λ=Nbi+1

Σ
(λ)
i , i = 1, 2, (33)

which are also p.d. matrices.
The proposed estimators (27-28), (33) and (28-31-32), (33),

resulting from the IW and SIW priors of Section IV-B, will
be denoted as IW-Bay and SIW-Bay in the following.

V. PERFORMANCE ASSESSMENT

The IW-Bay and SIW-Bay estimators are numerically ve-
rified for 100 independent realizations of the synthetic mul-
tivariate multifractal processes described in Section II-C for
different sample sizes, numbers of data components and a large
range of values of multifractal parameters. We compare the
estimates θ̂ of θ ∈ {−c2(r, r′), ρmf(r, r

′)}Rr,r′=1 obtained by
Bayesian estimation to those obtained using a weighted linear
regression (see, e.g., [3]), denoted as WLR. The performance
is quantified using the bias (BIAS), standard deviation (STD)
and the root-mean-square error (RMSE) across realizations,

defined as b(θ̂) = Ê[θ̂]− θ, s(θ̂) =

√
V̂ar[θ̂] and r(θ̂) =√

b(θ̂)2 + s(θ̂)2, where Ê[.] and V̂ar[.] are the sample mean
and the sample variance.

A. Monte Carlo simulations and parameter settings

A detailed performance analysis was conducted for the
bivariate case (R = 2) and for R ∈ {1, . . . , 10}.
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TABLE I
1D MV-MRW ESTIMATION PERFORMANCE FOR R = 2, N = 212 , ρMF(1, 2)∈ {0.1, 0.3, 0.5, 0.7, 0.9} AND −c2(2, 2) ∈ {0.02, 0.04, 0.06, 0.08, 0.1}.

BEST RESULTS ARE MARKED IN BOLD.

ρmf(1, 2) 0.1 0.3 0.5 0.7 0.9

−
c 2

(1
,1

)
=

0
.0

2

B
IA

S WLR 0.0033 0.0006 0.0044 0.0026 0.0005
SIW-Bay 0.0063 0.0055 0.0050 0.0043 0.0028
IW-Bay 0.0124 0.0117 0.0116 0.0118 0.0113

ST
D WLR 0.0135 0.0119 0.0125 0.0124 0.0131

SIW-Bay 0.0063 0.0046 0.0055 0.0045 0.0035
IW-Bay 0.0046 0.0035 0.0040 0.0035 0.0029

R
SM

E WLR 0.0139 0.0120 0.0132 0.0127 0.0131
SIW-Bay 0.0089 0.0072 0.0074 0.0062 0.0044
IW-Bay 0.0132 0.0122 0.0122 0.0123 0.0117

−
c 2

(2
,2

)
=

0
.0

8

B
IA

S WLR 0.0094 0.0087 0.0070 0.0107 0.0080
SIW-Bay 0.0006 0.0010 0.0033 0.0055 0.0045
IW-Bay 0.0004 0.0004 0.0016 0.0029 0.0014

ST
D WLR 0.0231 0.0291 0.0283 0.0270 0.0259

SIW-Bay 0.0110 0.0096 0.0109 0.0084 0.0096
IW-Bay 0.0100 0.0090 0.0100 0.0082 0.0090

R
SM

E WLR 0.0249 0.0304 0.0292 0.0290 0.0271
SIW-Bay 0.0110 0.0097 0.0114 0.0100 0.0106
IW-Bay 0.0100 0.0090 0.0102 0.0087 0.0091

ρ
m

f(
1
,2

)

B
IA

S WLR 0.1077 0.0572 0.0130 0.2770 0.0242
SIW-Bay 0.0309 0.0917 0.1551 0.1588 0.1801
IW-Bay 0.0433 0.1356 0.2282 0.2957 0.3730

ST
D WLR 0.7091 0.7971 0.6143 1.1903 0.3964

SIW-Bay 0.1323 0.1069 0.1073 0.0839 0.0604
IW-Bay 0.1001 0.0794 0.0799 0.0596 0.0476

R
SM

E WLR 0.7172 0.7992 0.6144 1.2221 0.3971
SIW-Bay 0.1359 0.1408 0.1885 0.1796 0.1899
IW-Bay 0.1090 0.1571 0.2418 0.3016 0.3760

−c2(2, 2) 0.02 0.04 0.06 0.08 0.1

−
c 2

(1
,1

)
=

0
.0

2

B
IA

S WLR 0.0035 0.0029 0.0040 0.0039 0.0040
SIW-Bay 0.0057 0.0054 0.0048 0.0044 0.0035
IW-Bay 0.0121 0.0120 0.0117 0.0113 0.0105

ST
D WLR 0.0114 0.0129 0.0124 0.0145 0.0133

SIW-Bay 0.0049 0.0058 0.0050 0.0051 0.0047
IW-Bay 0.0037 0.0043 0.0040 0.0038 0.0035

R
SM

E WLR 0.0119 0.0132 0.0130 0.0150 0.0139
SIW-Bay 0.0076 0.0080 0.0070 0.0067 0.0059
IW-Bay 0.0127 0.0128 0.0124 0.0120 0.0111

−
c 2

(2
,2

) B
IA

S WLR 0.0026 0.0022 0.0066 0.0114 0.0062
SIW-Bay 0.0055 0.0038 0.0007 0.0013 0.0075
IW-Bay 0.0122 0.0077 0.0035 0.0004 0.0066

ST
D WLR 0.0115 0.0182 0.0248 0.0298 0.0309

SIW-Bay 0.0055 0.0071 0.0082 0.0092 0.0106
IW-Bay 0.0041 0.0062 0.0073 0.0086 0.0100

R
SM

E WLR 0.0118 0.0183 0.0257 0.0319 0.0315
SIW-Bay 0.0078 0.0080 0.0083 0.0093 0.0130
IW-Bay 0.0128 0.0099 0.0081 0.0087 0.0120

ρ
m

f(
1
,2

)
=

0
.5 B
IA

S WLR 0.1348 0.1377 0.0997 0.1933 0.2670
SIW-Bay 0.1433 0.1559 0.1475 0.1329 0.1435
IW-Bay 0.2692 0.2513 0.2320 0.2158 0.2232

ST
D WLR 0.8834 0.7594 0.8646 1.0178 0.8363

SIW-Bay 0.1260 0.1224 0.1023 0.1087 0.0985
IW-Bay 0.0800 0.0844 0.0743 0.0747 0.0714

R
SM

E WLR 0.8936 0.7718 0.8704 1.0360 0.8779
SIW-Bay 0.1909 0.1982 0.1795 0.1717 0.1740
IW-Bay 0.2808 0.2651 0.2436 0.2283 0.2344

In the bivariate case (R = 2), the parameters of the
MV-MRW process are set to (H1, H2) = (0.72, 0.72),
λ1 =

√
0.02, λ2 ∈ {

√
0.02,

√
0.04,

√
0.06,

√
0.08,

√
0.1)},

ρss(1, 2) = 0 (uncorrelated data components) and ρmf(1, 2) ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Sample sizes are fixed to N = 212 (1D
signals) and N ×N = 29 × 29 (2D square images) when not
mentioned otherwise. For R ∈ {1, ..., 10}, λr =

√
1/r, ρmf

is uniform in [0, 0.5] and all other parameters are as above.
The wavelet analysis is conducted with a Daubechies least
asymmetric wavelet (a common choice for scaling analysis)
with Nψ = 3, and excluding the finest scale (j1 = 2 to
j2 = 7 (1D) and j2 = 5 (2D), respectively), cf, e.g., [3], [51].
The hyperparameters for our model are set to νi = R + 2,
Λi = IR (R × R identity matrix), (βir, α

2
ir) = (0.1, 1), for

i ∈ {1, 2} and r ∈ {1, . . . , R}, see, e.g., [49], [52]. With
these choices, a reasonable amount of prior probability mass
(≈ 1/4 − 1/3) is assigned to a conservatively large range
of multifractality parameters −0.25 . c2 ≤ 0. Note that the
priors are sufficiently non-informative so as not to bias our
performance analysis. The parameters of the Gibbs samplers
are set to Nbi = 1000 and Nmc = 2000, which were found to
be suitable values to ensure the convergence of the proposed
estimation algorithms (see, e.g., [50]).

B. Estimation performance

Tables I and II summarize the estimation performance of
WLR, SIW-Bay and IW-Bay estimators for 1D (signals) and
2D (images), respectively.
Linear regression vs. Bayesian estimation. We observe
that while BIAS is in general smaller for WLR than for the
Bayesian estimations, the latter produce smaller STD for all

parameters (univariate c2(r, r) and cross-component multifrac-
tal correlation ρmf). Specifically, WLR has 2− 7 times larger
STD than the Bayesian estimators for the univariate parameters
c2(r, r) and 5 − 27 times larger STD for ρmf. Consequently,
the RMSE values of the Bayesian estimators are (in median
over the considered values for c2 and ρmf) 1.8, 2.6 and 3.5
times smaller than those of WLR for c2 and ρmf. These RMSE
reductions are larger for large values of the multifractality
parameter c2(2, 2) , and they are especially important for small
values of ρmf (up to a factor 14). Such significant performance
gains for the proposed Bayesian estimators are observed for
both time series (1D) and images (2D).
Comparison of priors. Tables I and II show that the use of
the SIW prior globally leads to smaller BIAS, but larger STD
than the IW prior. This is to be expected because of the extra
modeling flexibility of the scaled prior with a larger number of
parameters. This bias-variance trade-off leads in many cases to
better estimation performance (i.e., smaller RMSE) for SIW-
Bay. In particular, SIW-Bay always yields better estimation
performance than IW-Bay for the multifractal correlation pa-
rameter ρmf(1, 2), and for the univariate parameters c2(1, 1)
and c2(2, 2) when −c2(2, 2) < 0.05, for which IW-Bay yields
RMSE values up to twice as large as those for SIW-Bay.
Estimation performance vs. sample size. Fig. 5 plots
averages and STD-based error bars for estimates obtained
for WLR, IW-Bay and SIW-Bay as a function of the sample
size (for N ×N size images; similar results are obtained for
1D time series and are not reported here for space reasons).
The parameters for a 2D MV-MRW and R = 2 were set
to (H1, H2) = (0.72, 0.72), λ1 =

√
0.02, λ2 =

√
0.08,

ρss(1, 2) = 0, ρmf(1, 2) = 0.5, N ∈ {26, 27, 28, 29, 210, 211}
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TABLE II
2D MV-MRW ESTIMATION PERFORMANCE FOR R = 2, N = 29 , ρMF(1, 2)∈ {0.1, 0.3, 0.5, 0.7, 0.9} AND −c2(2, 2) ∈ {0.02, 0.04, 0.06, 0.08, 0.1}.

BEST RESULTS ARE MARKED IN BOLD.

ρmf(1, 2) 0.1 0.3 0.5 0.7 0.9

−
c 2

(1
,1

)
=

0
.0

2

B
IA

S WLR 0.0007 0.0011 0.0007 0.0007 0.0011
SIW-Bay 0.0050 0.0044 0.0032 0.0020 0
IW-Bay 0.0071 0.0066 0.0058 0.0050 0.0040

ST
D WLR 0.0090 0.0085 0.0075 0.0080 0.0077

SIW-Bay 0.0025 0.0022 0.0026 0.0019 0.0015
IW-Bay 0.0022 0.0020 0.0022 0.0015 0.0013

R
SM

E WLR 0.0090 0.0086 0.0075 0.0080 0.0078
SIW-Bay 0.0056 0.0050 0.0041 0.0027 0.0015
IW-Bay 0.0074 0.0069 0.0062 0.0053 0.0042

−
c 2

(2
,2

)
=

0
.0

8

B
IA

S WLR 0.0018 0.0049 0.0015 0.0048 0.0021
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Fig. 5. 2D MV-MRW estimation performance for R = 2, N = {26, 27, 28, 29, 210, 211}, j1 = 2 and j2 ∈ {3, 4, 5, 6, 7, 8}.

and j2 ∈ {3, 4, 5, 6, 7, 8}, the other parameters are set as
above. The results show that WLR performs also worse in
terms of bias when the sample size is small: indeed, when
N < 28, the bias is larger than that of SIW-Bay (and signifi-
cantly so for c2(2, 2) and c2(1, 1)). As above, SIW-Bay leads
to smaller bias values than IW-Bay, yet it can be observed
that this difference in bias disappears for large sample size.
For all estimators, the standard deviation decreases when the
sample size N increases, as expected. However, the standard
deviations are significantly smaller for the Bayesian estimators
when compared to WLR.

Estimation performance vs. number of data components.
Fig. 6 displays the root-mean-square error (RMSE) of the
estimated multifractal parameters, computed as the root square
of the average over realizations of the trace of the matrix
(x − x̂)(x − x̂)T , where the vector x contains the diagonal
and upper triangle of Σ1. As expected, the RMSE of all
estimators increases as the number R of data components
(thus, (R2 + R)/2 multifractal parameters) increases. The
relative performance of the estimators remains similar to the

1 2 3 4 5 6 7 8 9 10

10-2

10-1

Fig. 6. 2D MV-MRW estimation performance for R = {1, 2, . . . , 10}, N =
29, j1 = 2 and j2 = 5.

case R = 2: Bayesian estimators perform significantly better
than WLR, and SIW-Bay has a slightly lower RMSE than
IW-Bay.

Computational cost. Given an R-variate signal with sample
size n (n = N for time series and n = N2 for images),
neglecting border effects of the wavelet transform, the global
complexity of our algorithms is O(nln(n)R3), i.e., nearly
linear in sample size n and cubic in R. For comparison, the
method based on linear regression has complexity O(nR3)
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Fig. 7. Computational time T (in seconds) versus image size N×N×2
with N ∈ {27, 28, 29, 210, 211, 212}, j1 = 2 and j2 = log2(N)−4 for all
methods.

(without the lnn factor due to our additional use of a Fast
Fourier transform). Fig. 7 compares the execution times for
the estimation of c2 and ρmf from a bivariate image (R = 2) of
size N×N using WLR, IW-Bay and SIW-Bay, as a function of
N , which confirms these leading-order complexity estimates.
The cost when using the Bayesian estimators is only ∼ 8 times
larger when compared to linear regression and is hence no real
limitation in practice. Also, the cost of SIW-Bay is found to
be only marginally larger than that of IW-Bay. As an example,
the processing of a 1024×1024 image takes about one minute
on a standard laptop computer with a 2.11 Ghz Intel Core i7
processor and 16GB RAM, allowing even the processing of a
4096× 4096 image with a reasonable execution time.

Overall, these results clearly demonstrate a significant be-
nefit of the proposed Bayesian estimators for multivariate
multifractal analysis, at reasonably larger computational cost
than linear regression.

VI. REAL-WORLD POLYSOMNOGRAPHIC DATA ANALYSIS

This section finally illustrates the use of the proposed
framework on real-world data. We consider the problem of
detecting drowsiness, defined as an intermediate state between
awake and sleep [53], from several light non-invasive modali-
ties related to the cardiovascular, respiratory and brain states.
Drowsiness is a major factor in high rates of vehicle accidents.
The use of non-invasive biomedical signals for drowsiness
detection is an important and open issue that has recently
received a considerable interest [54]–[58].

A. Data and preprocessing

MIT-BIH dataset. The dataset used for this study is ex-
tracted from the MIT-BIH Polysomnographic database2, which
involves a collection of recordings of multiple physiologi-
cal signals, including heart rate (HR), blood pressure (BP),
electroencephalogram (EEG) and respiration (RESP), acquired
during sleep at a sample rate of 250 Hz [59]. The recordings
come with manual annotations for sleep stages. We consider
here the states “awake” vs. “stage 1” since the transition to
the latter is considered as drowsiness.
Preprocessing. All the 18 available multichannel records
were used in the experiments, without a priori exclusion of
subjects. Note that most studies reported in the literature use
only a hand-picked subset of subjects to avoid variability

2https://physionet.org/content/slpdb/1.0.0/
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Fig. 8. Visualization of awake and drowsy stages and multifractal parameters
(top). Drowsiness detection performance (ROCs, bottom): c1(r), c2(r, r) and
(c1(r), c2(r, r)) (blue solid lines in left, center, right plot, respectively) and
the corresponding curve when c2(r, r′) (red solid line) or ρmf(r, r

′) (green
solid line) is used as an additional feature.

caused by the use of different sensors for certain subjects, and
to remove subjects affected by outliers. For each multichannel
recording, we consider the HR (r = 1), BP (r = 2), EEG
(r=3) and RESP (r=4) channels yielding R=4 components.
HR recordings were corrected for missing QRS using the Pan
Tompkins ECG QRS detector and linear interpolation. The
data was resampled at 4 Hz using linear interpolation, and the
analysis was performed on the 2nd primitive to avoid negative
uniform regularity issues (cf., e.g., [51]).
Multifractal analysis. Fractal and multifractal models have
been widely and successfully used for the analysis of single
physiological time series, including sleep staging, in particular
for heart rhythm [60]–[62] but also for EEG [61], [63]–[65],
BP [61], [66] and RESP [65], [66] recordings. Here, we
use the proposed Bayesian multivariate multifractal analysis
framework to perform, for the first time, a joint multivariate
analysis of these recordings. The analysis was performed using
75% overlapping windows of sample size N = 480, yielding
a set of multifractal parameter estimates for each 30 second
interval (i.e., for each annotation). We use the SIW prior and
scales j = 3−6 (equivalently, 2.6s−21s), with parameters set
to Nψ = 3, Nmc = 1000, Nbi = 500.

B. Drowsiness detection

Detection. In total, 2381 and 561 examples are available
for the awake and stage 1 states, respectively. For each
example and channel r ∈ {1, 2, 3, 4}, the proposed algorithm
estimated the values of c1(r) and c2(r, r). Likewise, for the
6 pairs of channels, c2(r, r′) and ρmf(r, r

′) (with r 6= r′)
were estimated. The values of c1(r) were also estimated
using standard linear regression as in [3], [51]. We study
several sets of features: the univariate features {c1(r)}4r=1,
{c2(r, r)}4r=1, {c1(r), c2(r, r)}4r=1, and their combination
with either c2(r, r′) or ρmf(r, r

′), r 6= r′, as joint multifrac-
tality estimates. Drowsiness detection was performed using
a random forest classifier with 50 trees that was trained on
random subsets of 80% of the available examples (class 0
corresponds to the awake state and class 1 to stage 1). The
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TABLE III
CLASSIFICATION ACCURACY (TOP, IN %), F-MEASURE (CENTER) AND

AUC (BOTTOM), THE LARGER, THE BETTER.

features c1(r)& c2(r, r) c2(r, r)& c1(r) c1 & c2(r, r)

Classification accuracy
82.7 86.9 90.1

with c2(r, r′) 88.6 87.7 90.7
with ρmf 86.1 87.7 91.0

F-measure (detection)
73.7 75.6 83.2

with c2(r, r′) 80.7 77.2 83.7
with ρmf 77.6 77.5 83.2

AUC (detection)
0.787 0.817 0.898

with c2(r, r′) 0.874 0.839 0.901
with ρmf 0.874 0.839 0.901

detection performance was tested on the remaining 20% of the
database. The reported results are averages over 25 different
random subsets. An illustration of estimates of the single-
channel parameters c1(1) and c2(1, 1) (HR channel) and the
cross-channel parameters c2(1, 3) and ρmf(1, 3) (HR and EEG
channels) is provided in Fig. 8 (top panel).
Performance. The obtained classification and detection
performance are quantified using 2-class accuracies as in [58],
and F-measure and area-under-curve (AUC) for the receiver
operational characteristics (ROCs), as reported in Table III.
To further illustrate the detection performance, the ROCs are
displayed in Fig. 8 (bottom plots). The ROCs are computed
by varying the relative weight for the “awake” and “stage
1” classes in the loss during training of the random forest.
We observe that the use of the joint multifractal parameters
c2(r, r′) or ρmf(r, r

′) consistently and significantly improves
single-recording (up to 5.9%, 7.0% and 8.7% increase for clas-
sification accuracy, F-measure and AUC, respectively). The
best results are obtained when the single-recording parameters
c1(r) and c2(r, r) are used jointly with either the multifractal
correlation parameter ρmf(r, r

′) or the cross-multifractality
parameter c2(r, r′) (classification accuracy 90.7 − 91.0%, F-
measure 83.2−83.7% and AUC 0.901). Thus, the performance
is similar to the state of the art reported in [58] (classification
accuracy of 93%). Overall, these results demonstrate robust-
ness and relevance of the proposed joint estimation framework
for the analysis of real-world data.

VII. CONCLUSION

This paper proposed Bayesian estimators for the multi-
fractality parameters associated with the recent theoretical
definition of the multifractal spectrum of multivariate data.
The estimators leverage on an original and versatile model
for the joint statistics of the logarithm of wavelet leaders of
several data components. We showed that when combined with
a Whittle-type spectral approximation and a data augmenta-
tion strategy, the proposed Bayesian approach yields efficient
numerical estimates for the matrix-valued parameters of in-
terest using standard Gibbs sampling. Large-scale numerical
experiments were conducted with synthetic multifractal data
and clearly demonstrate the significant benefits of the pro-
posed framework in terms of estimation accuracy, at moderate

cost. The application of the proposed multivariate multifractal
analysis to a benchmark real-world multivariate time series
dataset also yielded promising results and highlights the actual
applicability and practical relevance of our approach for real-
world data modeling and analysis. Future work will focus
on more theoretical investigations of our model, including
the study of performance bounds, and applications to phys-
iological signals and remote sensing data. The estimation
and synthesis procedures will be made freely available via
a documented toolbox.
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