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Abstract—After Mandelbrot’s seminal work, scale-free and
multifractal temporal dynamics have been recognized as classical
stylized facts for financial time series and massively documented.
Multifractal analysis in finance has however mainly remained
univariate (one time series at a time) when multivariate (or
basket) properties are critical for financial applications. This is
mostly due to a lack of theoretical foundations and practical
tools for multivariate multifractal analysis. Expanding on a
theoretically-grounded recently proposed multivariate multifrac-
tal formalism, the present work performs an original multivari-
ate analysis for a basket of six Foreign Exchange rate time
series. Beyond confirming multifractality for each component
independently, the definition of cross-multifractalities amongst
components is introduced, assessing cross-dependencies in tem-
poral dynamics not already accounted for by cross-correlations.
The key practical outcome is to show that, essentially, one same
multifractal time governs jointly the temporal dynamics of all
the Foreign Exchange time series studied here.

Index Terms—Financial times series, Foreign exchange, basket
properties, multivariate multifractal analysis, wavelet leaders.

I. INTRODUCTION

Context. It has been well-documented that financial time se-
ries are characterized by a set of stylized facts [1]. Two notable
such facts consist of the absence of temporal autocorrelation
(a consequence of the efficient market hypothesis) and the
scale-free nature of temporal dynamics (all time scales, or
frequencies, drive temporal dynamics). This lead Mandelbrot
to propose multifractal fluctuations to model the temporal
dynamics of asset prices [2], [3]. This triggered massive
research works on financial time series [4]–[8]. However,
multifractal analysis remained essentially univariate, one time
series studied at a time, while the multivariate, or joint,
or basket, properties of financial time series are critical for
financial applications [7], [9]. Assessing cross-multifractalities
in a basket of assets is thus the crucial issue addressed here.
Related work. In [10], Mandelbrot proposed to modify the
Brownian motion B(t) classically used to model financial time
series as random walks, via a time warping B(A(t)), where
A denotes a multifractal cascading process. This added a key
intuition to multifractality: that of an internal clock A(t) that
fluctuates around an average smooth evolution A(t) ' t to
model time accelerations (and thus shocks) or decelerations

in financial markets. Variations of multifractal models for
asset prices where further proposed, such as the Markov-
switching multifractal model [11] or the multifractal random
walk [12]. Empirically, multifractality has been evidenced in
numerous financial time series different in nature, e.g., [13]
using the MultiFractal-Detrended Flutuation Analysis [14] or
the Wavelet Transform Modulus Maxima [15] frameworks.
Often, multifractality has been connected with long memory
in volatility, while it was shown to be unrelated to the signs
of the returns [9], [11], [16], [17]. Except for rare cases where
multifractal models were modified to handle several time series
jointly [18], multifractal analysis was performed in univariate
settings only, in finance as well as in most applications. This
is mostly due to a lack of theoretical foundations and practical
tools for multivariate multifractal analysis. However, recently
a novel formalism based on wavelet leaders has been devised
and shown to reach state of the art univariate analysis perfor-
mance [19]–[22]. Moreover, in contradistinction with earlier
multifractal formalisms, it permits a natural theoretically well-
grounded formulation of multivariate multifractal analysis
[23]–[25]. This thus permits to envisage the assessments of
cross-multifractalities amongst financial time series which, to
the best of our knowledge, has not yet been performed.
Goals, contributions and outline. The present contribu-
tion aims to perform and show the interest of the joint or
multivariate multifractal analysis for the exchange rates of
six couples of major currencies. Elaborating on [24], [25],
Section II introduces the theory and practice of multivariate
multifractal analysis based on p-leader multiscale quantities,
a recent extension of the wavelet leader formalism intro-
duced in [21], [22] in univariate settings. Section II further
provides understanding of the meaning and importance of
the cross-multifractalities parameter and of multifractal cross-
correlation. The Foreign exchange rates data used in this
work are described in Section III. Their multifractalities and
cross-multifractalities are assessed, quantified and discussed in
Section IV with the major findings that, essentially, one same
and unique clock governs jointly the temporal dynamics of all
the currencies under consideration and possibly of the entire
Foreign Exchange market.



II. MULTIVARIATE MULTIFRACTAL ANALYSIS

A. Multivariate multifractal Analysis: Theory

Local regularity. Multifractal analysis aims to quantify the
fluctuations in time of the local regularity in a time series
X(t) [19]. Local regularity has classically been measured
using the Hölder exponent [19]. It has however been recently
proposed that novel measures based on the notion of p-
exponents (p > 0) could be used, offering a wider versatility
to analyze real world data and benefiting from more practical
robustness. These p-exponents, referred to as h(t) ≥ 0, are
used here. Their precise definition can be found in [21], [22],
where they are thoroughly studied. As for the Hölder exponent,
the smaller h(t), the more irregular X is around t.
Multivariate multifractal spectrum. Though based on a local
regularity measurement, multifractal analysis provides a global
and geometrical information on how local regularities vary
along time and, in a multivariate setting, across components.
Let h(t) , {h1(t), . . . , hM (t)} denote the values of the p-
exponents taken at time t by each of the M-variate times series
X = (X1, . . . , XM ). Inspired from [26] in a bivariate setting,
it has been proposed in [23]–[25] to define the multivariate
multifractal spectrum D of X as the collection of Hausdorff
dimensions dimH of the sets of points t ∈ R at which h(t)
takes on the values h:

D(h) , dimH {t ∈ R+ : {h(t)} = {h}} . (1)

B. Wavelet p-leader multivariate multifractal formalism

The estimation of the multivariate multifractal spectrum
D(h) is performed via the so-called multifractal formalisms.
They are often based on multiscale quantities, constructed
from wavelet analysis [19], [27]. Let ψ denote an oscillating
reference pattern, the mother wavelet, characterized by its
number of vanishing moments Nψ , a positive integer defined
as ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ−1,

∫
R t

kψ(t)dt ≡ 0 and∫
R t

Nψψ(t)dt 6= 0. The mother wavelet is designed such that
dilated and translated templates {ψj,k(t) = 2−j/2ψ(2−jt −
k)}(j,k)∈Z2 form an orthonormal basis of L2(R) [28]. The
discrete wavelet transform coefficients dX(j, k) of X are
defined as dX(j, k) = 2−j/2〈ψj,k|X〉.

The wavelet p-leaders of X , `X(j, k) are defined as a local
Lp-norm (p > 0), taken across all dX(j′, k′) located in a
neighbourhood of t = 2jk at finer scales j′ ≤ j. Interested
readers are referred to [21], [22] for detailed definitions.

It can be shown that wavelet p-leaders reproduce the p-
exponents in the limit of fine scales, LX(j, k) ∼ C2jh(t) as
2j → 0 for t = 2jk. Consequently, with q , {q1, . . . , qM},

1

nj

nj∑
k=1

ΠM
m=1LXm(j, k)qm ∼ cq2jζ(q), 2j → 0. (2)

The so-called scaling exponents ζ(q) in (2) are tightly related
to D(h) via their Legendre transform, defining the multivariate
Legendre spectrum as:

L(h) = inf
q

(1 + 〈q,h〉 − ζ(q)), (3)

Figure 1. Foreign Exchange data. Left: Rates ; Right: Returns

which provides an estimate for D(h) for large classes of
processes, see [24], [25].

Its precise shape thus conveys information regarding the
joint or cross fluctuations of local regularities amongst the
components of X . For example, in a bivariate setting, a mul-
tifractal spectrum L(h1, h2) that would stem directly from the
univariate spectra of each time series as L1(h1) +L2(h2)− 1
would indicate that multifractalities amongst components are
not related. To the converse, a bivariate spectrum whose
support would collapse on a line would indicate a total
dependence between the multifractalities of each component.

C. Multivariate multifractal analysis: Practice

To measure L(h), elaborating on [29], one can use the
multivariate cumulants of order s > 0 of the log-leaders
(lnLX1(j, k), . . . , lnLXM (j, k)) at scale 2j , denoted Cs(j)
with s = {s1, . . . sM}, ∀m, sm ∈ {0, . . . ,M} and s =∑
m sm [23]–[25]. For large classes of multivariate multifrac-

tal processes, Cs(j) behave as:

Cs(j) = c0s + j cs ln 2, s ≥ 1 (4)

where the multifractal coefficients cs can be related to the ζ(q)

ζ(q) =
∑
s

csΠ
M
m=1q

sm
m /sm! , (5)

and hence to the multivariate Legendre spectrum L(h).
The cs are estimated by means of linear regressions of Cs(j)

versus log2 2j = j.

III. FOREIGN EXCHANGE RATES

The data used here consist of Foreign Exchange rates
for six couples of major currencies against the US Dollar
(USD): AUD/USD (Australian Dollar), CAD/USD (canadian
Dollar), JPY/USD (Japanese Yen), GBP/USD (British Pound),
CHF/USD (Swiss Franc), EUR/USD (Euro), from 1999 to
2011. As the years after birth of the Euro shows remarkably
stable statistical properties along time, a period of around 18
months, from December 2004 to May 2006 is studied here.
Similar conclusions are drawn for the analysis of other 18
month-period, between 2002 and 2008. Data are sampled at
an intraday high frequency, of Ts = 5min, thus resulting
in around 1e5 samples per time series. Rates and returns
(increments) for these six couples of currencies and for the
chosen period are shown in Fig. 1



For ease of notations, the couple XXX/USD will hereafter
be referred as XXX, thus omitting /USD. Because we are
interested in cross-dependencies, the bivariate analysis corre-
sponding to the pair of couples XXX/USD and YYY/USD will
thus simply be referred to as the pair XXX-YYY.

IV. MULTIVARIATE MULTIFRACTAL FOREIGN EXCHANGE

A. Second-order cross-statistics analysis: cross-selfsimilarity

Prior to any practical multifractal analysis, the inspection of
the joint second order statistics of the temporal dynamics of X
are mandatory. To that end, the multivariate wavelet spectrum
S(j) must be computed, defined as the collection of M ×M
matrix S(j) as functions of the analysis scales 2j , whose
entries consists of the cross correlations of the wavelet coeffi-
cients at scale 2j : Sm,m′(j) = 1/nj

∑nj
k dXm(j, k)dX′

m
(j, k).

In the present work, the wavelet coefficients are computed
using least asymmetric orthornormal wavelets, with Nψ = 3
[28]. For processes with scale-free temporal dynamics, such as
multifractal processes, each entry of S(j) behave as a power-
law with respect to the analysis scale:

Sm,m′(j) ' Km,m′22jHm,m′ (6)

The scaling exponents Hm,m′ quantify the auto- and cross-
correlations. Notably, Hm,m corresponds to the Hurst (or
selfsimilarity) exponent of component m.

To further quantify cross-temporal dynamics, one usually
use the wavelet-coherence function

ρm,m′(j) = Sm,m′(j)/
√
Sm,m(j)Sm′,m′(j) (7)

that consists of scale-dependent correlation coefficients [30].
Fig. 2(left) displays the log wavelet-spectrum log2 Sm,m(j)

for each component as a function of the log of the analysis
scales j = log2 2j . Linear behaviours in these log-log plots
indicate, for all couples of currencies, scale-free dynamics
ranging from j = 2 to j = 9, hence across 7 octaves.
These scale-free dynamics are also observed for all pairs
log2 Sm,m′(j) across the same range of scales (cf. Fig. 2
(middle)). Given the sampling period of Ts = 5min, this
indicates that scale-free dynamics range remarkably from
' 10min to ' 100hours, which, in terms of trading time,
means around 2 weeks, i.e., for more than two decades of time
scales. Interestingly, these scale-free dynamics also imply that
time scales of, e.g., one working day or one working week, that
could be a priori considered as typical given the human nature
of financial trading, can not be identified in the data. However,
when estimated from linear regressions of log2 Sm,m′(j) vs.
j, none of the estimated scaling exponents Hm,m′ are found
significantly different1 from H = 0.5, see Table I (upper
triangle). This clearly indicates the absence of any temporal
autocorrelation for all components and of any temporal cross-
correlation amongst components, in clear agreement with the
efficient market hypothesis.

1Throughout this work, statistical significance has been assessed by means
of wavelet domain block bootstrap procedures, as devised in [20] and here
extended to multivariate analysis; p-values are not reported for space reasons.

Figure 2. Scale-free dynamics. Log wavelet-spectrum log2 Sm,m(j) (left),
log2 Sm,m′ (j) (center), and ρm,m′ (j) (right) as functions of the log of the
analysis scales j = log2 2

j and for the 6 time series in Fig. 1.

Fig. 2(right) shows that the wavelet coherence functions
ρm,m′(j) for all pairs of components are essentially inde-
pendent of scales, in accordance with the efficient market
hypothesis. It moreover indicates that cross-correlations are
significantly non-zero for all but the last analysis scale. This is
quantified by computing the average across scales of ρm,m′(j),
highly reminiscent of the pairwise Pearson correlation co-
efficient. These pairwise cross-correlations (Table I upper
triangle) identify two groups of currencies, with positive intra-
group correlations, and negative inter-group correlations. The
first group gathers EUR, GBP and AUD, with strong intra-
group correlations ; the second group (JPY, CHF, CAD) shows
less intra-group correlations.

AUD CAD JPY GBP CHF EUR
AUD 0.48 −0.45 −0.50 0.61 −0.61 0.62
CAD 0.49 0.47 0.26 −0.36 0.40 −0.44
JPY 0.49 0.48 0.48 −0.56 0.59 −0.59
GBP 0.50 0.49 0.49 0.49 −0.76 0.76
CHF 0.50 0.49 0.49 0.50 0.49 −0.93
EUR 0.50 0.49 0.48 0.50 0.50 0.50

Table I
Correlation and selfsimilarity analysis. ESTIMATED SCALING EXPONENTS
Hm,m′ (DIAGONAL AND LOWER TRIANGLE, BLUE). AVERAGE ACROSS

SCALES COHERENCE FUNCTION (UPPER TRIANGLE, RED).

B. Beyond second-order cross-statistics: cross-multifractality

Multifractal analysis is here performed with 2-leaders (p =
2), shown to yield the best estimation performance [21], [22].

Often, in practice, to perform multivariate multifractal anal-
ysis, use is made only of the cumulants of orders s = 1 and
s = 2, thus restricting the M -variate analysis to a collection of
bivariate (or pairwise) analyses. For ease of notations, the M
cumulants of order 1 (hence univariate) are hereafter labelled
Cm(j) and the corresponding multifractal coefficients cs in
Eq. 4 as c1(m). The M × (M + 1)/2 cross-second order
cumulants (hence bivariate) and corresponding multifractal
coefficients are written Cm,m′(j) and c2(m,m′).

Implicitly, this amounts to perform a parabolic approxi-
mation of the pairwise scaling exponents ζm,m′(q), which
by Eq. 3 also implies a pairwise parabolic approximation of
Lm,m′ around its maximum [23]:

ζm,m′(q1, q2) ≈ c1(m)q1 + c1(m′)q2+

c2(m,m)

2
q21 +

c2(m′,m′)

2
q2 + c2(m,m′)q1q2 (8)



Lm,m′(h1, h2) ≈ 1 +
c2(m,m)b

2

(
h1 − c1(m)

b

)2

+

c2(m′,m′)b

2

(
h2 − c1(m′)

b

)2

−

c2(m,m′)b

(
h1 − c1(m)

b

)(
h2 − c1(m′)

b

)
, (9)

where b , c2(m,m)c2(m′,m′) − c2(m,m′)2 ≥ 0. This
shows that the position of the maximum of Lm,m′ is given
by (cm, cm′), and that cm,m and cm′,m′ quantify the widths
of the fluctuations independently for each component. Finally,
cm,m′ quantify the departure from an isotropic parabola, thus
providing a characterization across components of the joint
fluctuations of the regularities of each component.

Inspired from ρm,m′(j), this leads to define,

ρMF
m,m′(j) =

Cm,m′(j)√
Cm,m(j)Cm′,m′(j)

, (10)

that quantifies a scale-free based higher order statistics de-
pendence coefficient, and is hence hereafter referred to as
multifractal coherence function, slightly abusively yet with
an intuitive meaning. This further prompts for the use of the
multifractal correlation coefficient defined as:

ρMF = −cm,m′/
√
cm,mcm′,m′ .

Univariate multifractality. Let us first study the multifractal
property of each couple of currencies independently (in a
univariate setting). Fig. 3(left column) reports the M first
order cumulants Cm(j) (top left) and the M second order
cumulants Cm,m(j) (bottom left) computed independently for
each component. These univariate cumulants show remarkable
scaling across a broad range of octaves, consistent with that
observed in Fig. 2. The Cm(j) are superimposing for all
components, and their corresponding slopes c1(m) are all
found not to depart from 0.5 (see Table II), thus further
confirming the absence of autocorrelation in the temporal
dynamics of each component independently and the con-
sistency with the efficient market hypothesis. However, the
Cm,m(j) also display remarkable scaling, with decreasing
amplitude along scales, and corresponding slopes c2(m,m)
all significantly negatively departing from 0 (see the diagonal
entries of Table III). This is a clear evidence that each of
these Foreign Exchange time series displays a clear and robust
multifractality, over a broad range of time scales from 10min
to above 2 weeks. This indicates that each of these time
series possesses independently subtle temporal dynamics in
the form of local or transient structures and burstiness, that
cannot be captured by the classical correlation and second
order statistics. Beyond being significant, the multifractality
parameters c2(m,m) of all components are interestingly found
to be of close values: −0.038 ≤ c2(m,m) ≤ −0.024.
Cross-multifractality. Let us further study cross multifrac-
talities. Fig. 3(central top plots) reports the M(M − 1)/2
cross second cumulants Cm,m′(j) (m 6= m′), with scaling
across ranges of scales, consistent with that of other plots. The
corresponding slopes (c2(m,m′)) are all significantly negative
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Figure 3. Foreign Exchange multivariate multifractal analysis. Bivariate
multifractal spectrum for the (GBP, EUR) pair of currencies (top right).
Cm(j) (top left), Cm,m′ (j) (bottom left) and ρMF

m,m′ (j) (bottom right) as
functions of the log of the analysis scales j and for the 6 time series in Fig. 1.

(see Table III lower triangle). In addition, Fig. 3(central bottom
plots) shows the M(M−1)/2 multifractal coherence functions
ρMF
m,m′ , observed to be weakly dependent on scales (except

at coarse scales where estimation is of poor quality because
of observation finite duration) and all significantly positive.
Further, the multifractal correlation coefficients ρMF (m,m′)
are found to all positively depart from 0, with values ranging
from 0.47 ≤ ρMF ≤ 0.95 and often large (see Table III
upper triangle). Fig. 3(right columns) finally illustrates for two
pairs of couples of currencies (GBP-EUR) and (CHF-EUR)
the estimated bivariate multifractal spectra L(hm, hm′). The
fact that they both consist of a parabola stretched along the
first diagonal, hence with large aspect ratios clearly departing
from 1, provides intuition to the meaning of large values
for ρMF . These multifractal spectra clearly differ from a
spectrum that would correspond to unrelated multifractalities
Lm(hm)+Lm′(hm′)−1, where the univariate spectra of each
component Lm(hm) and Lm′(hm′) are also shown.

These plots and results clearly indicate that the cross-
temporal dynamics of the exchange rates for all pairs of
couples of currencies studied here show related scale-free dy-
namics, with dependencies that cannot be measured by cross-
correlation or cross-Fourier spectrum, but are evidenced and
quantified by the cross-multifractality parameters c2(m,m′)
and ρMF (m,m′). Positive ρMF (m,m′) indicate that the oc-
currences of burstiness or of local transient structures are co-
localized in time between components.
Discussion. As mentioned in the introduction, after Mandel-
brot, financial asset prices are often modelled as compound
Brownian motions B(A(t)) where the time warping function
A(t) entails the multifractal properties. The present analysis
suggest that the collection of Foreign exchange rates studied
here can be modelled by a multivariate extension of that model
{Bm(Am(t)),m = 1, . . . ,M} [31]. The Bm are correlated
Brownian motions, with a cross correlation matrix showing
significant non-zero entries, both positive or negative. They
however do not possess any auto- or cross-correlation in their
auto- and cross-temporal dynamics. The Am are multifractal
processes, e.g., multiplicative cascades as proposed by Man-



delbrot, each with multifractality controlled by c2(m,m). In
addition, they also possess a cross sectional correlation, with
correlation matrix ρMF , characterized by positive only and
significantly departing from 0 entries. This is the correlation
amongst those time warping functions Am that induces cross
multifractalities and hence transient dependencies in the cross-
temporal dynamics of the Bm(Am(t)) and thus amongst
Foreign exchange times series.

Finally, returning to the original intuition of multifractality
understood as a time warping, the fact that the entries of
ρMF are all positive and large, indicates that all time warping
functions Am are very similar for all components. In financial
terms, this can be interpreted as the fact that the currency
rates studied here are governed by one unique and same clock
across the world. This provides a different understanding of the
Foreign Exchange market compared to the one suggested by
classical second-order statistics with two groups of currencies.

To the best of our knowledge, this unique clock timing
the the dynamics of the majors currencies had never been
evidenced before, because a theoretically-grounded and practi-
cally efficient multivariate multifractal formalism was lacking.

In an effort toward reproducible research and open science,
Matlab codes implementing multivariate multifractal analysis
are made publicly available2.

AUD CAD JPY GBP CHF EUR
c1(m) 0.48 0.49 0.49 0.51 0.52 0.52

Table II
Location of the maximum of the multifractal spectrum: c1(m).

ρMF AUD CAD JPY GBP CHF EUR
AUD −0.024 0.47 0.70 0.61 0.64 0.68
CAD −0.014 −0.039 0.59 0.66 0.67 0.68
JPY −0.017 −0.018 −0.024 0.71 0.84 0.95
GBP −0.018 −0.025 −0.021 −0.038 0.78 0.86
CHF −0.020 −0.026 −0.025 −0.030 −0.038 0.92
EUR −0.020 −0.026 −0.028 −0.032 −0.035 −0.037

Table III
Multivariate multifractal analysis and multifractal parameters.

MULTIFRACTALITY PARAMETERS c2(m,m′) (DIAGONAL AND LOWER
TRIANGLE, BLUE). MULTIFRACTAL CORRELATION COEFFICIENTS

ρMF (m,m′) (UPPER TRIANGLE, RED).
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