Square-free pairs $\mathbf{n}^{2}+\mathbf{n}+\mathbf{1}, \mathbf{n}^{\mathbf{2}}+\mathbf{n}+\mathbf{2}$

S. I. Dimitrov

Abstract

In this paper we prove that there exist infinitely many square-free pairs of the form $n^{2}+n+1, n^{2}+n+2$. We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number. A key point in our proof is the application of bijective correspondence between the number of representations of number by binary quadratic form and the incongruent solutions of quadratic congruence.

Keywords: Square-free numbers, Asymptotic formula, Bijective function.
2020 Math. Subject Classification: 11L05 • 11N25 • 11N37

1 Notations

Let X be a sufficiently large positive number. The letter ε denotes an arbitrary small positive number, not the same in all appearances. As usual $[t]$ and $\{t\}$ denote the integer part, respectively, the fractional part of t. Further $\mu(n)$ is Möbius' function and $\tau(n)$ denotes the number of positive divisors of n. Instead of $m \equiv n(\bmod k)$ we write for simplicity $m \equiv n(k)$. The relation $f(x) \ll g(x)$ means that $f(x)=\mathcal{O}(g(x))$. Moreover (m, n) is the greatest common divisor of m and n. The letter p always denotes a prime number. We write $e(t)=\exp (2 \pi i t)$ and $\psi(t)=\{t\}-1 / 2$. For $x, y \in \mathbb{R}$ we write $x \equiv y$ (1) when $x-y \in \mathbb{Z}$. For any n and q such that $(n, q)=1$ we denote by \bar{n}_{q} the inverse of n modulo q. By $G(q, m, n)$ we shall denote the Gauss sum

$$
\begin{equation*}
G(q, m, n)=\sum_{x=1}^{q} e\left(\frac{m x^{2}+n x}{q}\right) . \tag{1}
\end{equation*}
$$

By $K(r, h)$ we shall denote the incomplete Kloosterman sum

$$
\begin{equation*}
K(r, h)=\sum_{\substack{\alpha \leq x<\beta \\(x, r)=1}} e\left(\frac{h \bar{x}_{|r|}}{r}\right), \tag{2}
\end{equation*}
$$

where

$$
h, r \in \mathbb{Z}, \quad h r \neq 0, \quad 0<\beta-\alpha \leq 2|r| .
$$

We also define

$$
\begin{gather*}
\lambda\left(q_{1}, q_{2}\right)=\sum_{\substack{1 \leq n \leq q_{1} q_{2} \\
n^{2}+n+1 \equiv 0\left(q_{1}\right) \\
n^{2}+n+2=0\left(q_{2}\right)}} 1, \tag{3}\\
\Gamma(X)=\sum_{1 \leq n \leq X} \mu^{2}\left(n^{2}+n+1\right) \mu^{2}\left(n^{2}+n+2\right) . \tag{4}
\end{gather*}
$$

2 Introduction and statement of the result

We say that an integer $n \in \mathbb{N}$ is square-free if for any prime $p \mid n$, one has $p^{2} \nmid n$. Information on the distribution of square-free numbers was given in 1885 by Gegenbauer [10]. He proved the following asymptotic formula

$$
\begin{equation*}
\sum_{n \leq X} \mu^{2}(n)=\frac{6}{\pi^{2}} X+\mathcal{O}\left(X^{\frac{1}{2}}\right) \tag{5}
\end{equation*}
$$

Gegenbauer's argument is very simple, but despite the passage of 138 years the exponent $1 / 2$ appearing above has never been improved. The reminder term in (5) depends on the real part of the zeroes of the Riemann zeta function $\zeta(s)$. For this reason any reduction in the exponent $1 / 2$ would require the Riemann Hypothesis to be true. In 1932 Carlitz [5] showed that there exist infinitely many pairs of consecutive square-free numbers. More precisely he proved the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq X} \mu^{2}(n) \mu^{2}(n+1)=\prod_{p}\left(1-\frac{2}{p^{2}}\right) X+\mathcal{O}\left(X^{\frac{2}{3}+\varepsilon}\right) . \tag{6}
\end{equation*}
$$

Afterwards the reminder term of (6) was sharpened several times. Another interesting problem we know in number theory is square-free and consecutive square-free numbers of a special form. In this connection we first mention the theorems of Cao and Zhai [3], [4], concerning the study of square-free numbers of the form $\left[n^{c}\right]$. In 2020 the author [6] showed that there exist infinitely many consecutive square-free numbers of the form $x^{2}+y^{2}+1, x^{2}+y^{2}+2$. More precisely we proved that the asymptotic formula

$$
\begin{equation*}
\sum_{1 \leq x, y \leq H} \mu^{2}\left(x^{2}+y^{2}+1\right) \mu^{2}\left(x^{2}+y^{2}+2\right)=\prod_{p}\left(1-\frac{\tilde{\lambda}\left(p^{2}, 1\right)+\widetilde{\lambda}\left(1, p^{2}\right)}{p^{4}}\right) H^{2}+\mathcal{O}\left(H^{\frac{8}{5}+\varepsilon}\right) \tag{7}
\end{equation*}
$$

holds. Here

$$
\tilde{\lambda}\left(q_{1}, q_{2}\right)=\sum_{\substack{1 \leq x, y \leq q_{1} q_{2} \\ x^{2}+y^{2} \\ x^{2}+y^{2}+2=0=0\left(q_{1}\right)}} 1 .
$$

Subsequently the articles of B. Chen [1], Chen and Wang [2], the author [7], Fan and Zhai [9], Jing and Liu [13] and Zhou and Ding [16] continue the study of the representation of infinitely many square-free numbers by polynomials. Recently [8] the author showed that there exist infinitely many square-free numbers of the form $n^{2}+n+1$. More precisely we established the asymptotic formula

$$
\sum_{1 \leq n \leq X} \mu^{2}\left(n^{2}+n+1\right)=c X+\mathcal{O}\left(X^{\frac{4}{5}+\varepsilon}\right)
$$

where

$$
c=\prod_{p}\left(1-\frac{\lambda\left(p^{2}\right)}{p^{2}}\right)
$$

and

$$
\lambda(q)=\sum_{\substack{1 \leq n \leq q \\ n^{2}+n+1 \equiv 0(q)}} 1 .
$$

Motivated by these investigations we prove the following theorem.
Theorem 1. For the sum $\Gamma(X)$ defined by (4) the asymptotic formula

$$
\begin{equation*}
\Gamma(X)=\sigma X+\mathcal{O}\left(X^{\frac{8}{9}+\varepsilon}\right) \tag{8}
\end{equation*}
$$

holds. Here

$$
\begin{equation*}
\sigma=\prod_{p}\left(1-\frac{\lambda\left(p^{2}, 1\right)+\lambda\left(1, p^{2}\right)}{p^{2}}\right) . \tag{9}
\end{equation*}
$$

From Theorem 1 it follows that there exist infinitely many consecutive square-free numbers of the form $n^{2}+n+1, n^{2}+n+2$, where n runs over naturals.

3 Lemmas

Lemma 1. Let $\left(q_{1}, q_{2}\right)=1$. Then for the Gauss sum denoted by (1) we have

$$
G\left(q_{1} q_{2}, m_{1} q_{2}+m_{2} q_{1}, n\right)=G\left(q_{1}, m_{1} q_{2}^{2}, n\right) G\left(q_{2}, m_{2} q_{1}^{2}, n\right)
$$

Proof. See ([11], Theorem 5.1).
Lemma 2. For any $M \geq 2$, we have

$$
\psi(t)=-\sum_{1 \leq|m| \leq M} \frac{e(m t)}{2 \pi i m}+\mathcal{O}\left(f_{M}(t)\right)
$$

where $f_{M}(t)$ is a positive function of t which is infinitely many times differentiable and periodic with period 1. It can be expanded into the Fourier series

$$
f_{M}(t)=\sum_{m=-\infty}^{+\infty} b_{M}(m) e(m t)
$$

with coefficients $b_{M}(m)$ such that

$$
b_{M}(m) \ll \frac{\log M}{M} \quad \text { for all } \quad m
$$

and

$$
\sum_{|m|>M^{1+\varepsilon}}\left|b_{M}(m)\right| \ll M^{-A} .
$$

Here $A>0$ is arbitrarily large and the constant in the $\ll-$ symbol depends on A and ε. Proof. See ([15], Theorem 1).

Lemma 3. Let $A, B \in \mathbb{Z} \backslash\{0\}$ and $(A, B)=1$. Then

$$
\frac{\bar{A}_{|B|}}{B}+\frac{\bar{B}_{|A|}}{A} \equiv \frac{1}{A B}(1) .
$$

Proof. The statement in the lemma is equivalent to

$$
\begin{equation*}
A \bar{A}_{|B|}+B \bar{B}_{|A|} \equiv 1(|A B|) \tag{10}
\end{equation*}
$$

Bearing in mind (10) and $(A, B)=1$ we derive the system

$$
\left\lvert\, \begin{aligned}
& A \bar{A}_{|B|}+B \bar{B}_{|A|} \equiv 1(|A|) \\
& A \bar{A}_{|B|}+B \bar{B}_{|A|} \equiv 1(|B|)
\end{aligned}\right.
$$

which is equivalent to the system

$$
\left\lvert\, \begin{aligned}
& B \bar{B}_{|A|} \equiv 1(|A|) \\
& A \bar{A}_{|B|} \equiv 1(|B|)
\end{aligned} .\right.
$$

Since the latter system is satisfied this proves the lemma.

Lemma 4. For the sum denoted by (2) we have the estimate

$$
K(r, h) \ll|r|^{\frac{1}{2}+\varepsilon}(r, h)^{\frac{1}{2}}
$$

Proof. Follows easily from A. Weil's estimate for the Kloosterman sum. See ([12], Ch. 11, Corollary 11.12).

Lemma 5. The function $\lambda\left(q_{1}, q_{2}\right)$ defined by (3) is multiplicative, i.e. if

$$
\begin{equation*}
\left(q_{1} q_{2}, q_{3} q_{4}\right)=\left(q_{1}, q_{2}\right)=\left(q_{3}, q_{4}\right)=1 \tag{11}
\end{equation*}
$$

then

$$
\lambda\left(q_{1} q_{2}, q_{3} q_{4}\right)=\lambda\left(q_{1}, q_{3}\right) \lambda\left(q_{2}, q_{4}\right)
$$

Proof. On the one hand (1), (3), (11) and Lemma 1 imply

$$
\begin{align*}
& \lambda\left(q_{1} q_{2}, q_{3} q_{4}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{1 \leq n \leq q_{1} q_{2} q_{3} q_{4}} \sum_{1 \leq h_{1} \leq q_{1} q_{2}} e\left(\frac{h_{1}\left(n^{2}+n+1\right)}{q_{1} q_{2}}\right) \sum_{1 \leq h_{2} \leq q_{3} q_{4}} e\left(\frac{h_{2}\left(n^{2}+n+2\right)}{q_{3} q_{4}}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{1 \leq h_{1} \leq q_{1} q_{2}} e\left(\frac{h_{1}}{q_{1} q_{2}}\right) \sum_{1 \leq h_{2} \leq q_{3} q_{4}} e\left(\frac{2 h_{2}}{q_{3} q_{4}}\right) \\
& \times G\left(q_{1} q_{2} q_{3} q_{4}, h_{1} q_{3} q_{4}+h_{2} q_{1} q_{2}, h_{1} q_{3} q_{4}+h_{2} q_{1} q_{2}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{1 \leq h_{1} \leq q_{1} q_{2}} e\left(\frac{h_{1}}{q_{1} q_{2}}\right) \sum_{1 \leq h_{2} \leq q_{3} q_{4}} e\left(\frac{2 h_{2}}{q_{3} q_{4}}\right) G\left(q_{1} q_{2}, h_{1} q_{3}^{2} q_{4}^{2}, h_{1} q_{3} q_{4}+h_{2} q_{1} q_{2}\right) \\
& \times G\left(q_{3} q_{4}, h_{2} q_{1}^{2} q_{2}^{2}, h_{1} q_{3} q_{4}+h_{2} q_{1} q_{2}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{2} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) \sum_{\substack{1 \leq h_{3} \leq q_{3} \\
1 \leq h_{4} \leq q_{4}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) \\
& \times G\left(q_{1} q_{2}, h_{1} q_{2} q_{3}^{2} q_{4}^{2}+h_{2} q_{1} q_{3}^{2} q_{4}^{2}, h_{1} q_{2} q_{3} q_{4}+h_{2} q_{1} q_{3} q_{4}\right) \\
& \times G\left(q_{3} q_{4}, h_{3} q_{1}^{2} q_{2}^{2} q_{4}+h_{4} q_{1}^{2} q_{2}^{2} q_{3}, h_{3} q_{1} q_{2} q_{4}+h_{4} q_{1} q_{2} q_{3}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{2} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) \sum_{\substack{1 \leq h_{3} \leq q_{3} \\
1 \leq h_{4} \leq q_{4}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) \\
& \times G\left(q_{1}, h_{1} q_{2}^{2} q_{3}^{2} q_{4}^{2}, h_{1} q_{2} q_{3} q_{4}+h_{2} q_{1} q_{3} q_{4}\right) G\left(q_{2}, h_{2} q_{1}^{2} q_{3}^{2} q_{4}^{2}, h_{1} q_{2} q_{3} q_{4}+h_{2} q_{1} q_{3} q_{4}\right) \\
& \times G\left(q_{3}, h_{3} q_{1}^{2} q_{2}^{2} q_{4}^{2}, h_{3} q_{1} q_{2} q_{4}+h_{4} q_{1} q_{2} q_{3}\right) G\left(q_{4}, h_{4} q_{1}^{2} q_{2}^{2} q_{3}^{2}, h_{3} q_{1} q_{2} q_{4}+h_{4} q_{1} q_{2} q_{3}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{2} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) G\left(q_{1}, h_{1} q_{2}^{2} q_{3}^{2} q_{4}^{2}, h_{1} q_{2} q_{3} q_{4}\right) G\left(q_{2}, h_{2} q_{1}^{2} q_{3}^{2} q_{4}^{2}, h_{2} q_{1} q_{3} q_{4}\right) \\
& \times \sum_{\substack{1 \leq h_{3} \leq q_{3} \\
1 \leq h_{4} \leq q_{4}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) G\left(q_{3}, h_{3} q_{1}^{2} q_{2}^{2} q_{4}^{2}, h_{3} q_{1} q_{2} q_{4}\right) G\left(q_{4}, h_{4} q_{1}^{2} q_{2}^{2} q_{3}^{2}, h_{4} q_{1} q_{2} q_{3}\right) . \tag{12}
\end{align*}
$$

On the other hand (1), (3) and Lemma 1 yield

$$
\begin{align*}
& \lambda\left(q_{1}, q_{3}\right) \lambda\left(q_{2}, q_{4}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{1 \leq n \leq q_{1} q_{3}} \sum_{1 \leq h_{1} \leq q_{1}} e\left(\frac{h_{1}\left(n^{2}+n+1\right)}{q_{1}}\right) \sum_{1 \leq h_{3} \leq q_{3}} e\left(\frac{h_{3}\left(n^{2}+n+2\right)}{q_{3}}\right) \\
& \times \sum_{1 \leq m \leq q_{2} q_{4}} \sum_{1 \leq h_{2} \leq q_{2}} e\left(\frac{h_{2}\left(m^{2}+m+1\right)}{q_{2}}\right) \sum_{\substack{1 \leq h_{4} \leq q_{4}}} e\left(\frac{h_{4}\left(m^{2}+m+2\right)}{q_{4}}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{2} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) \sum_{\substack{1 \leq h_{3} \leq q_{3} \\
1 \leq n_{4} \leq q_{4}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) \\
& \times G\left(q_{1} q_{3}, h_{1} q_{3}+h_{3} q_{1}, h_{1} q_{3}+h_{3} q_{1}\right) G\left(q_{2} q_{4}, h_{2} q_{4}+h_{4} q_{2}, h_{2} q_{4}+h_{4} q_{2}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{2} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) \sum_{\substack{1 \leq h_{3} \leq q_{3}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) \\
& \times G\left(q_{1}, h_{1} q_{3}^{2}, h_{1} q_{3}+h_{3} q_{1}\right) G\left(q_{3}, h_{3} q_{1}^{2}, h_{4} h_{1} q_{3}+h_{3} q_{1}\right) \\
& \times G\left(q_{2}, h_{2} q_{4}^{2}, h_{2} q_{4}+h_{4} q_{2}\right) G\left(q_{4}, h_{4} q_{2}^{2}, h_{2} q_{4}+h_{4} q_{2}\right) \\
& =\frac{1}{q_{1} q_{2} q_{3} q_{4}} \sum_{\substack{1 \leq h_{1} \leq q_{1} \\
1 \leq h_{1} \leq q_{2}}} e\left(\frac{h_{1} q_{2}+h_{2} q_{1}}{q_{1} q_{2}}\right) G\left(q_{1}, h_{1} q_{3}^{2}, h_{1} q_{3}\right) G\left(q_{2}, h_{2} q_{4}^{2}, h_{2} q_{4}\right) \\
& \times \sum_{\substack{1 \leq n_{3} \leq \leq_{3} \\
1 \leq h_{4} \leq q_{4}}} e\left(\frac{2\left(h_{3} q_{4}+h_{4} q_{3}\right)}{q_{3} q_{4}}\right) G\left(q_{3}, h_{3} q_{1}^{2}, h_{3} q_{1}\right) G\left(q_{4}, h_{4} q_{2}^{2}, h_{4} q_{2}\right) . \tag{13}
\end{align*}
$$

Using the substitution $n \rightarrow{\overline{\left(q_{2} q_{4}\right)}}_{q_{1} q_{3}} n$ we get

$$
\begin{align*}
G\left(q_{1}, h_{1} q_{2}^{2} q_{3}^{2} q_{4}^{2}, h_{1} q_{2} q_{3} q_{4}\right) & =\sum_{n=1}^{q_{1}} e\left(\frac{h_{1} q_{2}^{2} q_{3}^{2} q_{4}^{2} n^{2}+h_{1} q_{2} q_{3} q_{4} n}{q_{1}}\right) \\
& =\sum_{n=1}^{q_{1}} e\left(\frac{h_{1} q_{3}^{2} n^{2}+h_{1} q_{3} n}{q_{1}}\right)=G\left(q_{1}, h_{1} q_{3}^{2}, h_{1} q_{3}\right) . \tag{14}
\end{align*}
$$

Arguing in a similar way, we obtain

$$
\begin{align*}
& G\left(q_{2}, h_{2} q_{1}^{2} q_{3}^{2} q_{4}^{2}, h_{2} q_{1} q_{3} q_{4}\right)=G\left(q_{2}, h_{2} q_{4}^{2}, h_{2} q_{4}\right), \tag{15}\\
& G\left(q_{3}, h_{3} q_{1}^{2} q_{2}^{2} q_{4}^{2}, h_{3} q_{1} q_{2} q_{4}\right)=G\left(q_{3}, h_{3} q_{1}^{2}, h_{3} q_{1}\right), \tag{16}\\
& G\left(q_{4}, h_{4} q_{1}^{2} q_{2}^{2} q_{3}^{2}, h_{4} q_{1} q_{2} q_{3}\right)=G\left(q_{4}, h_{4} q_{2}^{2}, h_{4} q_{2}\right) . \tag{17}
\end{align*}
$$

Summarizing (12) - (17) we complete the proof of the lemma.
The following lemma is the main weapon of the theorem.

Lemma 6. Let $n \geq 5$. There exists a bijective function from the solution set of the equation

$$
\begin{equation*}
x^{2}+x y+2 y^{2}=n, \quad(x, y)=1, \quad x \in \mathbb{N}, \quad y \in \mathbb{Z} \backslash\{0\} \tag{18}
\end{equation*}
$$

to the incongruent solutions modulo n of the congruence

$$
\begin{equation*}
z^{2}+z+2 \equiv 0(n) . \tag{19}
\end{equation*}
$$

Proof. Let us denote by F the set of ordered pairs (x, y) satisfying (18) and by E the set of solutions of the congruence (19). Every residue class modulo n with representatives satisfying (19) will be considered as one solution of (19).

Let $(x, y) \in F$. By (18) we have that $(n, y)=1$. Then there exists a unique residue class z modulo n such that

$$
\begin{equation*}
z y \equiv x(n) \tag{20}
\end{equation*}
$$

For this class we write

$$
\left(z^{2}+z+2\right) y^{2} \equiv(z y)^{2}+(z y) y+2 y^{2} \equiv x^{2}+x y+2 y^{2} \equiv 0(n) .
$$

The last congruence and $(n, y)=1$ yield $z^{2}+z+2 \equiv 0(n)$ that is $z \in E$. We define the map

$$
\begin{equation*}
\beta: F \rightarrow E \tag{21}
\end{equation*}
$$

that associates to each pair $(x, y) \in F$ the residue class $z=x \bar{y}_{n}$ satisfying (20).
We will first prove that the map (21) is a injection. Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in F$ that is

$$
\begin{array}{|l}
\left\lvert\, \begin{array}{l}
x^{2}+x y+2 y^{2}=n \\
x^{\prime 2}+x^{\prime} y^{\prime}+2 y^{\prime 2}=n
\end{array}\right. \\
 \tag{23}\\
(x, y)=\left(x^{\prime}, y^{\prime}\right)=1
\end{array}
$$

and

$$
\begin{equation*}
(x, y) \neq\left(x^{\prime}, y^{\prime}\right) . \tag{24}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\beta(x, y)=\beta\left(x^{\prime}, y^{\prime}\right) . \tag{25}
\end{equation*}
$$

Hence there exists $z \in E$ such that

$$
\left\lvert\, \begin{align*}
& z y \equiv x(n) \tag{26}\\
& z y^{\prime} \equiv x^{\prime}(n)
\end{align*} .\right.
$$

The system (26) yields

$$
\begin{equation*}
x y^{\prime}-x^{\prime} y \equiv 0(n) . \tag{27}
\end{equation*}
$$

Since the discriminants of the quadratic equations in (22) must be nonnegative and $n \geq 5$ we derive

$$
\left\lvert\, \begin{align*}
& 0<x, x^{\prime} \leq \sqrt{\frac{8 n}{7}} \tag{28}\\
& 0<|y|,\left|y^{\prime}\right| \leq \sqrt{\frac{4 n}{7}}
\end{align*} .\right.
$$

We first consider the case

$$
\begin{equation*}
y y^{\prime}>0 . \tag{29}
\end{equation*}
$$

By (28) it follows

$$
\left\lvert\, \begin{aligned}
& 0<\left|x y^{\prime}\right|<\frac{4 \sqrt{2} n}{7} \\
& 0<\left|x^{\prime} y\right|<\frac{4 \sqrt{2} n}{7}
\end{aligned}\right.
$$

and bearing in mind (29) we obtain

$$
\begin{equation*}
-n<x y^{\prime}-x^{\prime} y<n . \tag{30}
\end{equation*}
$$

Now (27) and (30) lead to

$$
x y^{\prime}-x^{\prime} y=0
$$

which together with (23) gives us

$$
\begin{equation*}
x=x^{\prime}, \quad y=y^{\prime} . \tag{31}
\end{equation*}
$$

From (24) and (31) we get a contradiction.
Next we consider the case

$$
\begin{equation*}
y y^{\prime}<0 . \tag{32}
\end{equation*}
$$

By (22), (28) and (32) we deduce

$$
\begin{array}{l|l}
0<x \leq \sqrt{\frac{8 n}{7}} \tag{33}\\
0<|y| \leq \sqrt{\frac{4 n}{7}} \quad \text { or } \quad & 0<x<\sqrt{n} \\
0<x^{\prime}<\sqrt{n} \\
0<\left|y^{\prime}\right|<\sqrt{\frac{n}{2}} & 0<x^{\prime} \leq \sqrt{\frac{8 n}{7}} \\
0 & 0<\left|y^{\prime}\right| \leq \sqrt{\frac{4 n}{7}}
\end{array}
$$

and therefore

$$
\begin{equation*}
-2 n<x y^{\prime}-x^{\prime} y<2 n . \tag{34}
\end{equation*}
$$

Now (27), (32) and (34) imply

$$
\begin{equation*}
x y^{\prime}-x^{\prime} y=n \tag{35}
\end{equation*}
$$

or

$$
\begin{equation*}
x y^{\prime}-x^{\prime} y=-n . \tag{36}
\end{equation*}
$$

After multiplying the congruence (19) by $y y^{\prime}$ and using (26) we deduce

$$
z^{2} y y^{\prime}+z y y^{\prime}+2 y y^{\prime} \equiv 0(n)
$$

thus

$$
\begin{equation*}
x x^{\prime}+x y^{\prime}+2 y y^{\prime} \equiv 0(n) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
x x^{\prime}+x^{\prime} y+2 y y^{\prime} \equiv 0(n) . \tag{38}
\end{equation*}
$$

On the other hand (33) yields

$$
\left\lvert\, \begin{aligned}
& 0<x x^{\prime}<\frac{2 \sqrt{2} n}{\sqrt{7}} \\
& 0<\left|2 y y^{\prime}\right|<\frac{2 \sqrt{2} n}{\sqrt{7}} \\
& 0<\left|x y^{\prime}\right|<\frac{2 n}{\sqrt{7}} \\
& 0<\left|x^{\prime} y\right|<\frac{2 n}{\sqrt{7}}
\end{aligned}\right.
$$

which together with (32) gives us

$$
\begin{equation*}
\left|x x^{\prime}+x y^{\prime}+2 y y^{\prime}\right| \leq\left|x x^{\prime}+2 y y^{\prime}\right|+\left|x y^{\prime}\right|<\frac{2 \sqrt{2}+2}{\sqrt{7}} n<2 n \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x x^{\prime}+x^{\prime} y+2 y y^{\prime}\right| \leq\left|x x^{\prime}+2 y y^{\prime}\right|+\left|x^{\prime} y\right|<\frac{2 \sqrt{2}+2}{\sqrt{7}} n<2 n . \tag{40}
\end{equation*}
$$

Let (35) be true. Now (37) and (39) lead to three possibilities

$$
\begin{equation*}
x x^{\prime}+x y^{\prime}+2 y y^{\prime}=0 \tag{41}
\end{equation*}
$$

or

$$
\begin{equation*}
x x^{\prime}+x y^{\prime}+2 y y^{\prime}=n \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
x x^{\prime}+x y^{\prime}+2 y y^{\prime}=-n . \tag{43}
\end{equation*}
$$

On the one hand (23) and (41) imply $x= \pm y^{\prime}$ and therefore

$$
x^{\prime}+y^{\prime}= \pm 2 y \text {. }
$$

From the last equation and (22) we derive

$$
x y \pm x x^{\prime}=2 y^{2}
$$

which contradicts (23). On the other hand (35) and (42) give us

$$
\begin{equation*}
x x^{\prime}+x^{\prime} y+2 y y^{\prime}=0 \tag{44}
\end{equation*}
$$

which together with (23) yields $x^{\prime}= \pm y$ and therefore

$$
x+y= \pm 2 y^{\prime}
$$

From the last equation and (22) we derive

$$
x^{\prime} y^{\prime} \pm x x^{\prime}=2 y^{\prime 2}
$$

which contradicts (23). Finally (35) and (43) lead to

$$
x x^{\prime}+x^{\prime} y+2 y y^{\prime}=-2 n
$$

which contradicts (40).
Let (36) be true. Now (38) and (40) lead to three possibilities

$$
x x^{\prime}+x^{\prime} y+2 y y^{\prime}=0
$$

or

$$
\begin{equation*}
x x^{\prime}+x^{\prime} y+2 y y^{\prime}=n \tag{45}
\end{equation*}
$$

or

$$
\begin{equation*}
x x^{\prime}+x^{\prime} y+2 y y^{\prime}=-n . \tag{46}
\end{equation*}
$$

The first equation coincides with (44). The equation (45) due to (36) coincides with (41). The equation (46) due to (36) implies

$$
x x^{\prime}+x y^{\prime}+2 y y^{\prime}=-2 n
$$

which contradicts (39). The resulting contradictions show that the assumption (25) is not true. This proves the injectivity of β.

It remains to show that the map (21) is a surjection. We note that according to (20) the solutions (x, y) and $(-x,-y)$ of $x^{2}+x y+2 y^{2}=n$ will produce the same z. That is why if it happens that (x, y) is such a solution of $x^{2}+x y+2 y^{2}=n$ that $x<0$ then we replace (x, y) with $(-x,-y)$. In the proof, we will omit this consideration.

Let $z \in E$. According to Dirichlet's approximation theorem there exist integers a and q such that

$$
\begin{equation*}
\left|\frac{z}{n}-\frac{a}{q}\right|<\frac{1}{q \sqrt{n}}, \quad 1 \leq q \leq \sqrt{n}, \quad(a, q)=1 \tag{47}
\end{equation*}
$$

Put

$$
\begin{equation*}
r=z q-a n . \tag{48}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
r^{2}+r q+2 q^{2}=z^{2} q^{2}-2 z q a n+a^{2} n^{2}+(z q-a n) q+2 q^{2} \equiv\left(z^{2}+z+2\right) q^{2}(n) \tag{49}
\end{equation*}
$$

Now (19) and (49) imply

$$
\begin{equation*}
r^{2}+r q+2 q^{2} \equiv 0(n) \tag{50}
\end{equation*}
$$

By (47) and (48) we get

$$
\begin{equation*}
|r|<\sqrt{n} . \tag{51}
\end{equation*}
$$

Using (47) and (51) we deduce

$$
\begin{equation*}
0<r^{2}+r q+2 q^{2}<4 n . \tag{52}
\end{equation*}
$$

From (50) and (52) it follows that $r^{2}+r q+2 q^{2}=n, r^{2}+r q+2 q^{2}=2 n$ or $r^{2}+r q+2 q^{2}=3 n$. Consider all cases.

Case 1

$$
\begin{equation*}
r^{2}+r q+2 q^{2}=n \tag{53}
\end{equation*}
$$

From (48) and (53) we obtain

$$
n=(z q-a n)^{2}+(z q-a n) q+2 q^{2}=\left(z^{2}+z+2\right) q^{2}-r a n-z q a n-q a n
$$

and thus

$$
\begin{equation*}
r a+1=k q, \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{z^{2}+z+2}{n} q-a z-a . \tag{55}
\end{equation*}
$$

By (19) and (55) it follows that $k \in \mathbb{Z}$ and bearing in mind (54) we get

$$
\begin{equation*}
(r, q)=1 . \tag{56}
\end{equation*}
$$

On the other hand (53), (56) and $n \geq 5$ give us $r \neq 0$. Put

$$
\begin{equation*}
x=r, \quad y=q . \tag{57}
\end{equation*}
$$

From (53), (56) and (57) it follows that $(x, y) \in F$. Also (48) and (57) yield (20). Therefore $\beta(x, y)=z$.

Case 2

$$
\begin{equation*}
r^{2}+r q+2 q^{2}=2 n . \tag{58}
\end{equation*}
$$

From (48) and (58) it follows that

$$
2 n=(z q-a n)^{2}+(z q-a n) q+2 q^{2}=\left(z^{2}+z+2\right) q^{2}-r a n-z q a n-q a n
$$

and thus

$$
\begin{equation*}
r a+2=k q, \tag{59}
\end{equation*}
$$

where k is denoted by (55). From (59) we deduce

$$
\begin{equation*}
(r, q) \leq 2 \tag{60}
\end{equation*}
$$

Now (58), (60) and $n \geq 5$ lead to $r \neq 0$.
Case 2.1

$$
\begin{equation*}
r=2 r_{0}, \quad q=2 q_{0}+1 \tag{61}
\end{equation*}
$$

By (58) and (61) we get

$$
q^{2}+q r_{0}+2 r_{0}^{2}=n
$$

which is equivalent to

$$
\begin{equation*}
\left(q+r_{0}\right)^{2}-r_{0}\left(q+r_{0}\right)+2 r_{0}^{2}=n \tag{62}
\end{equation*}
$$

Put

$$
\begin{equation*}
x=q+r_{0}, \quad y=-r_{0} . \tag{63}
\end{equation*}
$$

Now (60) and (61) imply

$$
\begin{equation*}
\left(q+r_{0}, r_{0}\right)=1 \tag{64}
\end{equation*}
$$

From (62), (63) and (64) we obtain that $(x, y) \in F$. Further (48) and (63) give us

$$
\begin{equation*}
2(z y-x)=-\left(z^{2}+z+2\right) q+z a n+a n . \tag{65}
\end{equation*}
$$

Bearing in mind (19) and (65) we deduce

$$
\begin{equation*}
2(z y-x) \equiv 0(n) \tag{66}
\end{equation*}
$$

Case 2.1.1

$$
\begin{equation*}
r_{0}=2 r_{1} . \tag{67}
\end{equation*}
$$

Now (61), (62) and (67) assure us that n is odd. Hence (66) yields (20). Consequently $\beta(x, y)=z$.

Case 2.1.2

$$
\begin{equation*}
r_{0}=2 r_{1}+1 . \tag{68}
\end{equation*}
$$

From (61), (62), (63) and (68) it follows that n and x are even. Now (61) leads to

$$
z q=r+a n \equiv 0(2)
$$

that is z is even. Thus

$$
\begin{equation*}
z y-x \text { is even. } \tag{69}
\end{equation*}
$$

Case 2.1.2a

$$
\begin{equation*}
n=2 n_{0}, \quad n_{0} \text { is odd. } \tag{70}
\end{equation*}
$$

Now (66), (69) and (70) imply (20). Therefore $\beta(x, y)=z$.
Case 2.1.2b

$$
\begin{equation*}
n=2^{l+1} n_{0}, \quad l \geq 1, \quad n_{0} \text { is odd. } \tag{71}
\end{equation*}
$$

By (19) and (71) we obtain

$$
\begin{equation*}
z^{2}+z+2 \equiv 0\left(2^{l+1}\right) . \tag{72}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
z y-x=2^{l} h, \quad h \text { is odd. } \tag{73}
\end{equation*}
$$

Now (18), (71), (72) and (73) give us consistently

$$
\begin{gather*}
(y z)^{2}+(y z) y+2 y^{2} \equiv 0\left(2^{l+1}\right), \\
\left(2^{l} h+x\right)^{2}+\left(2^{l} h+x\right) y+2 y^{2} \equiv 0\left(2^{l+1}\right), \\
2^{2 l} h^{2}+2^{l+1} h x+x^{2}+x y+2 y^{2}+2^{l} h y \equiv 0\left(2^{l+1}\right), \\
2^{l} h y \equiv 0\left(2^{l+1}\right) . \tag{74}
\end{gather*}
$$

From (63), (68) and (74) we get a contradiction. Consequently

$$
\begin{equation*}
z y-x \equiv 0\left(2^{l+1}\right) . \tag{75}
\end{equation*}
$$

Now (66), (71) and (75) yield (20). Thus $\beta(x, y)=z$.

Case 2.2

$$
\begin{equation*}
r=2 r_{0}, \quad q=2 q_{0} \tag{76}
\end{equation*}
$$

Bearing in mind (60) and (76) we get

$$
\begin{equation*}
\left(r_{0}, q_{0}\right)=1 \tag{77}
\end{equation*}
$$

By (58) and (76) we find

$$
\begin{equation*}
4 q_{0}^{2}+2 q_{0} r_{0}+2 r_{0}^{2}=n . \tag{78}
\end{equation*}
$$

Case 2.2.1

$$
\begin{equation*}
r_{0}=2 r_{1}, \quad q_{0}=2 q_{1}+1 \tag{79}
\end{equation*}
$$

We write equation (78) in the form

$$
\begin{equation*}
q^{2}-q\left(q_{0}+r_{0}\right)+2\left(q_{0}+r_{0}\right)^{2}=n . \tag{80}
\end{equation*}
$$

Put

$$
\begin{equation*}
x=-q, \quad y=q_{0}+r_{0} . \tag{81}
\end{equation*}
$$

Now (76), (77) and (79) lead to

$$
\begin{equation*}
\left(-q, r_{0}+q_{0}\right)=1 . \tag{82}
\end{equation*}
$$

Taking into account (80) - (82) we conclude that $(x, y) \in F$. Further (76) - (79) assure us that $4 \mid n$ and $4 \mid r$. Therefore

$$
\begin{equation*}
z q=r+a n \equiv 0(4) . \tag{83}
\end{equation*}
$$

From (76), (79) and (83) it follows that

$$
\begin{equation*}
z=2 z_{0} . \tag{84}
\end{equation*}
$$

Using (48), (76), (81) and (84) we write

$$
\begin{equation*}
2(z y-x)=-\left(z^{2}+z+2\right) 2 q_{0}-2 n z_{0} a . \tag{85}
\end{equation*}
$$

By (19) and (85) we obtain (20). Consequently $\beta(x, y)=z$.

Case 2.2.2

$$
\begin{equation*}
r_{0}=2 r_{1}+1, \quad q_{0}=2 q_{1}+1 . \tag{86}
\end{equation*}
$$

We write equation (78) in the form

$$
\begin{equation*}
\left(2 q_{0}+r_{0}\right)^{2}-r_{0}\left(2 q_{0}+r_{0}\right)+2 r_{0}^{2}=n . \tag{87}
\end{equation*}
$$

Put

$$
\begin{equation*}
x=2 q_{0}+r_{0}, \quad y=-r_{0} . \tag{88}
\end{equation*}
$$

Now (77) and (86) imply

$$
\begin{equation*}
\left(2 q_{0}+r_{0},-r_{0}\right)=1 . \tag{89}
\end{equation*}
$$

From (87) - (89) we get $(x, y) \in F$. Further (78) and (86) give us

$$
\begin{equation*}
n \equiv 0(4) . \tag{90}
\end{equation*}
$$

If we assume that (84) is true then (48), (76), (90) and (84) yield

$$
2 r_{0}=z q-a n=4 z_{0} q_{0}-a n \equiv 0
$$

which contradicts (86). This means that z is odd, that is

$$
\begin{equation*}
z+1=2 z_{0} . \tag{91}
\end{equation*}
$$

Bearing in mind (48), (76) and (88) we deduce

$$
\begin{equation*}
2(z y-x)=-\left(z^{2}+z+2\right) 2 q_{0}+a n(z+1) . \tag{92}
\end{equation*}
$$

From (19), (91) and (92) we establish (20). Therefore $\beta(x, y)=z$.

Case 2.2.3

$$
\begin{equation*}
r_{0}=2 r_{1}+1, \quad q_{0}=2 q_{1} . \tag{93}
\end{equation*}
$$

When z is even then Case 2.2.3 coincides with Case 2.2.1. When z is odd then Case 2.2.3 coincides with Case 2.2.2.

Case 2.3

$$
\begin{equation*}
r=2 r_{0}+1, \quad q=2 q_{0}+1 \tag{94}
\end{equation*}
$$

By (58) and (94) we obtain

$$
\begin{equation*}
q^{2}-q\left(q_{0}+r_{0}+1\right)+2\left(q_{0}+r_{0}+1\right)^{2}=n . \tag{95}
\end{equation*}
$$

Put

$$
\begin{equation*}
x=-q, \quad y=q_{0}+r_{0}+1 . \tag{96}
\end{equation*}
$$

Now (60) and (94) assure us that

$$
\begin{equation*}
\left(-q, q_{0}+r_{0}+1\right)=1 \tag{97}
\end{equation*}
$$

From (95) - (97) we conclude that $(x, y) \in F$. Further (48) and (96) lead to

$$
\begin{equation*}
2(z y-x)=\left(z^{2}+z+2\right) q-z a n . \tag{98}
\end{equation*}
$$

Using (19) and (98) we establish that (66) holds.
Case 2.3.1 The numbers r_{0} and q_{0} are of different parity. By (95) and (96) it follows that n is odd. Hence (66) implies (20). Thus $\beta(x, y)=z$.

Case 2.3.2 The numbers r_{0} and q_{0} are of the same parity.
From (95) and (96) it follows that y is odd and n is even. Now (48) and (94) give us that $z q$ is odd. Therefore z is odd. Consequently $z y-x$ is even. It remains to be seen that when n has the shape (70) then Case 2.3.2 coincides with Case 2.1.2a and when n has the form (71) then Case 2.3.2 coincides with Case 2.1.2b. Hence $\beta(x, y)=z$.

Case 3

$$
\begin{equation*}
r^{2}+r q+2 q^{2}=3 n \tag{99}
\end{equation*}
$$

Direct verifications will prove that Case 3 is impossible.

Case 3.1

$$
\begin{equation*}
r=3 r_{0}, \quad q=3 q_{0} \tag{100}
\end{equation*}
$$

Now (99) and (100) yield

$$
3\left(r_{0}^{2}+r_{0} q_{0}+2 q_{0}^{2}\right)=n,
$$

i.e. $3 \mid n$ that contradicts (19) because the congruences

$$
z^{2}+z+2 \equiv 0(3)
$$

has no solution.

Case 3.2

$$
\begin{equation*}
r=3 r_{0}, \quad q=3 q_{0}+1 . \tag{101}
\end{equation*}
$$

By (99) and (101) we get

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+r_{0}+6 q_{0}^{2}+4 q_{0}\right)+2 \equiv 0(3)
$$

which is impossible.

Case 3.3

$$
\begin{equation*}
r=3 r_{0}, \quad q=3 q_{0}+2 . \tag{102}
\end{equation*}
$$

Using (99) and (102) we deduce

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+2 r_{0}+6 q_{0}^{2}+8 q_{0}\right)+8 \equiv 0(3)
$$

which is a contradiction.

Case 3.4

$$
\begin{equation*}
r=3 r_{0}+1, \quad q=3 q_{0} . \tag{103}
\end{equation*}
$$

Now (99) and (103) give us

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+2 r_{0}+6 q_{0}^{2}+q_{0}\right)+1 \equiv 0(3)
$$

which is impossible.

Case 3.5

$$
\begin{equation*}
r=3 r_{0}+1, \quad q=3 q_{0}+1 \tag{104}
\end{equation*}
$$

From (99) and (104) it follows

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+3 r_{0}+6 q_{0}^{2}+5 q_{0}\right)+4 \equiv 0(3)
$$

which is a contradiction.

Case 3.6

$$
\begin{equation*}
r=3 r_{0}+1, \quad q=3 q_{0}+2 \tag{105}
\end{equation*}
$$

Now (99) and (105) lead to

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+4 r_{0}+6 q_{0}^{2}+9 q_{0}\right)+11 \equiv 0(3)
$$

which is impossible.

Case 3.7

$$
\begin{equation*}
r=3 r_{0}+2, \quad q=3 q_{0} . \tag{106}
\end{equation*}
$$

By (99) and (106) we obtain

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+4 r_{0}+3 q_{0}^{2}+2 q_{0}\right)+4 \equiv 0(3)
$$

which is a contradiction.
Case 3.8

$$
\begin{equation*}
r=3 r_{0}+2, \quad q=3 q_{0}+1 . \tag{107}
\end{equation*}
$$

Now (99) and (107) assure us that

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+5 r_{0}+6 q_{0}^{2}+6 q_{0}\right)+8 \equiv 0(3)
$$

which is impossible.
Case 3.9

$$
\begin{equation*}
r=3 r_{0}+2, \quad q=3 q_{0}+2 . \tag{108}
\end{equation*}
$$

From (99) and (108) we write

$$
3\left(3 r_{0}^{2}+3 r_{0} q_{0}+6 r_{0}+6 q_{0}^{2}+10 q_{0}\right)+16 \equiv 0(3)
$$

which is a contradiction. This proves that β is a surjective map.

For the benefit of the readers, we will give a second shorter proof of the surjectivity of β. Note that this proof is valid only when the quadratic form has class number one. We denote

$$
\begin{equation*}
f(x, y)=x^{2}+x y+2 y^{2} \tag{109}
\end{equation*}
$$

For each root z of the congruence (19) we define the set

$$
\begin{equation*}
\Lambda_{z}=\left\{(x, y) \in \mathbb{Z}^{2} \mid x-z y \equiv 0(n)\right\} \tag{110}
\end{equation*}
$$

We choose a basis

$$
\begin{equation*}
\left(a_{1}, a_{2}\right)=(n, 0), \quad\left(b_{1}, b_{2}\right)=(z, 1) \tag{111}
\end{equation*}
$$

of Λ_{z}. Clearly, the vectors (111) are linearly independent elements of Λ_{z}. Further, (110) shows that the lattice determinant of Λ_{z} is divisible by n, therefore $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ form a basis of this lattice. Bearing in mind (19), (109) and (110) we obtain

$$
\begin{equation*}
f\left(a_{1} X+b_{1} Y, a_{2} X+b_{2} Y\right)=n g(X, Y) \tag{112}
\end{equation*}
$$

where

$$
\begin{equation*}
g(X, Y)=n X^{2}+(2 z+1) X Y+\frac{z^{2}+z+2}{n} Y^{2} \tag{113}
\end{equation*}
$$

A direct discriminant calculation shows that the discriminant of f and g is -7 . From the fact that there exists a unique class of binary quadratic forms with discriminant equal to -7 (see [14], Theorem 198), it follows that g is equivalent to f, that is

$$
\begin{equation*}
g(X, Y)=f(a X+b Y, c X+d Y) \tag{114}
\end{equation*}
$$

where a, b, c, d are integers with $a d-b c= \pm 1$. Consider a, b, c, d to be fixed. Now let $\left(X_{0}, Y_{0}\right)$ be the unique solution of the system

$$
\left\lvert\, \begin{align*}
& a X+b Y=1 \tag{115}\\
& c X+d Y=0
\end{align*} .\right.
$$

We construct a solution (x, y) of (18) of the form

$$
\begin{equation*}
(x, y)=X_{0}\left(a_{1}, a_{2}\right)+Y_{0}\left(b_{1}, b_{2}\right)=\left(n X_{0}+z Y_{0}, Y_{0}\right) \tag{116}
\end{equation*}
$$

If $n X_{0}+z Y_{0}<0$, then replace $\left(X_{0}, Y_{0}\right)$ by $\left(-X_{0},-Y_{0}\right)$ and note that $\left(X_{0}, Y_{0}\right)$ is the unique solution of the system

$$
\left\lvert\, \begin{align*}
& a X+b Y=-1 \tag{117}\\
& c X+d Y=0
\end{align*}\right.
$$

Since $a d-b c= \pm 1$ then $X_{0}, Y_{0} \in \mathbb{Z}$. On the one hand $a X_{0}+b Y_{0}= \pm 1$ leads to

$$
\begin{equation*}
\left(X_{0}, Y_{0}\right)=1 \tag{118}
\end{equation*}
$$

On the other hand (109), (113), (114), (115) and (117) give us

$$
\begin{equation*}
n X_{0}^{2}+(2 z+1) X_{0} Y_{0}+\frac{z^{2}+z+2}{n} Y_{0}^{2}=g\left(X_{0}, Y_{0}\right)=f(\pm 1,0)=1 \tag{119}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\left(n, Y_{0}\right)=1 \tag{120}
\end{equation*}
$$

Now (116), (118) and (120) yield

$$
\begin{equation*}
(x, y)=1 . \tag{121}
\end{equation*}
$$

By (112), (116) and (119) we derive

$$
\begin{equation*}
f(x, y)=n g\left(X_{0}, Y_{0}\right)=n . \tag{122}
\end{equation*}
$$

Finally (109), (110), (121) and (122) imply that β is a surjection.
This completes the proof of the lemma.

4 Proof of the theorem

Using (4) and the well-known identity

$$
\mu^{2}(n)=\sum_{d^{2} \mid n} \mu(d)
$$

we get

$$
\begin{equation*}
\Gamma(X)=\sum_{\substack{d_{1}, d_{2} \\\left(d_{1}, d_{2}\right)=1}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \sum_{\substack{1 \leq n \leq X \\ n^{2}+n+1=0\left(d_{1}^{2}\right) \\ n^{2}+n+2=0\left(d_{2}^{2}\right)}} 1=\Gamma_{1}(X)+\Gamma_{2}(X) \tag{123}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma_{1}(X)=\sum_{\substack{d_{1} d_{2} \leq z \\
\left(d_{1}, d_{2}\right)=1}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \Sigma\left(X, d_{1}^{2}, d_{2}^{2}\right) \tag{124}\\
& \Gamma_{2}(X)=\sum_{\substack{d_{1} d_{2}>z \\
\left(d_{1}, d_{2}\right)=1}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \Sigma\left(X, d_{1}^{2}, d_{2}^{2}\right) \tag{125}\\
& \Sigma\left(X, d_{1}^{2}, d_{2}^{2}\right)=\sum_{\substack{1 \leq n \leq X \\
n^{2}+n+1=0=0 \\
n^{2}+n+2=0\left(d_{2}^{2}\right)}} 1, \tag{126}\\
& \sqrt{X} \leq z<X, \tag{127}
\end{align*}
$$

where z is to be chosen later.

4.1 Estimation of $\Gamma_{1}(\mathrm{X})$

Assume that $q_{1}=d_{1}^{2}, q_{2}=d_{2}^{2}$, where d_{1} and d_{2} are square-free, $\left(q_{1}, q_{2}\right)=1$ and $d_{1} d_{2} \leq z$. Define

$$
\begin{equation*}
\Omega\left(X, q_{1}, q_{2}, n\right)=\sum_{\substack{m \leq X \\ m \equiv n\left(q_{1} q_{2}\right)}} 1 \tag{128}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\Omega\left(X, q_{1}, q_{2}, n\right)=\frac{X}{q_{1} q_{2}}+\mathcal{O}(1) \tag{129}
\end{equation*}
$$

By (126) and (128) we obtain upon partitioning the sum (126) into residue classes modulo $q_{1} q_{2}$

$$
\begin{equation*}
\Sigma\left(X, q_{1}, q_{2}\right)=\sum_{\substack{1 \leq n \leq q_{1} q_{2} \\ n_{2}+n+1=0\left(q_{1}\right) \\ n^{2}+n+2=0\left(q_{2}\right)}} \Omega\left(X, q_{1}, q_{2}, n\right) . \tag{130}
\end{equation*}
$$

From (3), (130) and (129) we get

$$
\begin{equation*}
\Sigma\left(X, q_{1}, q_{2}\right)=X \frac{\lambda\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}+\mathcal{O}\left(\lambda\left(q_{1}, q_{2}\right)\right) \tag{131}
\end{equation*}
$$

Taking into account (3) and that the number of solutions of the congruence

$$
n^{2}+n+1 \equiv a\left(q_{1}\right)
$$

is less than or equal to $\tau\left(q_{1}\right)$ we deduce

$$
\begin{equation*}
\lambda\left(q_{1}, q_{2}\right) \ll \lambda\left(q_{1}, 1\right) \ll \tau\left(q_{1}\right) \ll \tau\left(q_{1} q_{2}\right) . \tag{132}
\end{equation*}
$$

Now (131), (132) and the inequalities

$$
\tau\left(q_{1} q_{2}\right) \ll\left(q_{1} q_{2}\right)^{\varepsilon} \ll X^{\varepsilon}
$$

imply

$$
\begin{equation*}
\Sigma\left(X, q_{1}, q_{2}\right)=X \frac{\lambda\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}+\mathcal{O}\left(X^{\varepsilon}\right) . \tag{133}
\end{equation*}
$$

Using (124), (127) and (133) we obtain

$$
\begin{align*}
\Gamma_{1}(X) & =X \sum_{\substack{d_{1} d_{2} \leq z \\
\left(d_{1}, d_{2}\right)=1}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right) \lambda\left(d_{1}^{2}, d_{2}^{2}\right)}{d_{1}^{2} d_{2}^{2}}+\mathcal{O}\left(z X^{\varepsilon}\right) \\
& =\sigma X-X \sum_{\substack{d_{1} d_{2}>z \\
\left(d_{1}, d_{2}\right)=1}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right) \lambda\left(d_{1}^{2}, d_{2}^{2}\right)}{d_{1}^{2} d_{2}^{2}}+\mathcal{O}\left(z X^{\varepsilon}\right), \tag{134}
\end{align*}
$$

where

$$
\begin{equation*}
\sigma=\sum_{\substack{d_{1}, d_{2}=1 \\\left(d_{1}, d_{2}\right)=1}}^{\infty} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right) \lambda\left(d_{1}^{2}, d_{2}^{2}\right)}{d_{1}^{2} d_{2}^{2}} . \tag{135}
\end{equation*}
$$

By (132) it follows

$$
\begin{equation*}
\sum_{\substack{d_{1} d_{2}>z \\\left(d_{1}, d_{2}\right)=1}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right) \lambda\left(d_{1}^{2}, d_{2}^{2}\right)}{d_{1}^{2} d_{2}^{2}} \ll \sum_{\substack{d_{1} d_{2}>z \\\left(d_{1}, d_{2}\right)=1}} \frac{\left(d_{1} d_{2}\right)^{\varepsilon}}{\left(d_{1} d_{2}\right)^{2}} \ll \sum_{n>z} \frac{\tau(n)}{n^{2-\varepsilon}} \ll z^{\varepsilon-1} . \tag{136}
\end{equation*}
$$

It remains to see that the product (9) and the sum (135) coincide. From Lemma 5 and $\left(d_{1}, d_{2}\right)=1$ we have

$$
\begin{equation*}
\lambda\left(d_{1}^{2}, d_{2}^{2}\right)=\lambda\left(d_{1}^{2}, 1\right) \lambda\left(1, d_{2}^{2}\right) . \tag{137}
\end{equation*}
$$

Now (135) and (137) yield

$$
\begin{equation*}
\sigma=\sum_{d_{1}=1}^{\infty} \frac{\mu\left(d_{1}\right) \lambda\left(d_{1}^{2}, 1\right)}{d_{1}^{2}} \sum_{d_{2}=1}^{\infty} \frac{\mu\left(d_{2}\right) \lambda\left(1, d_{2}^{2}\right)}{d_{2}^{2}} f_{d_{1}}\left(d_{2}\right), \tag{138}
\end{equation*}
$$

where

$$
f_{d_{1}}\left(d_{2}\right)= \begin{cases}1 & \text { if }\left(d_{1}, d_{2}\right)=1 \\ 0 & \text { if }\left(d_{1}, d_{2}\right)>1\end{cases}
$$

It is easy to see that the function

$$
\frac{\mu\left(d_{2}\right) \lambda\left(1, d_{2}^{2}\right)}{d_{2}^{2}} f_{d_{1}}\left(d_{2}\right)
$$

is multiplicative with respect to d_{2} and the series

$$
\sum_{d_{2}=1}^{\infty} \frac{\mu\left(d_{2}\right) \lambda\left(1, d_{2}^{2}\right)}{d_{2}^{2}} f_{d_{1}}\left(d_{2}\right)
$$

is absolutely convergent. Using the Euler product we write

$$
\begin{align*}
\sum_{d_{2}=1}^{\infty} \frac{\mu\left(d_{2}\right) \lambda\left(1, d_{2}^{2}\right)}{d_{2}^{2}} f_{d_{1}}\left(d_{2}\right) & =\prod_{p \nmid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right) \\
& =\prod_{p}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right) \prod_{p \mid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1} . \tag{139}
\end{align*}
$$

From (138) and (139) we get

$$
\begin{align*}
\sigma & =\sum_{d_{1}=1}^{\infty} \frac{\mu\left(d_{1}\right) \lambda\left(d_{1}^{2}, 1\right)}{d_{1}^{2}} \prod_{p}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right) \prod_{p \mid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1} \\
& =\prod_{p}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right) \sum_{d_{1}=1}^{\infty} \frac{\mu\left(d_{1}\right) \lambda\left(d_{1}^{2}, 1\right)}{d_{1}^{2}} \prod_{p \mid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1} . \tag{140}
\end{align*}
$$

It is easy to see that the function

$$
\frac{\mu\left(d_{1}\right) \lambda\left(d_{1}^{2}, 1\right)}{d_{1}^{2}} \prod_{p \mid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1}
$$

is multiplicative with respect to d_{1} and the series

$$
\sum_{d_{1}=1}^{\infty} \frac{\mu\left(d_{1}\right) \lambda\left(d_{1}^{2}, 1\right)}{d_{1}^{2}} \prod_{p \mid d_{1}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1}
$$

is absolutely convergent. Using again the Euler product from (3) and (140) we deduce

$$
\begin{align*}
\sigma & =\prod_{p}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right) \prod_{p}\left(1-\frac{\lambda\left(p^{2}, 1\right)}{p^{2}}\left(1-\frac{\lambda\left(1, p^{2}\right)}{p^{2}}\right)^{-1}\right) \\
& =\prod_{p}\left(1-\frac{\lambda\left(p^{2}, 1\right)+\lambda\left(1, p^{2}\right)}{p^{2}}\right) \tag{141}
\end{align*}
$$

Summarizing (127), (134), (136) and (141) we establish

$$
\begin{equation*}
\Gamma_{1}(X)=\sigma X+\mathcal{O}\left(z X^{\varepsilon}\right) \tag{142}
\end{equation*}
$$

where σ is given by the product (9).

4.2 Estimation of $\Gamma_{2}(X)$

Bearing in mind (125), (126) and splitting the range of d_{1} and d_{2} into dyadic subintervals of the form $D_{1} \leq d_{1}<2 D_{1}, D_{2} \leq d_{2}<2 D_{2}$ we obtain

$$
\begin{equation*}
\Gamma_{2}(X) \ll(\log X)^{2} \sum_{n \leq X} \sum_{\substack{D_{1} \leq d_{1}<2 D_{1} \\ n^{2}+n+1=0\left(d_{1}^{2}\right)}} \sum_{\substack{D_{2} \leq d_{2}<2 D_{2} \\ n^{2}+n+2 \equiv 0\left(d_{2}^{2}\right)}} 1, \tag{143}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{2} \leq D_{1}, D_{2} \leq \sqrt{X^{2}+X+2}, \quad D_{1} D_{2}>\frac{z}{4} \tag{144}
\end{equation*}
$$

On the one hand (143) implies

$$
\begin{equation*}
\Gamma_{2}(X) \ll X^{\varepsilon} \Sigma_{1} \tag{145}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{1}=\sum_{n \leq X} \sum_{\substack{D_{1} \leq d_{1}<2 D_{1} \\ n^{2}+n+1 \equiv 0\left(d_{1}^{2}\right)}} 1 . \tag{146}
\end{equation*}
$$

On the other hand (143) gives us

$$
\begin{equation*}
\Gamma_{2}(X) \ll X^{\varepsilon} \Sigma_{2} \tag{147}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{2}=\sum_{n \leq X} \sum_{\substack{D_{2} \leq d_{2}<2 D_{2} \\ n^{2}+n+2=0\left(d_{2}^{2}\right)}} 1 . \tag{148}
\end{equation*}
$$

Estimation of $\boldsymbol{\Sigma}_{\mathbf{1}}$

Arguing as in [?] we get

$$
\begin{equation*}
\Sigma_{1} \ll X^{1+\varepsilon} D_{1}^{-\frac{1}{4}} \tag{149}
\end{equation*}
$$

Estimation of $\boldsymbol{\Sigma}_{\mathbf{2}}$

Define

$$
\begin{align*}
& \mathcal{N}(d)=\left\{n \in \mathbb{N}: 1 \leq n \leq d, \quad n^{2}+n+2 \equiv 0(d)\right\} \tag{150}\\
& \mathcal{N}^{\prime}(d)=\left\{n \in \mathbb{N}: 1 \leq n \leq d^{2}, \quad n^{2}+n+2 \equiv 0\left(d^{2}\right)\right\} \tag{151}
\end{align*}
$$

From (148) and (151) we write

$$
\begin{align*}
\Sigma_{2} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)} \sum_{\substack{m \leq X \\
m \equiv n\left(d_{2}^{2}\right)}} 1=\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)}\left(\left[\frac{X-n}{d_{2}^{2}}\right]-\left[\frac{-n}{d_{2}^{2}}\right]\right) \\
& =\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}+\psi\left(\frac{-n}{d_{2}^{2}}\right)-\psi\left(\frac{X-n}{d_{2}^{2}}\right)\right) \\
& \ll X^{1+\varepsilon} D_{2}^{-1}+\left|\Sigma_{2}^{\prime}\right|+\left|\Sigma_{2}^{\prime \prime}\right|, \tag{152}
\end{align*}
$$

where

$$
\begin{align*}
& \Sigma_{2}^{\prime}=\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)} \psi\left(\frac{-n}{d_{2}^{2}}\right), \tag{153}\\
& \Sigma_{2}^{\prime \prime}=\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)} \psi\left(\frac{X-n}{d_{2}^{2}}\right) . \tag{154}
\end{align*}
$$

Arguing as in [?] we deduce

$$
\begin{equation*}
\Sigma_{2}^{\prime} \ll X^{\varepsilon} D_{2}^{-1} \tag{155}
\end{equation*}
$$

Further we consider the sum $\Sigma_{2}^{\prime \prime}$ defined by (154). Let $D_{2} \leq X^{\frac{1}{2}}$. The trivial estimation leads to

$$
\begin{equation*}
\Sigma_{2}^{\prime \prime} \ll \sum_{D_{2} \leq d_{2}<2 D_{2}} d_{2}^{\varepsilon} \ll X^{\frac{1}{2}+\varepsilon} . \tag{156}
\end{equation*}
$$

Let

$$
\begin{equation*}
D_{2}>X^{\frac{1}{2}} . \tag{157}
\end{equation*}
$$

We notice that all summands in the sum (148) for which $7 \mid d_{2}$ are equal to zero because the congruences

$$
\begin{equation*}
n^{2}+n+2 \equiv 0(49) \tag{158}
\end{equation*}
$$

has no solution. That's why in the estimation of (148) we will consider that $7 \nmid d_{2}$. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with integral coefficients and r_{1}, \ldots, r_{k} be all solutions of the congruence

$$
\begin{equation*}
f(x) \equiv 0\left(p^{l-1}\right) . \tag{159}
\end{equation*}
$$

From the theory of the congruences we know that when $p \nmid f^{\prime}\left(r_{i}\right)$ for $i=1, \ldots, k$ then the number of solutions of the congruence

$$
\begin{equation*}
f(x) \equiv 0\left(p^{l}\right) . \tag{160}
\end{equation*}
$$

is also equal to k, that is, congruences (159) and (160) have an equal number of solutions. Taking into account the above considerations, we derive that the congruences

$$
\begin{equation*}
n^{2}+n+2 \equiv 0\left(d_{2}^{2}\right) \tag{161}
\end{equation*}
$$

and

$$
\begin{equation*}
n^{2}+n+2 \equiv 0\left(d_{2}\right) \tag{162}
\end{equation*}
$$

will have an equal number of solutions if we show that for arbitrary prime divisor p of d_{2} and arbitrary solution r of (162) we have that

$$
p \nmid 2 r+1 .
$$

We assume the opposite. Hence

$$
\begin{equation*}
r=\frac{p h-1}{2}, \tag{163}
\end{equation*}
$$

where $h \in \mathbb{Z}$. Now (163) and

$$
r^{2}+r+2 \equiv 0(p)
$$

yield

$$
p^{2} h^{2}+7 \equiv 0(4 p)
$$

which means $p=7$. But we have already excluded the case when 7 is a prime divisor of d_{2}. Therefore congruences (161) and (162) have an equal number of solutions. We note
that the sum over n in (148) does not contain terms with $n=\frac{d_{2}^{2}}{2}$ and $n=d_{2}^{2}$. Moreover for any n satisfying the congruence (161) and such that $1 \leq n<\frac{d_{2}^{2}}{2}$ the number $d_{2}^{2}-n-1$ satisfies the same congruence. The same is true for the congruence (162). We also note that if $n=d_{2}^{2}-n-1$ then $d_{2}^{2} \mid 7$ which is impossible and if $n=d_{2}-n-1$ then $d_{2}=7$ which we excluded as an possibility. Using this facts and notations (150), (151) we denote

$$
\begin{gather*}
k=\# \mathcal{N}\left(d_{2}\right)=\# \mathcal{N}^{\prime}\left(d_{2}\right), \tag{164}\\
n_{1}, \ldots, n_{k} \in \mathcal{N}\left(d_{2}\right), \quad n_{1}^{\prime}, \ldots, n_{k}^{\prime} \in \mathcal{N}^{\prime}\left(d_{2}\right) . \tag{165}
\end{gather*}
$$

Now (150), (151), (157), (164), (165) and $d_{2} \geq D_{2}$ give us

$$
\begin{align*}
& \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)} \psi\left(\frac{X-n}{d_{2}^{2}}\right)=\sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)}\left(\frac{X-n}{d_{2}^{2}}-\frac{1}{2}\right) \\
= & \sum_{n \in \mathcal{N}^{\prime}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{1}{2}\right)-\frac{n_{1}^{\prime}+\cdots+n_{k / 2}^{\prime}+\left(d_{2}^{2}-n_{1}^{\prime}-1\right)+\cdots+\left(d_{2}^{2}-n_{k / 2}^{\prime}-1\right)}{d_{2}^{2}} \\
= & \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{1}{2}\right)-\frac{k\left(d_{2}^{2}-1\right)}{2 d_{2}^{2}} \\
= & \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{1}{2}\right)-\frac{n_{1}+\cdots+n_{k / 2}+\left(d_{2}-n_{1}-1\right)+\cdots+\left(d_{2}-n_{k / 2}-1\right)}{d_{2}}\left(1+\frac{1}{d_{2}}\right) \\
= & \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{1}{2}\right)-\left(1+\frac{1}{d_{2}}\right) \sum_{n \in \mathcal{N}\left(d_{2}\right)} \frac{n}{d_{2}} \\
= & \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{\sqrt{X}}{d_{2}}-\frac{n}{d_{2}^{2}}\right)+\sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{\sqrt{X}-n}{d_{2}}-\frac{1}{2}\right) \\
= & \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(\frac{X}{d_{2}^{2}}-\frac{\sqrt{X}}{d_{2}}-\frac{n}{d_{2}^{2}}\right)+\sum_{n \in \mathcal{N}\left(d_{2}\right)} \psi\left(\frac{\sqrt{X}-n}{d_{2}}\right) . \tag{166}
\end{align*}
$$

From (154), (157) and (166) it follows

$$
\begin{equation*}
\Sigma_{2}^{\prime \prime} \ll X^{\frac{1}{2}+\varepsilon}+\left|\Sigma_{3}\right| \tag{167}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{3}=\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}\left(d_{2}\right)} \psi\left(\frac{\sqrt{X}-n}{d_{2}}\right) . \tag{168}
\end{equation*}
$$

Using (168) and Lemma 2 with

$$
\begin{equation*}
M=X^{\frac{1}{2}} \tag{169}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\Sigma_{3} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}\left(d_{2}\right)}\left(-\sum_{1 \leq|m| \leq M} \frac{e\left(m\left(\frac{\sqrt{X}-n}{d_{2}}\right)\right)}{2 \pi i m}+\mathcal{O}\left(f_{M}\left(\frac{\sqrt{X}-n}{d_{2}}\right)\right)\right) \\
& =\Sigma_{4}+\Sigma_{5}, \tag{170}
\end{align*}
$$

where

$$
\begin{align*}
\Sigma_{4} & =\sum_{1 \leq|m| \leq M} \frac{\Theta_{m}}{2 \pi i m} \tag{171}\\
\Theta_{m} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} e\left(\frac{\sqrt{X} m}{d_{2}}\right) \sum_{n \in \mathcal{N}\left(d_{2}\right)} e\left(-\frac{n m}{d_{2}}\right) \tag{172}\\
\Sigma_{5} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}\left(d_{2}\right)} f_{M}\left(\frac{\sqrt{X}-n}{d_{2}}\right) \tag{173}
\end{align*}
$$

By (172), (173) and Lemma 2 we derive

$$
\begin{align*}
\Sigma_{5} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} \sum_{n \in \mathcal{N}\left(d_{2}\right)} \sum_{m=-\infty}^{+\infty} b_{M}(m) e\left(\frac{\sqrt{X}-n}{d_{2}} m\right)=\sum_{m=-\infty}^{+\infty} b_{M}(m) \Theta_{m} \\
& \ll \frac{\log M}{M}\left|\Theta_{0}\right|+\frac{\log M}{M} \sum_{1 \leq|m| \leq M^{1+\varepsilon}}\left|\Theta_{m}\right|+\sum_{|m|>M^{1+\varepsilon}}\left|b_{M}(m)\right|\left|\Theta_{m}\right| \\
& \ll \frac{\log M}{M} D_{2}^{1+\varepsilon}+\frac{\log M}{M} \sum_{1 \leq m \leq M^{1+\varepsilon}}\left|\Theta_{m}\right|+D_{2}^{1+\varepsilon} \sum_{|m|>M^{1+\varepsilon}}\left|b_{M}(m)\right| \\
& \ll \frac{\log M}{M} D_{2}^{1+\varepsilon}+\frac{\log M}{M} \sum_{1 \leq m \leq M^{1+\varepsilon}}\left|\Theta_{m}\right| . \tag{174}
\end{align*}
$$

Now (170), (171) and (174) imply

$$
\begin{equation*}
\Sigma_{3} \ll X^{\varepsilon}\left(\frac{D_{2}}{M}+\sum_{1 \leq m \leq M^{1+\varepsilon}} \frac{\left|\Theta_{m}\right|}{m}\right) \tag{175}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathcal{F}(d)=\left\{(u, v): u^{2}+u v+2 v^{2}=d, \quad(u, v)=1, \quad u \in \mathbb{N}, \quad v \in \mathbb{Z} \backslash\{0\}\right\} \tag{176}
\end{equation*}
$$

According to Lemma 6 there exists a bijection

$$
\beta: \mathcal{F}(d) \rightarrow \mathcal{N}(d)
$$

from $\mathcal{F}(d)$ to $\mathcal{N}(d)$ defined by (150) that associates to each couple $(u, v) \in \mathcal{F}(d)$ the element $n \in \mathcal{N}(d)$ satisfying

$$
\begin{equation*}
n v \equiv u(d) \tag{177}
\end{equation*}
$$

Now (177) yields

$$
n_{u, v} \equiv u \bar{v}_{d}(d)
$$

thus

$$
\begin{equation*}
\frac{n_{u, v}}{d} \equiv u \frac{\bar{v}_{u^{2}+u v+2 v^{2}}}{u^{2}+u v+2 v^{2}}(1) . \tag{178}
\end{equation*}
$$

From (178) and Lemma 3 it follows

$$
\begin{align*}
& \frac{n_{u, v}}{d} \equiv \frac{u}{v\left(u^{2}+u v+2 v^{2}\right)}-\frac{\bar{u}_{|v|}}{v}(1) \tag{179}\\
& \frac{n_{u, v}}{d} \equiv-\frac{u+2 v}{u\left(u^{2}+u v+2 v^{2}\right)}+\frac{\bar{v}_{u}}{u}(1) . \tag{180}
\end{align*}
$$

Bearing in mind (172), (176), (179) and (180) we get

$$
\begin{align*}
\Theta_{m} & =\sum_{D_{2} \leq d_{2}<2 D_{2}} e\left(\frac{m \sqrt{X}}{d_{2}}\right) \sum_{(u, v) \in \mathcal{F}\left(d_{2}\right)} e\left(-\frac{n_{u, v}}{d_{2}} m\right) \\
& =\sum_{D_{2} \leq d_{2}<2 D_{2}} e\left(\frac{m \sqrt{X}}{d_{2}}\right) \sum_{\substack{(u, v) \in \mathcal{F}\left(d_{2}\right) \\
0<u<v \mid}} e\left(-\frac{m u}{v\left(u^{2}+u v+2 v^{2}\right)}+\frac{m \bar{u}_{|v|}}{v}\right) \\
& +\sum_{D_{2} \leq d_{2}<2 D_{2}} e\left(\frac{m \sqrt{X}}{d_{2}}\right) \sum_{\substack{u, v \in \mathcal{F}\left(d_{2}\right) \\
0<|v|<u}} e\left(\frac{m(u+2 v)}{u\left(u^{2}+u v+2 v^{2}\right)}-\frac{m \bar{v}_{u}}{u}\right) \\
& =\sum_{\substack{D_{2} \leq u^{2}+u v+2 v^{2}<2 D_{2} \\
0<u<v \mid \\
(u, v)=1}} e\left(\frac{m \sqrt{X}}{u^{2}+u v+2 v^{2}}-\frac{m u}{v\left(u^{2}+u v+2 v^{2}\right)}+\frac{m \bar{u}_{|v|}}{v}\right) \\
& +\sum_{\substack{D_{2} \leq u^{2}+u v+2 v^{2}<2 D_{2} \\
0<v \mid l u \\
(u, v) \leq 1}} e\left(\frac{m \sqrt{X}}{u^{2}+u v+2 v^{2}}+\frac{m(u+2 v)}{u\left(u^{2}+u v+2 v^{2}\right)}-\frac{m \bar{v}_{u}}{u}\right) \\
& =\Theta_{m}^{\prime}+\Theta_{m}^{\prime \prime}, \tag{181}
\end{align*}
$$

say. Consider Θ_{m}^{\prime}. Let for any fixed $\sqrt{\frac{D_{2}}{4}} \leq|v|<\sqrt{D_{2}}$ the interval $\left[\eta_{1}(v), \eta_{2}(v)\right]$ is a solution with respect to u of the system

$$
\left\lvert\, \begin{align*}
& u^{2}+u v+2 v^{2}<2 D_{2} \tag{182}\\
& u^{2}+u v+2 v^{2} \geq D_{2} \\
& 0<u<|v|
\end{align*} .\right.
$$

Denote

$$
\begin{gather*}
g(u)=e\left(\frac{m \sqrt{X}}{u^{2}+u v+2 v^{2}}-\frac{m u}{v\left(u^{2}+u v+2 v^{2}\right)}\right) \tag{183}\\
K_{v, m}(t)=\sum_{\substack{\eta_{1}(v) \leq u<t \\
(u, v)=1}} e\left(\frac{m \bar{u}_{|v|}}{v}\right) \tag{184}
\end{gather*}
$$

By (181) - (184) and Abel's summation formula we deduce

$$
\begin{align*}
\Theta_{m}^{\prime} & =\sum_{\sqrt{\frac{D_{2}}{4}} \leq|v|<\sqrt{D_{2}}} \sum_{\substack{\eta_{1}(v) \leq u<\eta_{2}(v) \\
(u, v)=1}} g(u) e\left(\frac{m \bar{u}_{|v|}}{v}\right) \\
& =\sum_{\sqrt{\frac{D_{2}}{4}} \leq|v|<\sqrt{D_{2}}}\left(g\left(\eta_{2}(v)\right) K_{v, m}\left(\eta_{2}(v)\right)-\int_{\eta_{1}(v)}^{\eta_{2}(v)} K_{v, m}(t)\left(\frac{d}{d t} g(t)\right) d t\right) \\
& \ll \sum_{\sqrt{\frac{D_{2}}{4}} \leq|v|<\sqrt{D_{2}}}\left(1+\frac{m \sqrt{X}}{v^{2}}\right) \max _{\eta_{1}(v) \leq t \leq \eta_{2}(v)}\left|K_{v, m}(t)\right| . \tag{185}
\end{align*}
$$

We are now in a good position to apply Lemma 4 because the sum defined by (184) is an incomplete Kloosterman sum. We have

$$
\begin{equation*}
K_{v, m}(t) \ll|v|^{\frac{1}{2}+\varepsilon}(v, m)^{\frac{1}{2}} . \tag{186}
\end{equation*}
$$

From (185) and (186) we derive

$$
\begin{align*}
\Theta_{m}^{\prime} & \ll \sum_{\sqrt{\frac{D_{2}}{4}} \leq|v|<\sqrt{D_{2}}}\left(1+\frac{m \sqrt{X}}{v^{2}}\right)|v|^{\frac{1}{2}+\varepsilon}(v, m)^{\frac{1}{2}} \\
& \ll X^{\varepsilon}\left(D_{2}^{\frac{1}{4}}+m X^{\frac{1}{2}} D_{2}^{-\frac{3}{4}}\right) \sum_{0<v<\sqrt{D_{2}}}(v, m)^{\frac{1}{2}} . \tag{187}
\end{align*}
$$

On the other hand

$$
\begin{equation*}
\sum_{0<v<\sqrt{D_{2}}}(v, m)^{\frac{1}{2}} \leq \sum_{l \mid m} l^{\frac{1}{2}} \sum_{\substack{v \leq \sqrt{D_{2}} \\ v \equiv 0(l)}} 1 \ll D_{2}^{\frac{1}{2}} \sum_{l \mid m} l^{-\frac{1}{2}} \ll D_{2}^{\frac{1}{2}} \tau(m) \ll X^{\varepsilon} D_{2}^{\frac{1}{2}} . \tag{188}
\end{equation*}
$$

The estimations (187) and (188) lead to

$$
\begin{equation*}
\Theta_{m}^{\prime} \ll X^{\varepsilon}\left(D_{2}^{\frac{3}{4}}+m X^{\frac{1}{2}} D_{2}^{-\frac{1}{4}}\right) \tag{189}
\end{equation*}
$$

Working in a similar way for $\Theta_{m}^{\prime \prime}$ from (181) we deduce

$$
\begin{equation*}
\Theta_{m}^{\prime \prime} \ll X^{\varepsilon}\left(D_{2}^{\frac{3}{4}}+m X^{\frac{1}{2}} D_{2}^{-\frac{1}{4}}\right) \tag{190}
\end{equation*}
$$

Now (181), (189) and (190) yield

$$
\begin{equation*}
\Theta_{m} \ll X^{\varepsilon}\left(D_{2}^{\frac{3}{4}}+m X^{\frac{1}{2}} D_{2}^{-\frac{1}{4}}\right) \tag{191}
\end{equation*}
$$

From (175) and (191) we write

$$
\begin{equation*}
\Sigma_{3} \ll X^{\varepsilon}\left(D_{2} M^{-1}+D_{2}^{\frac{3}{4}}+X^{\frac{1}{2}} M D_{2}^{-\frac{1}{4}}\right) \tag{192}
\end{equation*}
$$

Using (144), (169) and (192) we obtain

$$
\begin{equation*}
\Sigma_{3} \ll X^{1+\varepsilon} D_{2}^{-\frac{1}{4}} . \tag{193}
\end{equation*}
$$

Bearing in mind (144), (152), (155), (156), (167) and (193) we find

$$
\begin{equation*}
\Sigma_{2} \ll X^{1+\varepsilon} D_{2}^{-\frac{1}{4}} \tag{194}
\end{equation*}
$$

Estimation of $\boldsymbol{\Gamma}_{\mathbf{2}}(\mathbf{X})$

Now (144), (145), (147), (149) and (194) imply

$$
\begin{equation*}
\Gamma_{2}(X) \ll X^{1+\varepsilon} z^{-\frac{1}{8}} \tag{195}
\end{equation*}
$$

4.3 The end of the proof

Summarizing (123), (142), (195) and choosing $z=X^{\frac{8}{9}}$ we establish the asymptotic formula (8). This completes the proof of Theorem 1.

References

[1] B. Chen, On the consecutive square-free values of the polynomials $x_{1}^{2}+\cdots+x_{k}^{2}+1, x_{1}^{2}+$ $\cdots+x_{k}^{2}+2$, Indian J. Pure Appl. Math., (2022), https://doi.org/10.1007/s13226-022-00292-z.
[2] G. Chen, W. Wang, On the r-free values of the polynomial $x^{2}+y^{2}+z^{2}+k$, Czechoslovak Math. J., (2023), https://doi.org/10.21136/CMJ.2023.0394-22.
[3] X. Cao, W. Zhai, The distribution of square-free numbers of the form $\left[\mathbf{n}^{\mathbf{c}}\right]$, J. Théor. Nombres Bordeaux, 10, (1998), 287 - 299.
[4] X. Cao, W. Zhai, The distribution of square-free numbers of the form [$\mathbf{n}^{\mathbf{c}}$] (II), Acta Math. Sinica (Chin. Ser.), 51, (2008), 1187 - 1194.
[5] L. Carlitz, On a problem in additive arithmetic II, Quart. J. Math., 3, (1932), 273 290.
[6] S. I. Dimitrov, On the number of pairs of positive integers $x, y \leq H$ such that $x^{2}+$ $y^{2}+1, x^{2}+y^{2}+2$ are square-free, Acta Arith., 194, 3, (2020), $281-294$.
[7] S. I. Dimitrov, Pairs of square-free values of the type $n^{2}+1, n^{2}+2$, Czechoslovak Math. J., 71, 4, (2021), 991 - 1009.
[8] S. I. Dimitrov, Square-free values of $n^{2}+n+1$, Georgian Math. J., (2023), https://doi.org/10.1515/gmj-2023-2010.
[9] H. Fan, W. Zhai, On the consecutive k-free values for certain class of polynomials, to appear in Period. Math. Hungar., (2023).
[10] L. Gegenbauer, Asymptotische Gesetze der Zahlentheorie, Denkschriften Akad. Wiss. Wien, 49, (1885), 37 - 80.
[11] L. K. Hua, Introduction to Number Theory, Springer, Berlin, (1982).
[12] H. Iwaniec, E. Kowalski, Analytic number theory, Colloquium Publications, 53, Am. Math. Soc., (2004).
[13] M. Jing, H. Liu, Consecutive square-free numbers and square-free primitive roots, Int. J. Number Theory, 18, (2022), $205-226$.
[14] E. Landau, Elementary number theory, Chelsea Publishing Company, (1958).
[15] D. I. Tolev, On the exponential sum with squarefree numbers, Bull. Lond. Math. Soc., 37, 6, (2005), 827 - 834.
[16] G. Zhou, Y. Ding, On the square-free values of the polynomial $x^{2}+y^{2}+z^{2}+k$, J. Number Theory, 236, (2022), 308-322.

S. I. Dimitrov

Faculty of Applied Mathematics and Informatics
Technical University of Sofia
Blvd. St.Kliment Ohridski 8
Sofia 1756, Bulgaria
e-mail: sdimitrov@tu-sofia.bg
Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
e-mail: xyzstoyan@gmail.com

