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In this paper we prove that there exist infinitely many square-free pairs of the form n 2 + n + 1, n 2 + n + 2. We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number. A key point in our proof is the application of bijective correspondence between the number of representations of number by binary quadratic form and the incongruent solutions of quadratic congruence.

Notations

Let X be a sufficiently large positive number. The letter ε denotes an arbitrary small positive number, not the same in all appearances. As usual [t] and {t} denote the integer part, respectively, the fractional part of t. Further µ(n) is Möbius' function and τ (n) denotes the number of positive divisors of n. Instead of m ≡ n (mod k) we write for simplicity m ≡ n (k). The relation f (x) g(x) means that f (x) = O g(x) . Moreover (m, n) is the greatest common divisor of m and n. The letter p always denotes a prime number. We write e(t)=exp(2πit) and ψ(t) = {t} -1/2. For x, y ∈ R we write x ≡ y (1) when x -y ∈ Z. For any n and q such that (n, q) = 1 we denote by n q the inverse of n modulo q. By G(q, m, n) we shall denote the Gauss sum G(q, m, n) = q x=1 e mx 2 + nx q .

(1)

By K(r, h) we shall denote the incomplete Kloosterman sum

K(r, h) = α≤x<β (x,r)=1 e hx |r| r , (2) 
where h, r ∈ Z, hr = 0, 0 < β -α ≤ 2|r|.

We also define λ(q 1 , q 2 ) = 1≤n≤q 1 q 2 n 2 +n+1≡0 (q 1 ) n 2 +n+2≡0 (q 2 ) 1 ,

Γ(X) = 1≤n≤X µ 2 (n 2 + n + 1) µ 2 (n 2 + n + 2) . ( (3) 
) 4 
2 Introduction and statement of the result

We say that an integer n ∈ N is square-free if for any prime p | n, one has p 2 n. Information on the distribution of square-free numbers was given in 1885 by Gegenbauer [START_REF] Gegenbauer | Asymptotische Gesetze der Zahlentheorie[END_REF]. He proved the following asymptotic formula

n≤X µ 2 (n) = 6 π 2 X + O X 1 2 . (5) 
Gegenbauer's argument is very simple, but despite the passage of 138 years the exponent 1/2 appearing above has never been improved. The reminder term in [START_REF] Carlitz | On a problem in additive arithmetic II[END_REF] depends on the real part of the zeroes of the Riemann zeta function ζ(s). For this reason any reduction in the exponent 1/2 would require the Riemann Hypothesis to be true. In 1932 Carlitz [START_REF] Carlitz | On a problem in additive arithmetic II[END_REF] showed that there exist infinitely many pairs of consecutive square-free numbers. More precisely he proved the asymptotic formula

n≤X µ 2 (n)µ 2 (n + 1) = p 1 - 2 p 2 X + O X 2 3 +ε . (6) 
Afterwards the reminder term of (6) was sharpened several times. Another interesting problem we know in number theory is square-free and consecutive square-free numbers of a special form. In this connection we first mention the theorems of Cao and Zhai [START_REF] Cao | The distribution of square-free numbers of the form [n c[END_REF], [START_REF] Cao | The distribution of square-free numbers of the form [n c ] (II)[END_REF], concerning the study of square-free numbers of the form [n c ]. In 2020 the author [START_REF] Dimitrov | On the number of pairs of positive integers x, y ≤ H such that x 2 + y 2 + 1, x 2 + y 2 + 2 are square-free[END_REF] showed that there exist infinitely many consecutive square-free numbers of the form x 2 + y 2 + 1, x 2 + y 2 + 2. More precisely we proved that the asymptotic formula 1≤x,y≤H µ 2 (x 2 +y 2 +1)µ 2 (x 2 +y 2 +2) = p 1 -λ(p 2 , 1) + λ(1, p 2 ) p 4 H 2 +O H 8 5 +ε [START_REF] Dimitrov | Pairs of square-free values of the type n 2 + 1, n 2 + 2[END_REF] holds. Here λ(q 1 , q 2 ) = 1≤x,y≤q 1 q 2 x 2 +y 2 +1≡0 (q 1 ) x 2 +y 2 +2≡0 (q 2 ) 1 .

Subsequently the articles of B. Chen [1], Chen and Wang [2], the author [START_REF] Dimitrov | Pairs of square-free values of the type n 2 + 1, n 2 + 2[END_REF], Fan and Zhai [START_REF] Fan | On the consecutive k-free values for certain class of polynomials[END_REF], Jing and Liu [START_REF] Jing | Consecutive square-free numbers and square-free primitive roots[END_REF] and Zhou and Ding [START_REF] Zhou | On the square-free values of the polynomial x 2 + y 2 + z 2 + k[END_REF] continue the study of the representation of infinitely many square-free numbers by polynomials. Recently [START_REF] Dimitrov | Square-free values of n 2 + n + 1[END_REF] the author showed that there exist infinitely many square-free numbers of the form n 2 + n + 1. More precisely we established the asymptotic formula

1≤n≤X µ 2 (n 2 + n + 1) = cX + O X 4 5 +ε , where c = p 1 - λ(p 2 ) p 2 and λ(q) = 1≤n≤q n 2 +n+1≡0 (q)
1 .

Motivated by these investigations we prove the following theorem.

Theorem 1. For the sum Γ(X) defined by (4) the asymptotic formula

Γ(X) = σX + O X 8 9 +ε (8)
holds. Here

σ = p 1 - λ(p 2 , 1) + λ(1, p 2 ) p 2 . ( 9 
)
From Theorem 1 it follows that there exist infinitely many consecutive square-free numbers of the form n 2 + n + 1, n 2 + n + 2, where n runs over naturals.

3 Lemmas Lemma 1. Let (q 1 , q 2 ) = 1. Then for the Gauss sum denoted by (1) we have

G(q 1 q 2 , m 1 q 2 + m 2 q 1 , n) = G(q 1 , m 1 q 2 2 , n) G(q 2 , m 2 q 2 1 , n) .
Proof. See ( [START_REF] Hua | Introduction to Number Theory[END_REF], Theorem 5.1).

Lemma 2. For any M ≥ 2, we have

ψ(t) = - 1≤|m|≤M e(mt) 2πim + O f M (t) ,
where f M (t) is a positive function of t which is infinitely many times differentiable and periodic with period 1. It can be expanded into the Fourier series

f M (t) = +∞ m=-∞ b M (m)e(mt) , with coefficients b M (m) such that b M (m) log M M for all m and |m|>M 1+ε |b M (m)| M -A .
Here A > 0 is arbitrarily large and the constant in the -symbol depends on A and ε.

Proof. See ( [START_REF] Tolev | On the exponential sum with squarefree numbers[END_REF], Theorem 1).

Lemma 3. Let A, B ∈ Z \ {0} and (A, B) = 1. Then A |B| B + B |A| A ≡ 1 AB ( 1 ) 
.

Proof. The statement in the lemma is equivalent to

AA |B| + BB |A| ≡ 1 (|AB|) . (10) 
Bearing in mind [START_REF] Gegenbauer | Asymptotische Gesetze der Zahlentheorie[END_REF] and (A, B) = 1 we derive the system

AA |B| + BB |A| ≡ 1 (|A|) AA |B| + BB |A| ≡ 1 (|B|)
which is equivalent to the system

BB |A| ≡ 1 (|A|) AA |B| ≡ 1 (|B|) .
Since the latter system is satisfied this proves the lemma.

Lemma 4. For the sum denoted by (2) we have the estimate

K(r, h) |r| 1 2 +ε (r, h) 1 2
Proof. Follows easily from A. Weil's estimate for the Kloosterman sum. See ( [START_REF] Iwaniec | Analytic number theory[END_REF], Ch. 11, Corollary 11.12).

Lemma 5. The function λ(q 1 , q 2 ) defined by (3) is multiplicative, i.e. if

(q 1 q 2 , q 3 q 4 ) = (q 1 , q 2 ) = (q 3 , q 4 ) = 1 (11) then λ(q 1 q 2 , q 3 q 4 ) = λ(q 1 , q 3 )λ(q 2 , q 4 ) .

Proof. On the one hand (1), ( 3), [START_REF] Hua | Introduction to Number Theory[END_REF] and Lemma 1 imply λ(q 1 q 2 , q 3 q 4 ) = 1 q 1 q 2 q 3 q 4 1≤n≤q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 q 2 e h 1 (n 2 + n + 1) q 1 q 2 1≤h 2 ≤q 3 q 4 e h 2 (n 2 + n + 2) q 3 q 4 = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 q 2 e h 1 q 1 q 2 1≤h 2 ≤q 3 q 4 e 2h 2 q 3 q 4 × G(q 1 q 2 q 3 q 4 , h 1 q 3 q 4 + h 2 q 1 q 2 , h 1 q 3 q 4 + h 2 q 1 q 2 ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 q 2 e h 1 q 1 q 2 1≤h 2 ≤q 3 q 4 e 2h 2 q 3 q 4 G(q 1 q 2 , h 1 q 2 3 q 2 4 , h 1 q 3 q 4 + h 2 q 1 q 2 ) × G(q 3 q 4 , h 2 q 2 1 q 2 2 , h 1 q 3 q 4 + h 2 q 1 q 2 ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 × G(q 1 q 2 , h 1 q 2 q 2 3 q 2 4 + h 2 q 1 q 2 3 q 2 4 , h 1 q 2 q 3 q 4 + h 2 q 1 q 3 q 4 ) × G(q 3 q 4 , h 3 q 2 1 q 2 2 q 4 + h 4 q 2 1 q 2 2 q 3 , h 3 q 1 q 2 q 4 + h 4 q 1 q 2 q 3 ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 × G(q 1 , h 1 q 2 2 q 2 3 q 2 4 , h 1 q 2 q 3 q 4 + h 2 q 1 q 3 q 4 ) G(q 2 , h 2 q 2 1 q 2 3 q 2 4 , h 1 q 2 q 3 q 4 + h 2 q 1 q 3 q ) × G(q 3 , h 3 q 2 1 q 2 2 q 2 4 , h 3 q 1 q 2 q 4 + h 4 q 1 q 2 q 3 ) G(q 4 , h 4 q 2 1 q 2 2 q 2 3 , h 3 q 1 q 2 q 4 + h 4 q 1 q 2 q ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 2 q 2 3 q 2 4 , h 1 q 2 q 3 q 4 ) G(q 2 , h 2 q 2 1 q 2 3 q 2 4 , h 2 q 1 q 3 q 4 ) × 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 G(q 3 , h 3 q 2 1 q 2 2 q 2 4 , h 3 q 1 q 2 q 4 ) G(q 4 , h 4 q 2 1 q 2 2 q 2 3 , h q 1 q 2 q 3 ) . [START_REF] Iwaniec | Analytic number theory[END_REF] On the other hand (1), (3) and Lemma 1 yield λ(q 1 , q 3 )λ(q 2 , q 4 ) = 1 q 1 q 2 q 3 q 4 1≤n≤q 1 q 3 1≤h 1 ≤q 1 e h 1 (n 2 + n + 1)

q 1 1≤h 3 ≤q 3 e h 3 (n 2 + n + 2) q 3 × 1≤m≤q 2 q 4 1≤h 2 ≤q 2 e h 2 (m 2 + m + 1) q 2 1≤h 4 ≤q 4 e h 4 (m 2 + m + 2) q 4
= 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 × G(q 1 q 3 , h 1 q 3 + h 3 q 1 , h 1 q 3 + h 3 q 1 ) G(q 2 q 4 , h 2 q 4 + h 4 q 2 , h 2 q 4 + h 4 q 2 ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 × G(q 1 , h 1 q 2 3 , h 1 q 3 + h 3 q 1 ) G(q 3 , h 3 q 2 1 , h 1 q 3 + h 3 q 1 ) × G(q 2 , h 2 q 2 4 , h 2 q 4 + h 4 q 2 ) G(q 4 , h 4 q 2 2 , h 2 q 4 + h 4 q 2 ) = 1 q 1 q 2 q 3 q 4 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 3 , h 1 q 3 ) G(q 2 , h 2 q 2 4 , h 2 q 4 ) × 1≤h 3 ≤q 3 1≤h 4 ≤q 4 e 2(h 3 q 4 + h 4 q 3 ) q 3 q 4 G(q 3 , h 3 q 2 1 , h 3 q 1 ) G(q 4 , h 4 q 2 2 , h 4 q 2 ) .

Using the substitution n → (q 2 q 4 ) q 1 q 3 n we get

G(q 1 , h 1 q 2 2 q 2 3 q 2 4 , h 1 q 2 q 3 q 4 ) = q 1 n=1 e h 1 q 2 2 q 2 3 q 2 4 n 2 + h 1 q 2 q 3 q 4 n q 1 = q 1 n=1 e h 1 q 2 3 n 2 + h 1 q 3 n q 1 = G(q 1 , h 1 q 2 3 , h 1 q 3 ) . ( 14 
)
Arguing in a similar way, we obtain

G(q 2 , h 2 q 2 1 q 2 3 q 2 4 , h 2 q 1 q 3 q 4 ) = G(q 2 , h 2 q 2 4 , h 2 q 4 ) , (15) 
G(q 3 , h 3 q 2 1 q 2 2 q 2 4 , h 3 q 1 q 2 q 4 ) = G(q 3 , h 3 q 2 1 , h 3 q 1 ) , (16) 
G(q 4 , h 4 q 2 1 q 2 2 q 2 3 , h 4 q 1 q 2 q 3 ) = G(q 4 , h 4 q 2 2 , h 4 q 2 ) . (17) 
Summarizing ( 12) -(17) we complete the proof of the lemma.

The following lemma is the main weapon of the theorem.

Lemma 6. Let n ≥ 5. There exists a bijective function from the solution set of the equation

x 2 + xy + 2y 2 = n , (x, y) = 1 , x ∈ N , y ∈ Z \ {0} (18) 
to the incongruent solutions modulo n of the congruence

z 2 + z + 2 ≡ 0 (n) . (19) 
Proof. Let us denote by F the set of ordered pairs (x, y) satisfying (18) and by E the set of solutions of the congruence (19). Every residue class modulo n with representatives satisfying (19) will be considered as one solution of (19). Let (x, y) ∈ F . By (18) we have that (n, y) = 1. Then there exists a unique residue class z modulo n such that

zy ≡ x (n). ( 20 
)
For this class we write

(z 2 + z + 2)y 2 ≡ (zy) 2 + (zy)y + 2y 2 ≡ x 2 + xy + 2y 2 ≡ 0 (n).
The last congruence and (n,

y) = 1 yield z 2 + z + 2 ≡ 0 (n) that is z ∈ E. We define the map β : F → E (21) 
that associates to each pair (x, y) ∈ F the residue class z = xy n satisfying (20).

We will first prove that the map (21) is a injection. Let (x, y), (x , y ) ∈ F that is

x 2 + xy + 2y 2 = n x 2 + x y + 2y 2 = n , (22) 
(x, y) = (x , y ) = 1 (23) and (x, y) = (x , y ) . ( 24 
) Assume that β(x, y) = β(x , y ) . ( 25 
)
Hence there exists z ∈ E such that

zy ≡ x (n) zy ≡ x (n) . ( 26 
)
The system (26) yields xy -x y ≡ 0 (n) .

Since the discriminants of the quadratic equations in (22) must be nonnegative and n ≥ 5 we derive 0

< x, x ≤ 8n 7 0 < |y|, |y | ≤ 4n 7 . ( 28 
)
We first consider the case yy > 0 .

(29)

By (28) it follows 0 < |xy | < 4 √ 2n 7 0 < |x y| < 4 √ 2n 7
and bearing in mind (29) we obtain

-n < xy -x y < n . (30) 
Now ( 27) and (30) lead to xy -x y = 0 which together with (23) gives us

x = x , y = y . (31) 
From ( 24) and (31) we get a contradiction.

Next we consider the case yy < 0 .

By ( 22), ( 28) and (32) we deduce 

0 < x ≤ 8n 7 0 < |y| ≤ 4n 7 0 < x < √ n 0 < |y | < n 2 or 0 < x < √ n 0 < |y| < n 2 0 < x ≤ 8n 7 0 < |y | ≤ 4n 7 (
On the other hand (33) yields

0 < xx < 2 √ 2n √ 7 0 < |2yy | < 2 √ 2n √ 7 0 < |xy | < 2n √ 7 0 < |x y| < 2n √ 7
which together with (32) gives us

|xx + xy + 2yy | ≤ |xx + 2yy | + |xy | < 2 √ 2 + 2 √ 7 n < 2n (39) 
and which contradicts (39). The resulting contradictions show that the assumption (25) is not true. This proves the injectivity of β.

|xx + x y + 2yy | ≤ |xx + 2yy | + |x y| < 2 √ 2 + 2 √ 7 n < 2n . ( 40 
It remains to show that the map (21) is a surjection. We note that according to (20) the solutions (x, y) and (-x, -y) of x 2 + xy + 2y 2 = n will produce the same z. That is why if it happens that (x, y) is such a solution of x 2 + xy + 2y 2 = n that x < 0 then we replace (x, y) with (-x, -y) . In the proof, we will omit this consideration.

Let z ∈ E. According to Dirichlet's approximation theorem there exist integers a and

q such that z n - a q < 1 q √ n , 1 ≤ q ≤ √ n, (a, q) = 1. ( 47 
) Put r = zq -an . (48) 
Therefore

r 2 + rq + 2q 2 = z 2 q 2 -2zqan + a 2 n 2 + (zq -an)q + 2q 2 ≡ (z 2 + z + 2)q 2 (n). ( 49 
)
Now ( 19) and (49) imply

r 2 + rq + 2q 2 ≡ 0 (n). ( 50 
)
By ( 47) and (48) we get

|r| < √ n. (51) 
Using ( 47) and (51) we deduce

0 < r 2 + rq + 2q 2 < 4n. ( 52 
)
From ( 50) and ( 52) it follows that r 2 +rq+2q 2 = n, r 2 +rq+2q 2 = 2n or r 2 +rq+2q 2 = 3n. Consider all cases.

Case 1

r 2 + rq + 2q 2 = n . (53) 
From ( 48) and (53) we obtain n = (zq -an) 2 + (zq -an)q + 2q 2 = (z 2 + z + 2)q 2 -ran -zqan -qan

and thus ra + 1 = kq , (54) 
where

k = z 2 + z + 2 n q -az -a . (55) 
By ( 19) and (55) it follows that k ∈ Z and bearing in mind (54) we get

(r, q) = 1. ( 56 
)
On the other hand (53), (56) and n ≥ 5 give us r = 0. Put

x = r , y = q . ( 57 
)
From ( 53), ( 56) and (57) it follows that (x, y) ∈ F . Also (48) and (57) yield (20). Therefore β(x, y) = z.

Case 2

r 2 + rq + 2q 2 = 2n . (58) 
From ( 48) and (58) it follows that 2n = (zq -an) 2 + (zq -an)q + 2q 2 = (z 2 + z + 2)q 2 -ran -zqan -qan

and thus ra + 2 = kq , ( 59 
)
where k is denoted by (55). From (59) we deduce

(r, q) ≤ 2 . ( 60 
)
Now ( 58), (60) and n ≥ 5 lead to r = 0.

Case 2.1 r = 2r 0 , q = 2q 0 + 1 .

By ( 58) and (61) we get q 2 + qr 0 + 2r 2 0 = n which is equivalent to (q + r 0 ) 2 -r 0 (q + r 0 ) + 2r 2 0 = n . (62)

Put x = q + r 0 , y = -r 0 . (63) 
Now ( 60) and ( 61) imply (q + r 0 , r 0 ) = 1 .

From ( 62), ( 63) and (64) we obtain that (x, y) ∈ F . Further (48) and (63) give us

2(zy -x) = -(z 2 + z + 2)q + zan + an . ( 65 
)
Bearing in mind ( 19) and (65) we deduce

2(zy -x) ≡ 0 (n) . ( 66 
) Case 2.1.1 r 0 = 2r 1 . (67) 
Now ( 61), ( 62) and (67) assure us that n is odd. Hence (66) yields (20). Consequently β(x, y) = z.

Case 2.1.2

r 0 = 2r 1 + 1 . (68) 
From ( 61), ( 62), ( 63) and (68) it follows that n and x are even. Now (61) leads to

zq = r + an ≡ 0 (2) that is z is even. Thus zy -x is even. ( 69 
) Case 2.1.2a n = 2n 0 , n 0 is odd. ( 70 
)
Now (66), ( 69) and ( 70) imply (20). Therefore β(x, y) = z.

Case 2.1.2b n = 2 l+1 n 0 , l ≥ 1 , n 0 is odd. ( 71 
)
By ( 19) and ( 71) we obtain

z 2 + z + 2 ≡ 0 (2 l+1 ) . (72) 
Assume that zy -x = 2 l h , h is odd.

(73) Now ( 18), (71), ( 72) and (73) give us consistently (yz) 2 + (yz)y + 2y 2 ≡ 0 (2 l+1 ) ,

(2 l h + x) 2 + (2 l h + x)y + 2y 2 ≡ 0 (2 l+1 ) , 2 2l h 2 + 2 l+1 hx + x 2 + xy + 2y 2 + 2 l hy ≡ 0 (2 l+1 ) , 2 l hy ≡ 0 (2 l+1 ) . (74) 
From ( 63), ( 68) and (74) we get a contradiction. Consequently

zy -x ≡ 0 (2 l+1 ) . (75) 
Now (66), ( 71) and (75) yield (20). Thus β(x, y) = z.

Case 2.2 r = 2r 0 , q = 2q 0 .

Bearing in mind (60) and (76) we get (r 0 , q 0 ) = 1 .

By ( 58) and (76) we find

4q 2 0 + 2q 0 r 0 + 2r 2 0 = n . ( 78 
)
Case 2.2.1 r 0 = 2r 1 , q 0 = 2q 1 + 1 .

We write equation (78) in the form

q 2 -q(q 0 + r 0 ) + 2(q 0 + r 0 ) 2 = n . ( 80 
) Put x = -q , y = q 0 + r 0 . (81) 
Now ( 76), ( 77) and (79) lead to (-q, r 0 + q 0 ) = 1 . 

From ( 76), ( 79) and (83) it follows that

z = 2z 0 . (84) 
Using (48), (76), ( 81) and (84) we write

2(zy -x) = -(z 2 + z + 2)2q 0 -2nz 0 a . (85) 
By ( 19) and (85) we obtain (20). Consequently β(x, y) = z.

Case 2.2.2

r 0 = 2r 1 + 1 , q 0 = 2q 1 + 1 . ( 86 
)
We write equation (78) in the form

(2q 0 + r 0 ) 2 -r 0 (2q 0 + r 0 ) + 2r 2 0 = n . ( 87 
) Put x = 2q 0 + r 0 , y = -r 0 . (88) 
Now ( 77) and ( 86) imply (2q 0 + r 0 , -r 0 ) = 1 .

From ( 87) -(89) we get (x, y) ∈ F . Further (78) and (86) give us

n ≡ 0 (4) . (90) 
If we assume that (84) is true then (48), ( 76), ( 90) and (84) yield 2r 0 = zq -an = 4z 0 q 0 -an ≡ 0 (4) which contradicts (86). This means that z is odd, that is

z + 1 = 2z 0 . (91) 
Bearing in mind (48), ( 76) and (88) we deduce 2(zy -x) = -(z 2 + z + 2)2q 0 + an(z + 1) .

From ( 19), ( 91) and (92) we establish (20). Therefore β(x, y) = z.

Case 2.2.3

r 0 = 2r 1 + 1 , q 0 = 2q 1 . ( 93 
)
When z is even then Case 2.2.3 coincides with Case 2.2.1. When z is odd then Case 2.2.3 coincides with Case 2.2.2.

Case 2.3 r = 2r 0 + 1 , q = 2q 0 + 1 .

By ( 58) and (94) we obtain q 2 -q(q 0 + r 0 + 1) + 2(q 0 + r 0 + 1) 2 = n .

Put x = -q , y = q 0 + r 0 + 1 .

Now ( 60) and (94) assure us that (-q, q 0 + r 0 + 1) = 1 .

From ( 95) -(97) we conclude that (x, y) ∈ F . Further (48) and (96) lead to 2(zy -x) = (z 2 + z + 2)q -zan .

Using ( 19) and (98) we establish that (66) holds.

Case 2.3.1 The numbers r 0 and q 0 are of different parity. By (95) and (96) it follows that n is odd. Hence (66) implies (20). Thus β(x, y) = z.

Case 2.3.2 The numbers r 0 and q 0 are of the same parity. From (95) and (96) it follows that y is odd and n is even. Now (48) and (94) give us that zq is odd. Therefore z is odd. Consequently zy -x is even. It remains to be seen that when n has the shape (70) then Case 2.3.2 coincides with Case 2.1.2a and when n has the form (71) then Case 2.3.2 coincides with Case 2.1.2b. Hence β(x, y) = z.

Case 3 r 2 + rq + 2q 2 = 3n . ( 99 
)
Direct verifications will prove that Case 3 is impossible.

Case 3.1 r = 3r 0 , q = 3q 0 .

Now ( 99) and (100) yield 3(r 2 0 + r 0 q 0 + 2q 2 0 ) = n , i.e. 3 | n that contradicts (19) because the congruences

z 2 + z + 2 ≡ 0 (3)
has no solution.

Case 3.2 r = 3r 0 , q = 3q 0 + 1 .

By ( 99) and (101) we get 3(3r 2 0 + 3r 0 q 0 + r 0 + 6q 2 0 + 4q 0 ) + 2 ≡ 0 (3) which is impossible.

Case 3.3 r = 3r 0 , q = 3q 0 + 2 . ( 102 
)
Using ( 99) and (102) we deduce 3(3r 2 0 + 3r 0 q 0 + 2r 0 + 6q 2 0 + 8q 0 ) + 8 ≡ 0 (3) which is a contradiction.

Case 3.4 r = 3r 0 + 1 , q = 3q 0 .

Now ( 99) and (103) give us 3(3r 2 0 + 3r 0 q 0 + 2r 0 + 6q 2 0 + q 0 ) + 1 ≡ 0 (3) which is impossible.

Case 3.5 r = 3r 0 + 1 , q = 3q 0 + 1 .

From ( 99) and (104) it follows 3(3r 2 0 + 3r 0 q 0 + 3r 0 + 6q 2 0 + 5q 0 ) + 4 ≡ 0 (3) which is a contradiction.

Case 3.6 r = 3r 0 + 1 , q = 3q 0 + 2 . ( 105 
)
Now ( 99) and (105) lead to 3(3r 2 0 + 3r 0 q 0 + 4r 0 + 6q 2 0 + 9q 0 ) + 11 ≡ 0 (3) which is impossible.

Case 3.7 r = 3r 0 + 2 , q = 3q 0 . (106) 
By ( 99) and ( 106) we obtain 3(3r 2 0 + 3r 0 q 0 + 4r 0 + 3q 2 0 + 2q 0 ) + 4 ≡ 0 (3) which is a contradiction.

Case 3.8 r = 3r 0 + 2 , q = 3q 0 + 1 .

Now ( 99) and (107) assure us that 3(3r 2 0 + 3r 0 q 0 + 5r 0 + 6q 2 0 + 6q 0 ) + 8 ≡ 0 (3) which is impossible.

Case 3.9 r = 3r 0 + 2 , q = 3q 0 + 2 . (108)

From ( 99) and (108) we write 3(3r 2 0 + 3r 0 q 0 + 6r 0 + 6q 2 0 + 10q 0 ) + 16 ≡ 0 (3) which is a contradiction. This proves that β is a surjective map.

For the benefit of the readers, we will give a second shorter proof of the surjectivity of β. Note that this proof is valid only when the quadratic form has class number one. We denote f (x, y)

= x 2 + xy + 2y 2 . ( 109 
)
For each root z of the congruence (19) we define the set

Λ z = {(x, y) ∈ Z 2 | x -zy ≡ 0 (n)} . ( 110 
)
We choose a basis (a

1 , a 2 ) = (n, 0) , (b 1 , b 2 ) = (z, 1) (111) 
of Λ z . Clearly, the vectors (111) are linearly independent elements of Λ z . Further, (110) shows that the lattice determinant of Λ z is divisible by n, therefore (a 1 , a 2 ), (b 1 , b 2 ) form a basis of this lattice. Bearing in mind ( 19), ( 109) and ( 110) we obtain

f (a 1 X + b 1 Y, a 2 X + b 2 Y ) = ng(X, Y ) , (112) 
where

g(X, Y ) = nX 2 + (2z + 1)XY + z 2 + z + 2 n Y 2 . ( 113 
)
A direct discriminant calculation shows that the discriminant of f and g is -7. From the fact that there exists a unique class of binary quadratic forms with discriminant equal to -7 (see [START_REF] Landau | Elementary number theory[END_REF], Theorem 198), it follows that g is equivalent to f , that is

g(X, Y ) = f (aX + bY, cX + dY ) , (114) 
where a, b, c, d are integers with ad -bc = ±1. Consider a, b, c, d to be fixed. Now let (X 0 , Y 0 ) be the unique solution of the system

aX + bY = 1 cX + dY = 0 . ( 115 
)
We construct a solution (x, y) of ( 18) of the form

(x, y) = X 0 (a 1 , a 2 ) + Y 0 (b 1 , b 2 ) = (nX 0 + zY 0 , Y 0 ) . (116) 
If nX 0 +zY 0 < 0, then replace (X 0 , Y 0 ) by (-X 0 , -Y 0 ) and note that (X 0 , Y 0 ) is the unique solution of the system aX

+ bY = -1 cX + dY = 0 . (117) 
Since ad -bc = ±1 then X 0 , Y 0 ∈ Z. On the one hand aX 0 + bY 0 = ±1 leads to

(X 0 , Y 0 ) = 1 . (118) 
On the other hand (109), ( 113), ( 114), ( 115) and (117) give us

nX 2 0 + (2z + 1)X 0 Y 0 + z 2 + z + 2 n Y 2 0 = g(X 0 , Y 0 ) = f (±1, 0) = 1 (119) and consequently (n, Y 0 ) = 1 . (120) 
Now ( 116), ( 118) and (120) yield (x, y) = 1 .

By ( 112), ( 116) and (119) we derive

f (x, y) = ng(X 0 , Y 0 ) = n . (122) 
Finally ( 109), ( 110), ( 121) and (122) imply that β is a surjection. This completes the proof of the lemma.

Proof of the theorem

Using (4) and the well-known identity

µ 2 (n) = d 2 |n µ(d) we get Γ(X) = d 1 ,d 2 (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 ) 1≤n≤X n 2 +n+1≡0 (d 2 1 ) n 2 +n+2≡0 (d 2 2 ) 1 = Γ 1 (X) + Γ 2 (X) , (123) 
where

Γ 1 (X) = d 1 d 2 ≤z (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )Σ(X, d 2 1 , d 2 2 ) , (124) 
Γ 2 (X) = d 1 d 2 >z (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )Σ(X, d 2 1 , d 2 2 ) , (125) 
Σ(X, d 2 1 , d 2 2 ) = 1≤n≤X n 2 +n+1≡0 (d 2 1 ) n 2 +n+2≡0 (d 2 2 ) 1 , (126) 
√ X ≤ z < X , (127) 
where z is to be chosen later.

Estimation of Γ 1 (X)

Assume that q 1 = d 2 1 , q 2 = d 2 2 , where d 1 and d 2 are square-free, (q 1 , q 2 ) = 1 and

d 1 d 2 ≤ z. Define Ω(X, q 1 , q 2 , n) = m≤X m≡n (q 1 q 2 ) 1 . (128) 
Obviously

Ω(X, q 1 , q 2 , n) = X q 1 q 2 + O(1) . (129) 
By ( 126) and ( 128) we obtain upon partitioning the sum (126) into residue classes modulo

q 1 q 2 Σ(X, q 1 , q 2 ) = 1≤n≤q 1 q 2 n 2 +n+1≡0 (q 1 ) n 2 +n+2≡0 (q 2 ) Ω(X, q 1 , q 2 , n) . (130) 
From ( 3), ( 130) and (129) we get Σ(X, q 1 , q 2 ) = X λ(q 1 , q 2 ) q 1 q 2 + O λ(q 1 , q 2 ) .

Taking into account [START_REF] Cao | The distribution of square-free numbers of the form [n c[END_REF] and that the number of solutions of the congruence

n 2 + n + 1 ≡ a (q 1 )
is less than or equal to τ (q 1 ) we deduce λ(q 1 , q 2 ) λ(q 1 , 1) τ (q 1 ) τ (q 1 q 2 ) .

Now ( 131), (132) and the inequalities

τ (q 1 q 2 ) (q 1 q 2 ) ε X ε imply Σ(X, q 1 , q 2 ) = X λ(q 1 , q 2 ) q 1 q 2 + O X ε . (133) 
Using (124), ( 127) and (133) we obtain

Γ 1 (X) = X d 1 d 2 ≤z (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )λ(d 2 1 , d 2 2 ) d 2 1 d 2 2 + O zX ε = σX -X d 1 d 2 >z (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )λ(d 2 1 , d 2 2 ) d 2 1 d 2 2 + O zX ε , (134) 
where

σ = ∞ d 1 ,d 2 =1 (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )λ(d 2 1 , d 2 2 ) d 2 1 d 2 2 . (135) 
By (132) it follows

d 1 d 2 >z (d 1 ,d 2 )=1 µ(d 1 )µ(d 2 )λ(d 2 1 , d 2 2 ) d 2 1 d 2 2 d 1 d 2 >z (d 1 ,d 2 )=1 (d 1 d 2 ) ε (d 1 d 2 ) 2 n>z τ (n) n 2-ε z ε-1 . ( 136 
)
It remains to see that the product ( 9) and the sum (135) coincide. From Lemma 5 and

(d 1 , d 2 ) = 1 we have λ(d 2 1 , d 2 2 ) = λ(d 2 1 , 1)λ(1, d 2 2 ) . (137) 
Now ( 135) and (137) yield

σ = ∞ d 1 =1 µ(d 1 )λ(d 2 1 , 1) d 2 1 ∞ d 2 =1 µ(d 2 )λ(1, d 2 2 ) d 2 2 f d 1 (d 2 ) , (138) 
where

f d 1 (d 2 ) = 1 if (d 1 , d 2 ) = 1 , 0 if (d 1 , d 2 ) > 1 .
It is easy to see that the function

µ(d 2 )λ(1, d 2 2 ) d 2 2 f d 1 (d 2 )
is multiplicative with respect to d 2 and the series

∞ d 2 =1 µ(d 2 )λ(1, d 2 2 ) d 2 2 f d 1 (d 2 )
is absolutely convergent. Using the Euler product we write

∞ d 2 =1 µ(d 2 )λ(1, d 2 2 ) d 2 2 f d 1 (d 2 ) = p d 1 1 - λ(1, p 2 ) p 2 = p 1 - λ(1, p 2 ) p 2 p|d 1 1 - λ(1, p 2 ) p 2 -1 . ( 139 
)
From ( 138) and (139) we get

σ = ∞ d 1 =1 µ(d 1 )λ(d 2 1 , 1) d 2 1 p 1 - λ(1, p 2 ) p 2 p|d 1 1 - λ(1, p 2 ) p 2 -1 = p 1 - λ(1, p 2 ) p 2 ∞ d 1 =1 µ(d 1 )λ(d 2 1 , 1) d 2 1 p|d 1 1 - λ(1, p 2 ) p 2 -1 . ( 140 
)
It is easy to see that the function

µ(d 1 )λ(d 2 1 , 1) d 2 1 p|d 1 1 - λ(1, p 2 ) p 2 -1
is multiplicative with respect to d 1 and the series

∞ d 1 =1 µ(d 1 )λ(d 2 1 , 1) d 2 1 p|d 1 1 - λ(1, p 2 ) p 2 -1
is absolutely convergent. Using again the Euler product from ( 3) and (140) we deduce

σ = p 1 - λ(1, p 2 ) p 2 p 1 - λ(p 2 , 1) p 2 1 - λ(1, p 2 ) p 2 -1 = p 1 - λ(p 2 , 1) + λ(1, p 2 ) p 2 . ( 141 
)
Summarizing ( 127), ( 134), ( 136) and (141) we establish

Γ 1 (X) = σX + O zX ε , (142) 
where σ is given by the product (9).

Estimation of Γ 2 (X)

Bearing in mind (125), (126) and splitting the range of d 1 and d 2 into dyadic subintervals of the form

D 1 ≤ d 1 < 2D 1 , D 2 ≤ d 2 < 2D 2 we obtain Γ 2 (X) (log X) 2 n≤X D 1 ≤d 1 <2D 1 n 2 +n+1≡0 (d 2 1 ) D 2 ≤d 2 <2D 2 n 2 +n+2≡0 (d 2 2 ) 1 , (143) 
where

1 2 ≤ D 1 , D 2 ≤ √ X 2 + X + 2 , D 1 D 2 > z 4 . ( 144 
)
On the one hand (143) implies Γ 2 (X)

X ε Σ 1 , (145) 
where

Σ 1 = n≤X D 1 ≤d 1 <2D 1 n 2 +n+1≡0 (d 2 1 ) 1 . ( 146 
)
On the other hand (143) gives us Γ 2 (X)

X ε Σ 2 , (147) 
where

Σ 2 = n≤X D 2 ≤d 2 <2D 2 n 2 +n+2≡0 (d 2 2 ) 1 . ( 148 
)
Estimation of Σ 1 Arguing as in [?] we get

Σ 1 X 1+ε D -1 4 1 . ( 149 
)
Estimation of Σ 2 Define N (d) = {n ∈ N : 1 ≤ n ≤ d, n 2 + n + 2 ≡ 0 (d)} , (150) 
N (d) = {n ∈ N : 1 ≤ n ≤ d 2 , n 2 + n + 2 ≡ 0 (d 2 )} . (151) 
From ( 148) and (151) we write

Σ 2 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) m≤X m≡n (d 2 2 ) 1 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) X -n d 2 2 - -n d 2 2 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) X d 2 2 + ψ -n d 2 2 -ψ X -n d 2 2 X 1+ε D -1 2 + |Σ 2 | + |Σ 2 | , (152) 
where

Σ 2 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) ψ -n d 2 2 , (153) 
Σ 2 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) ψ X -n d 2 2 . ( 154 
) Arguing as in [?] we deduce Σ 2 X ε D -1 2 . ( 155 
)
Further we consider the sum Σ 2 defined by (154

). Let D 2 ≤ X 1 2 . The trivial estimation leads to Σ 2 D 2 ≤d 2 <2D 2 d ε 2 X 1 2 +ε . (156) Let D 2 > X 1 2 . ( 157 
)
We notice that all summands in the sum (148) for which 7 | d 2 are equal to zero because the congruences

n 2 + n + 2 ≡ 0 (49) (158) 
has no solution. That's why in the estimation of (148) we will consider that 7 d 2 .

Let f (x) = a n x n + a n-1 x n-1 + • • • + a 0 be a polynomial with integral coefficients and r 1 , . . . , r k be all solutions of the congruence

f (x) ≡ 0 (p l-1 ) . (159) 
From the theory of the congruences we know that when p f (r i ) for i = 1, . . . , k then the number of solutions of the congruence

f (x) ≡ 0 (p l ) . (160) 
is also equal to k, that is, congruences (159) and ( 160) have an equal number of solutions.

Taking into account the above considerations, we derive that the congruences

n 2 + n + 2 ≡ 0 (d 2 2 ) (161) 
and

n 2 + n + 2 ≡ 0 (d 2 ) ( 162 
)
will have an equal number of solutions if we show that for arbitrary prime divisor p of d 2 and arbitrary solution r of (162) we have that p 2r + 1 .

We assume the opposite. Hence

r = ph -1 2 , (163) 
where h ∈ Z. Now (163) and r 2 + r + 2 ≡ 0 (p) yield p 2 h 2 + 7 ≡ 0 (4p) which means p = 7. But we have already excluded the case when 7 is a prime divisor of d 2 . Therefore congruences (161) and ( 162) have an equal number of solutions. We note we obtain

Σ 3 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) - 1≤|m|≤M e m √ X-n d 2 2πim + O f M √ X -n d 2 = Σ 4 + Σ 5 , (170) 
where

Σ 4 = 1≤|m|≤M Θ m 2πim , (171) 
Θ m = D 2 ≤d 2 <2D 2 e √ Xm d 2 n∈N (d 2 ) e - nm d 2 , (172) 
Σ 5 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) f M √ X -n d 2 . ( 173 
)
By ( 172), ( 173) and Lemma 2 we derive

Σ 5 = D 2 ≤d 2 <2D 2 n∈N (d 2 ) +∞ m=-∞ b M (m)e √ X -n d 2 m = +∞ m=-∞ b M (m)Θ m log M M |Θ 0 | + log M M 1≤|m|≤M 1+ε |Θ m | + |m|>M 1+ε |b M (m)||Θ m | log M M D 1+ε 2 + log M M 1≤m≤M 1+ε |Θ m | + D 1+ε 2 |m|>M 1+ε |b M (m)| log M M D 1+ε 2 + log M M 1≤m≤M 1+ε |Θ m | . (174) 
Now ( 170), ( 171) and (174) imply 

Σ 3 X ε   D 2 M + 1≤m≤M 1+ε |Θ m | m   . (175) 
√ D 2    g η 2 (v) K v,m η 2 (v) - η 2 (v) η 1 (v) K v,m (t) d dt g(t) dt    D 2 4 ≤|v|< √ D 2 1 + m √ X v 2 max η 1 (v)≤t≤η 2 (v) |K v,m (t)| . (185) 
We are now in a good position to apply Lemma 4 because the sum defined by ( 184) is an incomplete Kloosterman sum. We have

K v,m (t) |v| 1 2 +ε (v, m) 1 2 . ( 186 
)
From ( 185) and (186) we derive

Θ m D 2 4 ≤|v|< √ D 2 1 + m √ X v 2 |v| 1 2 +ε (v, m) 1 2 X ε D 1 4 2 + mX 1 2 D -3 4 2 0<v< √ D 2 (v, m) 1 2 . ( 187 
)
On the other hand

0<v< √ D 2 (v, m) 1 2 ≤ l|m l 1 2 v≤ √ D 2 v≡0 (l) 1 D 1 2 2 l|m l -1 2 D 1 2 2 τ (m) X ε D 1 2 2 . ( 188 
)
The estimations (187) and (188) lead to Θ m X ε D 

  ) Let (35) be true. Now (37) and (39) lead to three possibilities xx + xy + 2yy = 0 (41) or xx + xy + 2yy = n (42) or xx + xy + 2yy = -n . (43) On the one hand (23) and (41) imply x = ±y and therefore x + y = ±2y . From the last equation and (22) we derive xy ± xx = 2y 2 which contradicts (23). On the other hand (35) and (42) give us xx + x y + 2yy = 0 (44) which together with (23) yields x = ±y and therefore x + y = ±2y . From the last equation and (22) we derive x y ± xx = 2y 2 which contradicts (23). Finally (35) and (43) lead to xx + x y + 2yy = -2n which contradicts (40). Let (36) be true. Now (38) and (40) lead to three possibilities xx + x y + 2yy = 0 or xx + x y + 2yy = n (45) or xx + x y + 2yy = -n . (46) The first equation coincides with (44). The equation (45) due to (36) coincides with (41). The equation (46) due to (36) implies xx + xy + 2yy = -2n

  (80) -(82) we conclude that (x, y) ∈ F . Further (76) -(79) assure us that 4 | n and 4 | r. Therefore zq = r + an ≡ 0 (4) .

DefineF

  (d) = {(u, v) : u 2 + uv + 2v 2 = d, (u, v) = 1, u ∈ N, v ∈ Z \ {0}}.(176) According to Lemma 6 there exists a bijection β : F(d) → N (d) from F(d) to N (d) defined by (150) that associates to each couple (u, v) ∈ F(d) the element n ∈ N (d) satisfying nv ≡ u (d).

  uv + 2v 2 + m(u + 2v) u(u 2 + uv + 2v 2 ) -mv u u = Θ m + Θ m ,(181)say. Consider Θ m . Let for any fixedD 2 4 ≤ |v| < √ D 2 the interval η 1 (v), η 2 (v)is a solution with respect to u of the systemu 2 + uv + 2v 2 < 2D 2 u 2 + uv + 2v 2 ≥ D 2 0 < u < |v| . uv + 2v 2 -mu v(u 2 + uv + 2v 2 ) ,

that the sum over n in (148) does not contain terms with n = d 2 2 2 and n = d 2 2 . Moreover for any n satisfying the congruence (161) and such that 1 ≤ n < d 2 2 2 the number d 2 2 -n -1 satisfies the same congruence. The same is true for the congruence (162). We also note that if n = d 2 2 -n -1 then d 2 2 | 7 which is impossible and if n = d 2 -n -1 then d 2 = 7 which we excluded as an possibility. Using this facts and notations (150), (151) we denote

Now ( 150), ( 151), ( 157), ( 164), (165) and

From ( 154), ( 157) and (166) it follows

where

Using (168) and Lemma 2 with

Working in a similar way for Θ m from (181) we deduce

Now ( 181), ( 189) and (190) yield

From ( 175) and (191) we write

Using ( 144), ( 169) and ( 192) we obtain

Bearing in mind ( 144), ( 152), ( 155), ( 156), ( 167) and (193) we find

Estimation of Γ 2 (X) Now ( 144), (145), (147), ( 149) and (194) imply Γ 2 (X)

The end of the proof

Summarizing (123), (142), (195) and choosing z = X 8 9 we establish the asymptotic formula [START_REF] Dimitrov | Square-free values of n 2 + n + 1[END_REF]. This completes the proof of Theorem 1.
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