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Abstract

In this paper we prove that there exist infinitely many square-free pairs of the
form n2 +n+1, n2 +n+2. We also establish an asymptotic formula for the number
of such square-free pairs when n does not exceed given sufficiently large positive
number. A key point in our proof is the application of bijective correspondence
between the number of representations of number by binary quadratic form and the
incongruent solutions of quadratic congruence.
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1 Notations

Let X be a sufficiently large positive number. The letter ε denotes an arbitrary small

positive number, not the same in all appearances. As usual [t] and {t} denote the integer

part, respectively, the fractional part of t. Further µ(n) is Möbius’ function and τ(n)

denotes the number of positive divisors of n. Instead of m ≡ n (mod k) we write for

simplicity m ≡ n (k). The relation f(x) � g(x) means that f(x) = O
(
g(x)

)
. Moreover

(m,n) is the greatest common divisor of m and n. The letter p always denotes a prime

number. We write e(t)=exp(2πit) and ψ(t) = {t} − 1/2. For x, y ∈ R we write x ≡ y (1)

when x − y ∈ Z. For any n and q such that (n, q) = 1 we denote by nq the inverse of n

modulo q. By G(q,m, n) we shall denote the Gauss sum

G(q,m, n) =

q∑
x=1

e

(
mx2 + nx

q

)
. (1)

By K(r, h) we shall denote the incomplete Kloosterman sum

K(r, h) =
∑
α≤x<β
(x,r)=1

e

(
hx|r|
r

)
, (2)
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where

h, r ∈ Z, hr 6= 0, 0 < β − α ≤ 2|r|.

We also define

λ(q1, q2) =
∑

1≤n≤q1q2
n2+n+1≡0 (q1)

n2+n+2≡0 (q2)

1 , (3)

Γ(X) =
∑

1≤n≤X

µ2(n2 + n+ 1)µ2(n2 + n+ 2) . (4)

2 Introduction and statement of the result

We say that an integer n ∈ N is square-free if for any prime p | n, one has p2 - n.

Information on the distribution of square-free numbers was given in 1885 by Gegenbauer

[10]. He proved the following asymptotic formula∑
n≤X

µ2(n) =
6

π2
X +O

(
X

1
2

)
. (5)

Gegenbauer’s argument is very simple, but despite the passage of 138 years the exponent

1/2 appearing above has never been improved. The reminder term in (5) depends on the

real part of the zeroes of the Riemann zeta function ζ(s). For this reason any reduction

in the exponent 1/2 would require the Riemann Hypothesis to be true. In 1932 Carlitz [5]

showed that there exist infinitely many pairs of consecutive square-free numbers. More

precisely he proved the asymptotic formula∑
n≤X

µ2(n)µ2(n+ 1) =
∏
p

(
1− 2

p2

)
X +O

(
X

2
3
+ε
)
. (6)

Afterwards the reminder term of (6) was sharpened several times. Another interesting

problem we know in number theory is square-free and consecutive square-free numbers

of a special form. In this connection we first mention the theorems of Cao and Zhai [3],

[4], concerning the study of square-free numbers of the form [nc]. In 2020 the author

[6] showed that there exist infinitely many consecutive square-free numbers of the form

x2 + y2 + 1, x2 + y2 + 2. More precisely we proved that the asymptotic formula

∑
1≤x,y≤H

µ2(x2+y2+1)µ2(x2+y2+2) =
∏
p

(
1− λ̃(p2, 1) + λ̃(1, p2)

p4

)
H2+O

(
H

8
5
+ε
)

(7)
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holds. Here

λ̃(q1, q2) =
∑

1≤x,y≤q1q2
x2+y2+1≡0 (q1)

x2+y2+2≡0 (q2)

1 .

Subsequently the articles of B. Chen [1], Chen and Wang [2], the author [7], Fan and Zhai

[9], Jing and Liu [13] and Zhou and Ding [16] continue the study of the representation of

infinitely many square-free numbers by polynomials. Recently [8] the author showed that

there exist infinitely many square-free numbers of the form n2 +n+ 1. More precisely we

established the asymptotic formula∑
1≤n≤X

µ2(n2 + n+ 1) = cX +O
(
X

4
5
+ε
)
,

where

c =
∏
p

(
1− λ(p2)

p2

)
and

λ(q) =
∑

1≤n≤q
n2+n+1≡0 (q)

1 .

Motivated by these investigations we prove the following theorem.

Theorem 1. For the sum Γ(X) defined by (4) the asymptotic formula

Γ(X) = σX +O
(
X

8
9
+ε
)

(8)

holds. Here

σ =
∏
p

(
1− λ(p2, 1) + λ(1, p2)

p2

)
. (9)

From Theorem 1 it follows that there exist infinitely many consecutive square-free

numbers of the form n2 + n+ 1, n2 + n+ 2, where n runs over naturals.

3 Lemmas

Lemma 1. Let (q1, q2) = 1. Then for the Gauss sum denoted by (1) we have

G(q1q2,m1q2 +m2q1, n) = G(q1,m1q
2
2, n)G(q2,m2q

2
1, n) .
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Proof. See ([11], Theorem 5.1).

Lemma 2. For any M ≥ 2, we have

ψ(t) = −
∑

1≤|m|≤M

e(mt)

2πim
+O

(
fM(t)

)
,

where fM(t) is a positive function of t which is infinitely many times differentiable and

periodic with period 1. It can be expanded into the Fourier series

fM(t) =
+∞∑

m=−∞

bM(m)e(mt) ,

with coefficients bM(m) such that

bM(m)� logM

M
for all m

and ∑
|m|>M1+ε

|bM(m)| �M−A .

Here A > 0 is arbitrarily large and the constant in the � - symbol depends on A and ε.

Proof. See ([15], Theorem 1).

Lemma 3. Let A,B ∈ Z \ {0} and (A,B) = 1. Then

A|B|
B

+
B|A|
A
≡ 1

AB
( 1 ).

Proof. The statement in the lemma is equivalent to

AA|B| +BB|A| ≡ 1 (|AB|) . (10)

Bearing in mind (10) and (A,B) = 1 we derive the system∣∣∣∣ AA|B| +BB|A| ≡ 1 (|A|)
AA|B| +BB|A| ≡ 1 (|B|)

which is equivalent to the system ∣∣∣∣ BB|A| ≡ 1 (|A|)
AA|B| ≡ 1 (|B|) .

Since the latter system is satisfied this proves the lemma.
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Lemma 4. For the sum denoted by (2) we have the estimate

K(r, h)� |r|
1
2
+ε (r, h)

1
2

Proof. Follows easily from A. Weil’s estimate for the Kloosterman sum. See ([12], Ch.

11, Corollary 11.12).

Lemma 5. The function λ(q1, q2) defined by (3) is multiplicative, i.e. if

(q1q2, q3q4) = (q1, q2) = (q3, q4) = 1 (11)

then

λ(q1q2, q3q4) = λ(q1, q3)λ(q2, q4) .

Proof. On the one hand (1), (3), (11) and Lemma 1 imply

λ(q1q2, q3q4)

=
1

q1q2q3q4

∑
1≤n≤q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1(n

2 + n+ 1)

q1q2

) ∑
1≤h2≤q3q4

e

(
h2(n

2 + n+ 2)

q3q4

)
=

1

q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1
q1q2

) ∑
1≤h2≤q3q4

e

(
2h2
q3q4

)
×G(q1q2q3q4, h1q3q4 + h2q1q2, h1q3q4 + h2q1q2)

=
1

q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1
q1q2

) ∑
1≤h2≤q3q4

e

(
2h2
q3q4

)
G(q1q2, h1q

2
3q

2
4, h1q3q4 + h2q1q2)

×G(q3q4, h2q
2
1q

2
2, h1q3q4 + h2q1q2)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1q2, h1q2q

2
3q

2
4 + h2q1q

2
3q

2
4, h1q2q3q4 + h2q1q3q4)

×G(q3q4, h3q
2
1q

2
2q4 + h4q

2
1q

2
2q3, h3q1q2q4 + h4q1q2q3)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1, h1q

2
2q

2
3q

2
4, h1q2q3q4 + h2q1q3q4)G(q2, h2q

2
1q

2
3q

2
4, h1q2q3q4 + h2q1q3q4)

×G(q3, h3q
2
1q

2
2q

2
4, h3q1q2q4 + h4q1q2q3)G(q4, h4q

2
1q

2
2q

2
3, h3q1q2q4 + h4q1q2q3)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

)
G(q1, h1q

2
2q

2
3q

2
4, h1q2q3q4)G(q2, h2q

2
1q

2
3q

2
4, h2q1q3q4)

×
∑

1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
G(q3, h3q

2
1q

2
2q

2
4, h3q1q2q4)G(q4, h4q

2
1q

2
2q

2
3, h4q1q2q3) . (12)
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On the other hand (1), (3) and Lemma 1 yield

λ(q1, q3)λ(q2, q4)

=
1

q1q2q3q4

∑
1≤n≤q1q3

∑
1≤h1≤q1

e

(
h1(n

2 + n+ 1)

q1

) ∑
1≤h3≤q3

e

(
h3(n

2 + n+ 2)

q3

)
×

∑
1≤m≤q2q4

∑
1≤h2≤q2

e

(
h2(m

2 +m+ 1)

q2

) ∑
1≤h4≤q4

e

(
h4(m

2 +m+ 2)

q4

)
=

1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1q3, h1q3 + h3q1, h1q3 + h3q1)G(q2q4, h2q4 + h4q2, h2q4 + h4q2)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1, h1q

2
3, h1q3 + h3q1)G(q3, h3q

2
1, h1q3 + h3q1)

×G(q2, h2q
2
4, h2q4 + h4q2)G(q4, h4q

2
2, h2q4 + h4q2)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

)
G(q1, h1q

2
3, h1q3)G(q2, h2q

2
4, h2q4)

×
∑

1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
G(q3, h3q

2
1, h3q1)G(q4, h4q

2
2, h4q2) . (13)

Using the substitution n→ (q2q4)q1q3n we get

G(q1, h1q
2
2q

2
3q

2
4, h1q2q3q4) =

q1∑
n=1

e

(
h1q

2
2q

2
3q

2
4n

2 + h1q2q3q4n

q1

)

=

q1∑
n=1

e

(
h1q

2
3n

2 + h1q3n

q1

)
= G(q1, h1q

2
3, h1q3) . (14)

Arguing in a similar way, we obtain

G(q2, h2q
2
1q

2
3q

2
4, h2q1q3q4) = G(q2, h2q

2
4, h2q4) , (15)

G(q3, h3q
2
1q

2
2q

2
4, h3q1q2q4) = G(q3, h3q

2
1, h3q1) , (16)

G(q4, h4q
2
1q

2
2q

2
3, h4q1q2q3) = G(q4, h4q

2
2, h4q2) . (17)

Summarizing (12) – (17) we complete the proof of the lemma.

The following lemma is the main weapon of the theorem.

6



Lemma 6. Let n ≥ 5. There exists a bijective function from the solution set of the

equation

x2 + xy + 2y2 = n , (x, y) = 1 , x ∈ N , y ∈ Z \ {0} (18)

to the incongruent solutions modulo n of the congruence

z2 + z + 2 ≡ 0 (n) . (19)

Proof. Let us denote by F the set of ordered pairs (x, y) satisfying (18) and by E the set

of solutions of the congruence (19). Every residue class modulo n with representatives

satisfying (19) will be considered as one solution of (19).

Let (x, y) ∈ F . By (18) we have that (n, y) = 1. Then there exists a unique residue

class z modulo n such that

zy ≡ x (n). (20)

For this class we write

(z2 + z + 2)y2 ≡ (zy)2 + (zy)y + 2y2 ≡ x2 + xy + 2y2 ≡ 0 (n).

The last congruence and (n, y) = 1 yield z2 + z + 2 ≡ 0 (n) that is z ∈ E. We define the

map

β : F → E (21)

that associates to each pair (x, y) ∈ F the residue class z = xyn satisfying (20).

We will first prove that the map (21) is a injection. Let (x, y), (x′, y′) ∈ F that is∣∣∣∣ x2 + xy + 2y2 = n
x′2 + x′y′ + 2y′2 = n

, (22)

(x, y) = (x′, y′) = 1 (23)

and

(x, y) 6= (x′, y′) . (24)

Assume that

β(x, y) = β(x′, y′) . (25)

Hence there exists z ∈ E such that ∣∣∣∣ zy ≡ x (n)
zy′ ≡ x′ (n)

. (26)

The system (26) yields

xy′ − x′y ≡ 0 (n) . (27)
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Since the discriminants of the quadratic equations in (22) must be nonnegative and n ≥ 5

we derive ∣∣∣∣∣∣ 0 < x, x′ ≤
√

8n
7

0 < |y|, |y′| ≤
√

4n
7

. (28)

We first consider the case

yy′ > 0 . (29)

By (28) it follows ∣∣∣∣∣ 0 < |xy′| < 4
√
2n
7

0 < |x′y| < 4
√
2n
7

and bearing in mind (29) we obtain

−n < xy′ − x′y < n . (30)

Now (27) and (30) lead to

xy′ − x′y = 0

which together with (23) gives us

x = x′ , y = y′ . (31)

From (24) and (31) we get a contradiction.

Next we consider the case

yy′ < 0 . (32)

By (22), (28) and (32) we deduce∣∣∣∣∣∣∣∣∣∣
0 < x ≤

√
8n
7

0 < |y| ≤
√

4n
7

0 < x′ <
√
n

0 < |y′| <
√

n
2

or

∣∣∣∣∣∣∣∣∣∣
0 < x <

√
n

0 < |y| <
√

n
2

0 < x′ ≤
√

8n
7

0 < |y′| ≤
√

4n
7

(33)

and therefore

−2n < xy′ − x′y < 2n . (34)

Now (27), (32) and (34) imply

xy′ − x′y = n (35)

or

xy′ − x′y = −n . (36)
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After multiplying the congruence (19) by yy′ and using (26) we deduce

z2yy′ + zyy′ + 2yy′ ≡ 0 (n)

thus

xx′ + xy′ + 2yy′ ≡ 0 (n) (37)

and

xx′ + x′y + 2yy′ ≡ 0 (n) . (38)

On the other hand (33) yields ∣∣∣∣∣∣∣∣∣
0 < xx′ < 2

√
2n√
7

0 < |2yy′| < 2
√
2n√
7

0 < |xy′| < 2n√
7

0 < |x′y| < 2n√
7

which together with (32) gives us

|xx′ + xy′ + 2yy′| ≤ |xx′ + 2yy′|+ |xy′| < 2
√

2 + 2√
7

n < 2n (39)

and

|xx′ + x′y + 2yy′| ≤ |xx′ + 2yy′|+ |x′y| < 2
√

2 + 2√
7

n < 2n . (40)

Let (35) be true. Now (37) and (39) lead to three possibilities

xx′ + xy′ + 2yy′ = 0 (41)

or

xx′ + xy′ + 2yy′ = n (42)

or

xx′ + xy′ + 2yy′ = −n . (43)

On the one hand (23) and (41) imply x = ±y′ and therefore

x′ + y′ = ±2y .

From the last equation and (22) we derive

xy ± xx′ = 2y2
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which contradicts (23). On the other hand (35) and (42) give us

xx′ + x′y + 2yy′ = 0 (44)

which together with (23) yields x′ = ±y and therefore

x+ y = ±2y′ .

From the last equation and (22) we derive

x′y′ ± xx′ = 2y′2

which contradicts (23). Finally (35) and (43) lead to

xx′ + x′y + 2yy′ = −2n

which contradicts (40).

Let (36) be true. Now (38) and (40) lead to three possibilities

xx′ + x′y + 2yy′ = 0

or

xx′ + x′y + 2yy′ = n (45)

or

xx′ + x′y + 2yy′ = −n . (46)

The first equation coincides with (44). The equation (45) due to (36) coincides with (41).

The equation (46) due to (36) implies

xx′ + xy′ + 2yy′ = −2n

which contradicts (39). The resulting contradictions show that the assumption (25) is not

true. This proves the injectivity of β.

It remains to show that the map (21) is a surjection. We note that according to (20)

the solutions (x, y) and (−x,−y) of x2 + xy + 2y2 = n will produce the same z. That is

why if it happens that (x, y) is such a solution of x2 + xy + 2y2 = n that x < 0 then we

replace (x, y) with (−x,−y) . In the proof, we will omit this consideration.

Let z ∈ E. According to Dirichlet’s approximation theorem there exist integers a and

q such that ∣∣∣∣ zn − a

q

∣∣∣∣ < 1

q
√
n
, 1 ≤ q ≤

√
n, (a, q) = 1. (47)
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Put

r = zq − an . (48)

Therefore

r2 + rq + 2q2 = z2q2 − 2zqan+ a2n2 + (zq − an)q + 2q2 ≡ (z2 + z + 2)q2 (n). (49)

Now (19) and (49) imply

r2 + rq + 2q2 ≡ 0 (n). (50)

By (47) and (48) we get

|r| <
√
n. (51)

Using (47) and (51) we deduce

0 < r2 + rq + 2q2 < 4n. (52)

From (50) and (52) it follows that r2+rq+2q2 = n, r2+rq+2q2 = 2n or r2+rq+2q2 = 3n.

Consider all cases.

Case 1

r2 + rq + 2q2 = n . (53)

From (48) and (53) we obtain

n = (zq − an)2 + (zq − an)q + 2q2 = (z2 + z + 2)q2 − ran− zqan− qan

and thus

ra+ 1 = kq , (54)

where

k =
z2 + z + 2

n
q − az − a . (55)

By (19) and (55) it follows that k ∈ Z and bearing in mind (54) we get

(r, q) = 1. (56)

On the other hand (53), (56) and n ≥ 5 give us r 6= 0. Put

x = r , y = q . (57)

From (53), (56) and (57) it follows that (x, y) ∈ F . Also (48) and (57) yield (20).

Therefore β(x, y) = z.
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Case 2

r2 + rq + 2q2 = 2n . (58)

From (48) and (58) it follows that

2n = (zq − an)2 + (zq − an)q + 2q2 = (z2 + z + 2)q2 − ran− zqan− qan

and thus

ra+ 2 = kq , (59)

where k is denoted by (55). From (59) we deduce

(r, q) ≤ 2 . (60)

Now (58), (60) and n ≥ 5 lead to r 6= 0.

Case 2.1

r = 2r0 , q = 2q0 + 1 . (61)

By (58) and (61) we get

q2 + qr0 + 2r20 = n

which is equivalent to

(q + r0)
2 − r0(q + r0) + 2r20 = n . (62)

Put

x = q + r0 , y = −r0 . (63)

Now (60) and (61) imply

(q + r0, r0) = 1 . (64)

From (62), (63) and (64) we obtain that (x, y) ∈ F . Further (48) and (63) give us

2(zy − x) = −(z2 + z + 2)q + zan+ an . (65)

Bearing in mind (19) and (65) we deduce

2(zy − x) ≡ 0 (n) . (66)

Case 2.1.1

r0 = 2r1 . (67)

Now (61), (62) and (67) assure us that n is odd. Hence (66) yields (20). Consequently

β(x, y) = z.
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Case 2.1.2

r0 = 2r1 + 1 . (68)

From (61), (62), (63) and (68) it follows that n and x are even. Now (61) leads to

zq = r + an ≡ 0 (2)

that is z is even. Thus

zy − x is even. (69)

Case 2.1.2a

n = 2n0 , n0 is odd. (70)

Now (66), (69) and (70) imply (20). Therefore β(x, y) = z.

Case 2.1.2b

n = 2l+1n0 , l ≥ 1 , n0 is odd. (71)

By (19) and (71) we obtain

z2 + z + 2 ≡ 0 (2l+1) . (72)

Assume that

zy − x = 2lh , h is odd. (73)

Now (18), (71), (72) and (73) give us consistently

(yz)2 + (yz)y + 2y2 ≡ 0 (2l+1) ,

(2lh+ x)2 + (2lh+ x)y + 2y2 ≡ 0 (2l+1) ,

22lh2 + 2l+1hx+ x2 + xy + 2y2 + 2lhy ≡ 0 (2l+1) ,

2lhy ≡ 0 (2l+1) . (74)

From (63), (68) and (74) we get a contradiction. Consequently

zy − x ≡ 0 (2l+1) . (75)

Now (66), (71) and (75) yield (20). Thus β(x, y) = z.

Case 2.2

r = 2r0 , q = 2q0 . (76)

Bearing in mind (60) and (76) we get

(r0, q0) = 1 . (77)
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By (58) and (76) we find

4q20 + 2q0r0 + 2r20 = n . (78)

Case 2.2.1

r0 = 2r1 , q0 = 2q1 + 1 . (79)

We write equation (78) in the form

q2 − q(q0 + r0) + 2(q0 + r0)
2 = n . (80)

Put

x = −q , y = q0 + r0 . (81)

Now (76), (77) and (79) lead to

(−q, r0 + q0) = 1 . (82)

Taking into account (80) – (82) we conclude that (x, y) ∈ F . Further (76) – (79) assure

us that 4 | n and 4 | r. Therefore

zq = r + an ≡ 0 (4) . (83)

From (76), (79) and (83) it follows that

z = 2z0 . (84)

Using (48), (76), (81) and (84) we write

2(zy − x) = −(z2 + z + 2)2q0 − 2nz0a . (85)

By (19) and (85) we obtain (20). Consequently β(x, y) = z.

Case 2.2.2

r0 = 2r1 + 1 , q0 = 2q1 + 1 . (86)

We write equation (78) in the form

(2q0 + r0)
2 − r0(2q0 + r0) + 2r20 = n . (87)

Put

x = 2q0 + r0 , y = −r0 . (88)

Now (77) and (86) imply

(2q0 + r0,−r0) = 1 . (89)

14



From (87) – (89) we get (x, y) ∈ F . Further (78) and (86) give us

n ≡ 0 (4) . (90)

If we assume that (84) is true then (48), (76), (90) and (84) yield

2r0 = zq − an = 4z0q0 − an ≡ 0 (4)

which contradicts (86). This means that z is odd, that is

z + 1 = 2z0 . (91)

Bearing in mind (48), (76) and (88) we deduce

2(zy − x) = −(z2 + z + 2)2q0 + an(z + 1) . (92)

From (19), (91) and (92) we establish (20). Therefore β(x, y) = z.

Case 2.2.3

r0 = 2r1 + 1 , q0 = 2q1 . (93)

When z is even then Case 2.2.3 coincides with Case 2.2.1. When z is odd then Case 2.2.3

coincides with Case 2.2.2.

Case 2.3

r = 2r0 + 1 , q = 2q0 + 1 . (94)

By (58) and (94) we obtain

q2 − q(q0 + r0 + 1) + 2(q0 + r0 + 1)2 = n . (95)

Put

x = −q , y = q0 + r0 + 1 . (96)

Now (60) and (94) assure us that

(−q, q0 + r0 + 1) = 1 . (97)

From (95) – (97) we conclude that (x, y) ∈ F . Further (48) and (96) lead to

2(zy − x) = (z2 + z + 2)q − zan . (98)

Using (19) and (98) we establish that (66) holds.

Case 2.3.1 The numbers r0 and q0 are of different parity. By (95) and (96) it follows

that n is odd. Hence (66) implies (20). Thus β(x, y) = z.
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Case 2.3.2 The numbers r0 and q0 are of the same parity.

From (95) and (96) it follows that y is odd and n is even. Now (48) and (94) give us

that zq is odd. Therefore z is odd. Consequently zy − x is even. It remains to be seen

that when n has the shape (70) then Case 2.3.2 coincides with Case 2.1.2a and when n

has the form (71) then Case 2.3.2 coincides with Case 2.1.2b. Hence β(x, y) = z.

Case 3

r2 + rq + 2q2 = 3n . (99)

Direct verifications will prove that Case 3 is impossible.

Case 3.1

r = 3r0 , q = 3q0 . (100)

Now (99) and (100) yield

3(r20 + r0q0 + 2q20) = n ,

i.e. 3 | n that contradicts (19) because the congruences

z2 + z + 2 ≡ 0 (3)

has no solution.

Case 3.2

r = 3r0 , q = 3q0 + 1 . (101)

By (99) and (101) we get

3(3r20 + 3r0q0 + r0 + 6q20 + 4q0) + 2 ≡ 0 (3)

which is impossible.

Case 3.3

r = 3r0 , q = 3q0 + 2 . (102)

Using (99) and (102) we deduce

3(3r20 + 3r0q0 + 2r0 + 6q20 + 8q0) + 8 ≡ 0 (3)

which is a contradiction.

Case 3.4

r = 3r0 + 1 , q = 3q0 . (103)

Now (99) and (103) give us

3(3r20 + 3r0q0 + 2r0 + 6q20 + q0) + 1 ≡ 0 (3)
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which is impossible.

Case 3.5

r = 3r0 + 1 , q = 3q0 + 1 . (104)

From (99) and (104) it follows

3(3r20 + 3r0q0 + 3r0 + 6q20 + 5q0) + 4 ≡ 0 (3)

which is a contradiction.

Case 3.6

r = 3r0 + 1 , q = 3q0 + 2 . (105)

Now (99) and (105) lead to

3(3r20 + 3r0q0 + 4r0 + 6q20 + 9q0) + 11 ≡ 0 (3)

which is impossible.

Case 3.7

r = 3r0 + 2 , q = 3q0 . (106)

By (99) and (106) we obtain

3(3r20 + 3r0q0 + 4r0 + 3q20 + 2q0) + 4 ≡ 0 (3)

which is a contradiction.

Case 3.8

r = 3r0 + 2 , q = 3q0 + 1 . (107)

Now (99) and (107) assure us that

3(3r20 + 3r0q0 + 5r0 + 6q20 + 6q0) + 8 ≡ 0 (3)

which is impossible.

Case 3.9

r = 3r0 + 2 , q = 3q0 + 2 . (108)

From (99) and (108) we write

3(3r20 + 3r0q0 + 6r0 + 6q20 + 10q0) + 16 ≡ 0 (3)

which is a contradiction. This proves that β is a surjective map.
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For the benefit of the readers, we will give a second shorter proof of the surjectivity of

β. Note that this proof is valid only when the quadratic form has class number one. We

denote

f(x, y) = x2 + xy + 2y2 . (109)

For each root z of the congruence (19) we define the set

Λz = {(x, y) ∈ Z2 | x− zy ≡ 0 (n)} . (110)

We choose a basis

(a1, a2) = (n, 0) , (b1, b2) = (z, 1) (111)

of Λz. Clearly, the vectors (111) are linearly independent elements of Λz. Further, (110)

shows that the lattice determinant of Λz is divisible by n, therefore (a1, a2), (b1, b2) form

a basis of this lattice. Bearing in mind (19), (109) and (110) we obtain

f(a1X + b1Y, a2X + b2Y ) = ng(X, Y ) , (112)

where

g(X, Y ) = nX2 + (2z + 1)XY +
z2 + z + 2

n
Y 2 . (113)

A direct discriminant calculation shows that the discriminant of f and g is −7. From the

fact that there exists a unique class of binary quadratic forms with discriminant equal to

−7 (see [14], Theorem 198), it follows that g is equivalent to f , that is

g(X, Y ) = f(aX + bY, cX + dY ) , (114)

where a, b, c, d are integers with ad − bc = ±1. Consider a, b, c, d to be fixed. Now let

(X0, Y0) be the unique solution of the system∣∣∣∣ aX + bY = 1
cX + dY = 0

. (115)

We construct a solution (x, y) of (18) of the form

(x, y) = X0(a1, a2) + Y0(b1, b2) = (nX0 + zY0, Y0) . (116)

If nX0+zY0 < 0, then replace (X0, Y0) by (−X0,−Y0) and note that (X0, Y0) is the unique

solution of the system ∣∣∣∣ aX + bY = −1
cX + dY = 0

. (117)
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Since ad− bc = ±1 then X0, Y0 ∈ Z. On the one hand aX0 + bY0 = ±1 leads to

(X0, Y0) = 1 . (118)

On the other hand (109), (113), (114), (115) and (117) give us

nX2
0 + (2z + 1)X0Y0 +

z2 + z + 2

n
Y 2
0 = g(X0, Y0) = f(±1, 0) = 1 (119)

and consequently

(n, Y0) = 1 . (120)

Now (116), (118) and (120) yield

(x, y) = 1 . (121)

By (112), (116) and (119) we derive

f(x, y) = ng(X0, Y0) = n . (122)

Finally (109), (110), (121) and (122) imply that β is a surjection.

This completes the proof of the lemma.

4 Proof of the theorem

Using (4) and the well-known identity

µ2(n) =
∑
d2|n

µ(d)

we get

Γ(X) =
∑
d1,d2

(d1,d2)=1

µ(d1)µ(d2)
∑

1≤n≤X
n2+n+1≡0 (d21)

n2+n+2≡0 (d22)

1 = Γ1(X) + Γ2(X) , (123)

where

Γ1(X) =
∑
d1d2≤z

(d1,d2)=1

µ(d1)µ(d2)Σ(X, d21, d
2
2) , (124)

Γ2(X) =
∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)Σ(X, d21, d
2
2) , (125)

Σ(X, d21, d
2
2) =

∑
1≤n≤X

n2+n+1≡0 (d21)

n2+n+2≡0 (d22)

1 , (126)

√
X ≤ z < X , (127)

19



where z is to be chosen later.

4.1 Estimation of Γ1(X)

Assume that q1 = d21, q2 = d22, where d1 and d2 are square-free, (q1, q2) = 1 and

d1d2 ≤ z. Define

Ω(X, q1, q2, n) =
∑
m≤X

m≡n (q1q2)

1 . (128)

Obviously

Ω(X, q1, q2, n) =
X

q1q2
+O(1) . (129)

By (126) and (128) we obtain upon partitioning the sum (126) into residue classes modulo

q1q2

Σ(X, q1, q2) =
∑

1≤n≤q1q2
n2+n+1≡0 (q1)

n2+n+2≡0 (q2)

Ω(X, q1, q2, n) . (130)

From (3), (130) and (129) we get

Σ(X, q1, q2) = X
λ(q1, q2)

q1q2
+O

(
λ(q1, q2)

)
. (131)

Taking into account (3) and that the number of solutions of the congruence

n2 + n+ 1 ≡ a (q1)

is less than or equal to τ(q1) we deduce

λ(q1, q2)� λ(q1, 1)� τ(q1)� τ(q1q2) . (132)

Now (131), (132) and the inequalities

τ(q1q2)� (q1q2)
ε � Xε

imply

Σ(X, q1, q2) = X
λ(q1, q2)

q1q2
+O

(
Xε
)
. (133)

Using (124), (127) and (133) we obtain

Γ1(X) = X
∑
d1d2≤z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

+O
(
zXε

)
= σX −X

∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

+O
(
zXε

)
, (134)
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where

σ =
∞∑

d1,d2=1
(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

. (135)

By (132) it follows∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

�
∑
d1d2>z

(d1,d2)=1

(d1d2)
ε

(d1d2)2
�
∑
n>z

τ(n)

n2−ε � zε−1 . (136)

It remains to see that the product (9) and the sum (135) coincide. From Lemma 5 and

(d1, d2) = 1 we have

λ(d21, d
2
2) = λ(d21, 1)λ(1, d22) . (137)

Now (135) and (137) yield

σ =
∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2) , (138)

where

fd1(d2) =

{
1 if (d1, d2) = 1 ,

0 if (d1, d2) > 1 .

It is easy to see that the function

µ(d2)λ(1, d22)

d22
fd1(d2)

is multiplicative with respect to d2 and the series
∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2)

is absolutely convergent. Using the Euler product we write
∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2) =

∏
p-d1

(
1− λ(1, p2)

p2

)

=
∏
p

(
1− λ(1, p2)

p2

)∏
p|d1

(
1− λ(1, p2)

p2

)−1
. (139)

From (138) and (139) we get

σ =
∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p

(
1− λ(1, p2)

p2

)∏
p|d1

(
1− λ(1, p2)

p2

)−1
=
∏
p

(
1− λ(1, p2)

p2

) ∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
. (140)
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It is easy to see that the function

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
is multiplicative with respect to d1 and the series

∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
is absolutely convergent. Using again the Euler product from (3) and (140) we deduce

σ =
∏
p

(
1− λ(1, p2)

p2

)∏
p

(
1− λ(p2, 1)

p2

(
1− λ(1, p2)

p2

)−1)

=
∏
p

(
1− λ(p2, 1) + λ(1, p2)

p2

)
. (141)

Summarizing (127), (134), (136) and (141) we establish

Γ1(X) = σX +O
(
zXε

)
, (142)

where σ is given by the product (9).

4.2 Estimation of Γ2(X)

Bearing in mind (125), (126) and splitting the range of d1 and d2 into dyadic subin-

tervals of the form D1 ≤ d1 < 2D1, D2 ≤ d2 < 2D2 we obtain

Γ2(X)� (logX)2
∑
n≤X

∑
D1≤d1<2D1
n2+n+1≡0 (d21)

∑
D2≤d2<2D2
n2+n+2≡0 (d22)

1 , (143)

where
1

2
≤ D1, D2 ≤

√
X2 +X + 2 , D1D2 >

z

4
. (144)

On the one hand (143) implies

Γ2(X)� XεΣ1 , (145)

where

Σ1 =
∑
n≤X

∑
D1≤d1<2D1
n2+n+1≡0 (d21)

1 . (146)
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On the other hand (143) gives us

Γ2(X)� XεΣ2 , (147)

where

Σ2 =
∑
n≤X

∑
D2≤d2<2D2
n2+n+2≡0 (d22)

1 . (148)

Estimation of Σ1

Arguing as in [?] we get

Σ1 � X1+εD
− 1

4
1 . (149)

Estimation of Σ2

Define

N (d) = {n ∈ N : 1 ≤ n ≤ d, n2 + n+ 2 ≡ 0 (d)} , (150)

N ′(d) = {n ∈ N : 1 ≤ n ≤ d2, n2 + n+ 2 ≡ 0 (d2)} . (151)

From (148) and (151) we write

Σ2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

∑
m≤X

m≡n (d22)

1 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

([
X − n
d22

]
−
[
−n
d22

])

=
∑

D2≤d2<2D2

∑
n∈N ′(d2)

(
X

d22
+ ψ

(
−n
d22

)
− ψ

(
X − n
d22

))
� X1+εD−12 + |Σ′2|+ |Σ′′2| , (152)

where

Σ′2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

ψ

(
−n
d22

)
, (153)

Σ′′2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

ψ

(
X − n
d22

)
. (154)

Arguing as in [?] we deduce

Σ′2 � XεD−12 . (155)

Further we consider the sum Σ′′2 defined by (154). Let D2 ≤ X
1
2 . The trivial estimation

leads to

Σ′′2 �
∑

D2≤d2<2D2

dε2 � X
1
2
+ε . (156)
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Let

D2 > X
1
2 . (157)

We notice that all summands in the sum (148) for which 7 | d2 are equal to zero because

the congruences

n2 + n+ 2 ≡ 0 (49) (158)

has no solution. That’s why in the estimation of (148) we will consider that 7 - d2.
Let f(x) = anx

n + an−1x
n−1 + · · · + a0 be a polynomial with integral coefficients and

r1, . . . , rk be all solutions of the congruence

f(x) ≡ 0 (pl−1) . (159)

From the theory of the congruences we know that when p - f ′(ri) for i = 1, . . . , k then

the number of solutions of the congruence

f(x) ≡ 0 (pl) . (160)

is also equal to k, that is, congruences (159) and (160) have an equal number of solutions.

Taking into account the above considerations, we derive that the congruences

n2 + n+ 2 ≡ 0 (d22) (161)

and

n2 + n+ 2 ≡ 0 (d2) (162)

will have an equal number of solutions if we show that for arbitrary prime divisor p of d2

and arbitrary solution r of (162) we have that

p - 2r + 1 .

We assume the opposite. Hence

r =
ph− 1

2
, (163)

where h ∈ Z. Now (163) and

r2 + r + 2 ≡ 0 (p)

yield

p2h2 + 7 ≡ 0 (4p)

which means p = 7. But we have already excluded the case when 7 is a prime divisor of

d2. Therefore congruences (161) and (162) have an equal number of solutions. We note
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that the sum over n in (148) does not contain terms with n =
d22
2

and n = d22. Moreover

for any n satisfying the congruence (161) and such that 1 ≤ n <
d22
2

the number d22−n−1

satisfies the same congruence. The same is true for the congruence (162). We also note

that if n = d22 − n − 1 then d22 | 7 which is impossible and if n = d2 − n − 1 then d2 = 7

which we excluded as an possibility. Using this facts and notations (150), (151) we denote

k = #N (d2) = #N ′(d2) , (164)

n1, . . . , nk ∈ N (d2) , n′1, . . . , n
′
k ∈ N ′(d2) . (165)

Now (150), (151), (157), (164), (165) and d2 ≥ D2 give us∑
n∈N ′(d2)

ψ

(
X − n
d22

)
=

∑
n∈N ′(d2)

(
X − n
d22

− 1

2

)

=
∑

n∈N ′(d2)

(
X

d22
− 1

2

)
−
n′1 + · · ·+ n′k/2 + (d22 − n′1 − 1) + · · ·+ (d22 − n′k/2 − 1)

d22

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
− k(d22 − 1)

2d22

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
−
n1 + · · ·+ nk/2 + (d2 − n1 − 1) + · · ·+ (d2 − nk/2 − 1)

d2

(
1 +

1

d2

)

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
−
(

1 +
1

d2

) ∑
n∈N (d2)

n

d2

=
∑

n∈N (d2)

(
X

d22
−
√
X

d2
− n

d22

)
+

∑
n∈N (d2)

(√
X − n
d2

− 1

2

)

=
∑

n∈N (d2)

(
X

d22
−
√
X

d2
− n

d22

)
+

∑
n∈N (d2)

ψ

(√
X − n
d2

)
. (166)

From (154), (157) and (166) it follows

Σ′′2 � X
1
2
+ε + |Σ3| , (167)

where

Σ3 =
∑

D2≤d2<2D2

∑
n∈N (d2)

ψ

(√
X − n
d2

)
. (168)

Using (168) and Lemma 2 with

M = X
1
2 (169)
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we obtain

Σ3 =
∑

D2≤d2<2D2

∑
n∈N (d2)

(
−

∑
1≤|m|≤M

e
(
m
(√

X−n
d2

))
2πim

+O

(
fM

(√
X − n
d2

)))
= Σ4 + Σ5 , (170)

where

Σ4 =
∑

1≤|m|≤M

Θm

2πim
, (171)

Θm =
∑

D2≤d2<2D2

e

(√
Xm

d2

) ∑
n∈N (d2)

e

(
−nm
d2

)
, (172)

Σ5 =
∑

D2≤d2<2D2

∑
n∈N (d2)

fM

(√
X − n
d2

)
. (173)

By (172), (173) and Lemma 2 we derive

Σ5 =
∑

D2≤d2<2D2

∑
n∈N (d2)

+∞∑
m=−∞

bM(m)e

(√
X − n
d2

m

)
=

+∞∑
m=−∞

bM(m)Θm

� logM

M
|Θ0|+

logM

M

∑
1≤|m|≤M1+ε

|Θm|+
∑

|m|>M1+ε

|bM(m)||Θm|

� logM

M
D1+ε

2 +
logM

M

∑
1≤m≤M1+ε

|Θm|+D1+ε
2

∑
|m|>M1+ε

|bM(m)|

� logM

M
D1+ε

2 +
logM

M

∑
1≤m≤M1+ε

|Θm| . (174)

Now (170), (171) and (174) imply

Σ3 � Xε

D2

M
+

∑
1≤m≤M1+ε

|Θm|
m

 . (175)

Define

F(d) = {(u, v) : u2 + uv + 2v2 = d, (u, v) = 1, u ∈ N, v ∈ Z \ {0}}. (176)

According to Lemma 6 there exists a bijection

β : F(d)→ N (d)

26



from F(d) to N (d) defined by (150) that associates to each couple (u, v) ∈ F(d) the

element n ∈ N (d) satisfying

nv ≡ u (d). (177)

Now (177) yields

nu,v ≡ uvd (d)

thus
nu,v
d
≡ u

vu2+uv+2v2

u2 + uv + 2v2
(1) . (178)

From (178) and Lemma 3 it follows

nu,v
d
≡ u

v(u2 + uv + 2v2)
−
u|v|
v

(1) , (179)

nu,v
d
≡ − u+ 2v

u(u2 + uv + 2v2)
+
vu
u

(1). (180)

Bearing in mind (172), (176), (179) and (180) we get

Θm =
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)

e

(
−nu,v
d2

m

)

=
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)

0<u<|v|

e

(
− mu

v(u2 + uv + 2v2)
+
mu|v|
v

)

+
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)

0<|v|<u

e

(
m(u+ 2v)

u(u2 + uv + 2v2)
− mvu

u

)

=
∑

D2≤u2+uv+2v2<2D2
0<u<|v|
(u,v)=1

e

(
m
√
X

u2 + uv + 2v2
− mu

v(u2 + uv + 2v2)
+
mu|v|
v

)

+
∑

D2≤u2+uv+2v2<2D2
0<|v|<u
(u,v)=1

e

(
m
√
X

u2 + uv + 2v2
+

m(u+ 2v)

u(u2 + uv + 2v2)
− mvu

u

)

= Θ′m + Θ′′m , (181)

say. Consider Θ′m. Let for any fixed
√

D2

4
≤ |v| <

√
D2 the interval

[
η1(v), η2(v)

]
is a

solution with respect to u of the system∣∣∣∣∣∣
u2 + uv + 2v2 < 2D2

u2 + uv + 2v2 ≥ D2

0 < u < |v|
. (182)
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Denote

g(u) = e

(
m
√
X

u2 + uv + 2v2
− mu

v(u2 + uv + 2v2)

)
, (183)

Kv,m(t) =
∑

η1(v)≤u<t
(u,v)=1

e

(
mu|v|
v

)
. (184)

By (181) – (184) and Abel’s summation formula we deduce

Θ′m =
∑

√
D2
4
≤|v|<

√
D2

∑
η1(v)≤u<η2(v)

(u,v)=1

g(u)e

(
mu|v|
v

)

=
∑

√
D2
4
≤|v|<

√
D2

g(η2(v)
)
Kv,m

(
η2(v)

)
−

η2(v)∫
η1(v)

Kv,m(t)

(
d

dt
g(t)

)
dt


�

∑
√
D2
4
≤|v|<

√
D2

(
1 +

m
√
X

v2

)
max

η1(v)≤t≤η2(v)
|Kv,m(t)| . (185)

We are now in a good position to apply Lemma 4 because the sum defined by (184) is an

incomplete Kloosterman sum. We have

Kv,m(t)� |v|
1
2
+ε (v,m)

1
2 . (186)

From (185) and (186) we derive

Θ′m �
∑

√
D2
4
≤|v|<

√
D2

(
1 +

m
√
X

v2

)
|v|

1
2
+ε (v,m)

1
2

� Xε
(
D

1
4
2 +mX

1
2D
− 3

4
2

) ∑
0<v<

√
D2

(v,m)
1
2 . (187)

On the other hand∑
0<v<

√
D2

(v,m)
1
2 ≤

∑
l|m

l
1
2

∑
v≤
√
D2

v≡0 (l)

1� D
1
2
2

∑
l|m

l−
1
2 � D

1
2
2 τ(m)� XεD

1
2
2 . (188)

The estimations (187) and (188) lead to

Θ′m � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (189)
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Working in a similar way for Θ′′m from (181) we deduce

Θ′′m � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (190)

Now (181), (189) and (190) yield

Θm � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (191)

From (175) and (191) we write

Σ3 � Xε
(
D2M

−1 +D
3
4
2 +X

1
2MD

− 1
4

2

)
. (192)

Using (144), (169) and (192) we obtain

Σ3 � X1+εD
− 1

4
2 . (193)

Bearing in mind (144), (152), (155), (156), (167) and (193) we find

Σ2 � X1+εD
− 1

4
2 . (194)

Estimation of Γ2(X)

Now (144), (145), (147), (149) and (194) imply

Γ2(X)� X1+εz−
1
8 . (195)

4.3 The end of the proof

Summarizing (123), (142), (195) and choosing z = X
8
9 we establish the asymptotic

formula (8). This completes the proof of Theorem 1.

References

[1] B. Chen, On the consecutive square-free values of the polynomials x21+· · ·+x2k+1, x21+

· · ·+ x2k + 2, Indian J. Pure Appl. Math., (2022), https://doi.org/10.1007/s13226-022-

00292-z.

[2] G. Chen, W. Wang, On the r-free values of the polynomial x2+y2+z2+k, Czechoslovak

Math. J., (2023), https://doi.org/10.21136/CMJ.2023.0394-22.

29



[3] X. Cao, W. Zhai, The distribution of square-free numbers of the form [nc], J. Théor.
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