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Abstract

In this paper we prove by asymptotic formula that there exist infinitely many
square-free pairs of the form n? +n + 1, n? +n 4+ 2. A key point in our proof is the
establishment of bijective correspondence between the number of representations of
number by binary quadratic form and the incongruent solutions of quadratic con-
gruence.
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1 Notations

Let X be a sufficiently large positive number. The letter ¢ denotes an arbitrary small
positive number, not the same in all appearances. As usual [t] and {t} denote the integer
part, respectively, the fractional part of ¢. Further p(n) is Mébius’ function and 7(n)
denotes the number of positive divisors of n. Instead of m = n (mod k) we write for
simplicity m = n (k). Moreover (m,n) is the greatest common divisor of m and n. The
letter p will always denote prime number. We write e(t)=exp(2mit) and 1(t) = {t} —1/2.
For z,y € R we write x = y (1) when x —y € Z. For any n and ¢ such that (n,q) =1 we
denote by 7, the inverse of n modulo ¢. By G(g, m,n) we shall denote the Gauss sums

Glg,m,n) = Xq:e (@) . (1)

r=1
By K(r, h) we shall denote the incomplete Kloosterman sum

K(rh)= > e(@) : (2)

alz<f
(z,r)=1
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where

h,r €Z, hr#0, 0<f—a<2r|

We also define
Mar, g2) = Z L, (3)

1<n<gqyqg
n24+n+1=0 (q1)
n24n+2=0 (q3)

PO = S0 1202 +n+1) 120 +n+2), (4)

1<n<X

2 Introduction and statement of the result

We say that an integer n € N is square-free if for any prime p | n, one has p? { n.
Information on the distribution of square-free numbers was given in 1885 by Gegenbauer
[6]. He proved the following asymptotic formula

S (n) = %XHQ(X%). (5)
n<X

Gegenbauer’s argument is very simple, but despite the passage of 137 years the exponent

1/2 appearing above has never been improved. Any reduction in the exponent 1/2 would

appear to require a quasi Riemann Hypothesis.

Let k£ and n be integers and k& > 2. We say that n is k-free if there is no prime p such
that p¥|n. Consider the irreducible polynomial f(x) € Z[z] of degree d. Assume that for
every prime p there is at least one integer n, for which p* { f(n,). It is conjectured that
the set f(Z) = {f(n),n € Z} contains infinitely many k-free values. A lot of articles are
devoted to problems of this type. We point out the papers [1], [4], [8], [9], [10], [11], [15].

Another interesting problem we know in number theory is consecutive square-free
numbers. In 1932 Carlitz [2] showed that there exist infinitely many pairs of consecutive
square-free numbers. More precisely he proved the asymptotic formula

Zuz(n)uz(n+1) :H (1—3)X—|—O(X9+5), (6)

2
n<X p p

where 6§ = 2/3. Afterwards the reminder term of (6) was improved by Mirsky [13] and
Heath-Brown [7]. The best result up to now belongs to Reuss [14] with § = (26++/433)/81.
Recently [3] the author showed that there exist infinitely many square-free numbers of



the form n? +n + 1. More precisely we established the asymptotic formula
> P 4n+1)=cX+0 (X%+€> :
1<n<X

where

and

1<n<gq
n2+4+n+1=0 (q)

Motivated by these investigations we prove the following theorem.

Theorem 1. For the sum I'(X) defined by (4) the asymptotic formula

P(X)=0X +0O (X%+€) (7)
holds. Here = \ )
0_1;[(1_ (p,l);; (Lp)) ‘ (8)

From Theorem 1 it follows that there exist infinitely many consecutive square-free

numbers of the form n? +n + 1, n? + n + 2, where n runs over naturals.

3 Lemmas

Lemma 1. Let (q1,q2) = 1. Then for the Gauss sum denoted by (1) we have

G(QNJ% miqgz + maqy, n) = G(QM mlqg7 n) G(q27 m?q%a n) .
Proof. See [5]. O

Lemma 2. For any M > 2, we have

v =- 3 o).
1<|m|<M

where fp(t) is a positive function of t which is infinitely many times differentiable and

pertodic with period 1. It can be expanded into the Fourier series

+oo
fu(t) =Y bau(m)e(mt),

m=—0oQ
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with coefficients by (m) such that

log M

and
> fbu(m)| < M

|m|>M1+e

forall m

Here A > 0 s arbitrarily large and the constant in the < - symbol depends on A and ¢.

Proof. See ([16], Theorem 1).
The next lemma we need is well-known.
Lemma 3. Let A,B € Z\ {0} and (A,B) =1. Then

A, Bla _ 1
B A:AB(l)‘

Lemma 4. For the sum denoted by (2) the estimate
K (r, h) < |r[ % (r, )

holds.

O

Proof. Follows easily from A. Weil’s estimate for the Kloosterman sum. See ([12], Ch.

11, Corollary 11.12).

Lemma 5. The function \(qi1, q2) defined by (3) is multiplicative, i.e. if

(192, i301) = (1, 42) = (g3, qa) = 1

then

A(Qléh, C]3Q4) = )‘(‘Jb C]B))‘(%, Q4) .

]

(9)



Proof. On the one hand (1), (3), (9) and Lemma 1 imply

A(QIQ% CI3Q4) =

:m $ 3 6(h1(n2+n+1)> > e(hQ(n2+n+2)>

1<n<q1929394 1<h1<q192 D2 1<h2<q3q4 4394

1 h 2h
i (), 2 ()
41924344 41492 4344

1<h1<q192 1<h2<q3q4

X G(Q1Q2Q3C]4, h1q3qs + haqiq2, higsqs + h2Q1Q2)

1 h 2h
- Z € <—1> Z e (—2) G(q1G2, M @303, h1q3qs + haqiq)

41929344 1<hi<a1a2 q1492 | <ha<gsaa q3q4

x G(q3qa, 2013, P1g3qs + haq1q2)

__ 1 Z e(h1QZ+h2Q1) Z 6(2(h3Q4+h4Q3)>

1929394 5=, 4192 1 <ha<as 4344
1<ho<qa 1<hy<qq

X G(q1g2, h1Q2Q§QZ + h2q1Q§Qi7 h1G2q3qs + q1heq3qs + q1G2hs3qs + G1G2q3hy)

X G(q3qa, h3¢14¢]%(l§ + h4Q3QfQ§; h1G2q3qs + q1heq3qs + q1G2hs3qs + q1G2q3hy)

1 Z B (h1q2 + hﬂh) Z . (2(h3614 + h4613)>

19249394 5=, 4192 \<ha<as 4344
1<hg<q2 1<hg<qq

x G
x G
x G
x G

qi, hlq%(ﬁ, h1q2q3qs + q1h2q3qs + q1g2hs3qs + q1q2q3ha
q2, hgqfqiqi, h1q2q3qs + q1h2q3qs + q1g2h3qs + q1q2q3ha
qs, hsfﬁngz, h1q2q3qs + q1h2q3qs + q1g2hs3qs + q1g2q3ha

—_ o~~~
~— ~— ~— ~—

44, h4Q%Q§Q§; h1q2q3qs + q1h2q3qs + q1g2h3qs + q1q2q3ha) - (10)



On the other hand (1), (3) and Lemma 1 yield

A(QlaQ3)A<QQaQ4)::

_ Z Z (hln —|—n—|—1)) Z e(hg(n2+n+2)>
41429394

1<n<qigs 1<hi<q1 1<h3z<g3 a3

y §: 2: (@rn+wn+w) 2: e(m@#+4n+m)

1<m<q2q4 1<h2<q2 1 1<hs<qs a

1 higa + h 2(hsqs + h
_ Z e( 1492 2Q1) Z e( ( 394 4%))
N@249394 5=, 4192 \<ha<as 4344
1<ho<gs 1<hg<qy

X G(q1q3, h1gs + h3qi, higs + h3q1)G(q2qa, haqa + haga, hoqs + hags)

1 Xze(m@+mm) 226(%@%+m%0

N929394 5=, 4192 1 <ha<as 4344
1<hg<qg 1<hg<qq

x G(q, h1Q§7 higs + h3q1)G(gs, th%, higs + hsqr)
x G(qa, has, haqs + haq2) G (qa, hads, hags + hage) . (11)

Using the substitution n — (g2q4),.,. 1 we get

q1493

G(q, hﬂ]gngz’ h142G3q4 + q1h2q3qs + G1q2h3qs + 1q2q3h4)
:fie(mﬁﬁﬁﬁ+WM@%%+qMMwm+m@%%+@mmwﬂn)

n=1 ql
- qzl e (h1q32,712 + (higs + h3¢11)”>
1 q1

= G(q1, h1q3, h1gs + hsqy) (12)

Arguing in a similar way, we obtain

G(qe, h2Q%Q§Qia h1q2q3q4 + q1h2q3q4 + Q1G2hs3qs + q1G2q3ha) = G(g2, h2QZ7 haqs + hagqa) ,

(13)

G(gs, th%Q%Qi, h1q2q394 + q1h2q3q4 + Q1G2hs3qs + q1G2q3ha) = G(gs, hs(l%, higs + hsq1) .
(14)

G(qa, h4qfng?2,, h1q2q3q4 + q1h2q3q4 + Q1G2h3qs + Q1G2q3ha) = G(qa, h4q§, hoqs + hagqs) .
(15)
Summarizing (11) — (15) we complete the proof of the lemma. O

The following lemma is the main weapon of the theorem.



Lemma 6. Let n > 5. There exists a bijective function from the solution set of the
equation
P ray+2y' =n, (v,y)=1, z,yeZ\{0} (16)

to the incongruent solutions modulo n of the congruence
2 4+z4+2=0(n). (17)

Proof. Let us denote by F' the set of ordered pairs (z,y) satisfying (16) and by F the set
of solutions of the congruence (17). Every residue class modulo n with representatives
satisfying (17) will be considered as one solution of (17).
Let (z,y) € F. By (16) we have that (n,y) = 1. Then there exists a unique residue
class z modulo n such that
zy = x (n). (18)

For this class we write
(2*+ 2+ 2)y° = (29)° + (2y)y + 2" = 2° + ay + 24> = 0 (n).

The last congruence and (n,y) = 1 yield 22 + 2z +2 = 0(n) that is 2 € E. We define the
map

B:F—E (19)

that associates to each pair (x,y) € F the residue class z = z7,, satisfying (18).
We will first prove that the map (19) is a injection. Let (x,y), (2/,y’) € F that is

22 +ay+2y° =n

13/2 + x’y’ + 2y/2 =n ) (20)
(z,y) = (2',y) =1 (21)
and
(z,y) # (). (22)
Assume that
Blx,y) = B2, y). (23)
Hence there exists z € E such that
zy = x(n)
zy =2'(n) (24)
The system (24) yields
zy —2'y=0(n). (25)



Since the discriminants of the quadratic equations in (20) must be nonnegative and n > 5

we derive
0 < ||, || <4/
0<Jyl, |y < /%
We first consider the case
xz'yy’ > 0.
By (26) it follows
0<|zy| < 4v2n
0 < |2y| < 220

and bearing in mind (27) we obtain

S

—n<zy —r'y<n.

Now (25) and (28) lead to
xy —2'y=0

which together with (21) gives us

From (22) and (29) we get a contradiction.
Next we consider the case
xx'yy < 0.

By (20), (26) and (30) we deduce

0<|z| <4/

<

0<|y|§\/47n or

0< |2/ < /i
0<yl <%

and therefore

0<|z| <+v/n

0<lyl <
0< |2 <

0<y|<

—2n<zy — 2y <2n.

Now (25) and (32) imply

vy —2'y=n

or

xy — 7'y =—n.

(26)

(27)

(30)

(31)



After multiplying the congruence (17) by yy" and using (24) we deduce
yy' + zyy’ + 29y = 0(n)

thus
xz' + 2y’ + 2yy =0 (n)

and
zx' + 2’y +2yy =0 (n).

On the other hand (31) yields

O<|xx’|<@

35
/ n
0 <|2yy| <=5
O<|xy’\<2z’%
0<|x’y|<7”?

which together with (30) gives us

22 +2
I 0

< 2n
VT

lwx’ + zy’ + 2yy'| < |va’ + 29y | + |2y/| <

and
22 +2
el )

VT

Let (33) be true. Now (35) and (37) lead to three possibilities

lzx’ + o'y + 2yy'| < |xa’ + 29y | + |2'y| <

xx' +xy +2yy =0

or

xa' +xy + 2y =n

or

xx' +xy +2yy = —n.
On the one hand (21) and (39) imply x = +3/ and therefore

¥ +y =+2y.
From the last equation and (20) we derive

vy + 2’ = 2y

< 2n.

(35)

(36)



which contradicts (21). On the other hand (33) and (40) give us
xr' + 2y +2yy =0 (42)
which together with (21) yields 2’ = +y and therefore
r+y==+2y.

From the last equation and (20) we derive

'y + 2’ = 2"
which contradicts (21). Finally (33) and (41) lead to

xx' + 2’y + 2yy’ = —2n

which contradicts (38).
Let (34) be true. Now (36) and (38) lead to three possibilities

xx' + 2y +2yy =0
or
xr' + 2y +2yy =n (43)

or
xx' + 2y +2yy = —n. (44)

The first equation coincides with (42). The equation (43) due to (34) coincides with (39).
The equation (44) due to (34) implies

xx' + oy + 2yy = —2n

which contradicts (37). The resulting contradictions show that the assumption (23) is not
true. This proves the injectivity of [.

It remains to show that the map (19) is a surjection. Let z € FE. According to
Dirichlet’s approximation theorem there exist integers a and ¢ such that

q<_ 1<q<+n, (a, q) = 1. (45)

Put
r=zq—an. (46)
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Therefore
r? +rq+2¢* = 22¢* — 2zqan + a*n® + (z2q —an)q + 2¢° = (P + 2 +2)¢* (n).  (47)

Now (17) and (47) imply

r? +rq+2¢* =0(n). (48)
By (45) and (46) we get
Ir| < v/n. (49)
Using (45) and (49) we deduce
0 < 7?4 rq+2¢* < 4n. (50)

From (48) and (50) it follows that 72 +rq+2¢*> = n, r*+rq+2¢* = 2n or r*+rq+2¢* = 3n.
Consider all cases.

Case 1
2 +rq+2¢P =n. (51)

From (46) and (51) we obtain

n = (zq —an)® + (2q — an)q + 2¢* = (2* + 2 + 2)¢* — ran — zqan — qan

and thus
ra+1=kq, (52)
where ) )
k:ﬂq—az—a. (53)
n

By (17) and (53) it follows that k € Z and bearing in mind (52) we get
(r,q) = 1. (54)
On the other hand (51), (54) and n > 5 give us r # 0. Put
r=r, y=q. (55)

From (51), (54) and (55) it follows that (z,y) € F. Also (46) and (55) yield (18).
Therefore (z,y) = z.

Case 2
r? 4+ rq+2¢° =2n. (56)

11



From (46) and (56) it follows that
2n = (2q — an)® + (z2q — an)q + 2¢* = (2> + 2 + 2)¢* — ran — zqan — qan
and thus
ra+ 2 =kq, (57)
where k is denoted by (53). From (57) we deduce

(r,q) < 2. (58)

Now (56), (58) and n > 5 lead to r # 0.

Case 2.1
r=2rg, q=2q+1. (59)

By (56) and (59) we get
¢’ +aqro+2r5 =n

which is equivalent to

(q+710)* —ro(g+m0) +2r5 =mn. (60)
Put
r=q+ry, Yy=-—"rp. (61)
Now (58) and (59) imply
(q+ro,m0) =1. (62)

From (60), (61) and (62) we obtain that (z,y) € F. Further (46) and (61) give us
2(zy —x) = —(2* + 2+ 2)q + zan + an. (63)

Bearing in mind (17) and (63) we deduce

2(zy—x)=0(n). (64)
Case 2.1.1
ro = 2r . (65)
Now (59), (60) and (65) assure us that n is odd. Hence (64) yields (18). Consequently
Bz, y) = z.
Case 2.1.2

ro=2r; + 1. (66)

12



From (59), (60), (61) and (66) it follows that n and x are even. Now (59) leads to

zg=r+an=0(2)

that is z is even. Thus

zy — x is even.
Case 2.1.2a
n=2ny, ngisodd.
Now (64), (67) and (68) imply (18). Therefore (z,y) = z.
Case 2.1.2b

n=2"%ny, 1>1, neisodd.

By (17) and (69) we obtain
2z +2=0(02"1).

Assume that
2y —x=2h, hisodd.

Now (16), (69), (70) and (71) give us consistently

(y2)* + (y2)y + 24> = 0 (2"),

(67)

(68)

(2'h +2)* + (2'h + z)y + 2y = 0 (21
22 p? 4 2 hy + 2 + wy + 2y + 2'hy = 0 (2) |
2hy = 0 (2.

From (61), (66) and (72) we get a contradiction. Consequently

2y —a =027,

Now (64), (69) and (73) yield (18). Thus B(x,y) = z.
Case 2.2
r=2ry, q=2q.

Bearing in mind (58) and (74) we get
(T()v qo) =1.

By (56) and (74) we find
4g5 + 2qoro + 215 =n.
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Case 2.2.1
7’0:27”1, qO:2Q1+1 (77)

We write equation (76) in the form
¢ = q(qo +10) + 2(qo +19)* = 1. (78)

Put
r=-q, y=qo+ro- (79)
Now (74), (75) and (77) lead to

(=¢,m0+q0) = 1. (80)

Taking into account (78) — (80) we conclude that (z,y) € F. Further (74) — (77) assure
us that 4 | n and 4 | 7. Therefore

zg=r+an=0(4). (81)

From (74), (77) and (81) it follows that
z=2z. (82)

Using (46), (74), (79) and (82) we write
2(zy — ) = —(2* + 2 + 2)2¢0 — 2nza. (83)

By (17) and (83) we obtain (18). Consequently f(x,y) = z.
Case 2.2.2
ro=2r+1, ¢ =2¢n+1. (84)

We write equation (76) in the form

(2q0 +70)* — 10(2q0 + 70) + 27"(2) =n. (85)
Put
xT=2q+ry, Yy=-"o. (86)
Now (75) and (84) imply
(2(]0—{—7’0,—7’0) = 1 (87)

From (85) — (87) we get (x,y) € F. Further (76) and (84) give us
n=0(4). (88)
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If we assume that (82) is true then (46), (74), (88) and (82) yield
2rg = 2q — an = 4zpqo — an = 0 (4)
which contradicts (84). This means that z is odd, that is
z4+1=2z. (89)
Bearing in mind (46), (74) and (86) we deduce
20zy —x) = —(* + 2+ 2)2q0 + an(z + 1) . (90)

From (17), (89) and (90) we establish (18). Therefore f(x,y) = z.
Case 2.2.3
ro=2r+1, qo=2q. (91)

When z is even then Case 2.2.3 coincides with Case 2.2.1. When z is odd then Case 2.2.3
coincides with Case 2.2.2.

Case 2.3
r=2ro+1, qgq=2q+1. (92)
By (56) and (92) we obtain
¢ —qlgo+ro+1)+2(go+ro+1)* =n. (93)
Put
T=—q, y=qo+ro+1. (94)

Now (58) and (92) assure us that
(—q,q0 +710+1) = 1. (95)
From (93) — (95) we conclude that (z,y) € F. Further (46) and (94) lead to
2(zy —x) = (2* + 2+ 2)q — zan. (96)

Using (17) and (96) we establish that (64) holds.

Case 2.3.1 The numbers 1 and ¢y are of different parity. By (93) and (94) it follows
that n is odd. Hence (64) implies (18). Thus f(z,y) = z.

Case 2.3.2 The numbers ry and ¢ are of the same parity.
From (93) and (94) it follows that y is odd and n is even. Now (46) and (92) give us
that zq is odd. Therefore z is odd. Consequently zy — x is even. It remains to be seen
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that when n has the shape (68) then Case 2.3.2 coincides with Case 2.1.2a and when n
has the form (69) then Case 2.3.2 coincides with Case 2.1.2b. Hence f(x,y) = z.

Case 3
r? 4+ 1rq+2¢° =3n. (97)

Direct verifications will prove that Case 3 is impossible.

Case 3.1
r=3ry, q=3q. (98)

Now (97) and (98) yield
3(rg + oo + 245) = n,

i.e. 3| n that contradicts (17) because the congruences
24+ 24+2=0(3)

has no solution.

Case 3.2
r=3ry, ¢q=3q+1. (99)

By (97) and (99) we get
3(3rg + 3rogqo + 1o + 6g5 + 4g0) +2 = 0(3)

which is impossible.

Case 3.3
r=3ry, q=3q+2. (100)

Using (97) and (100) we deduce
3(3r2 + 3roqo + 2ro + 642 + 8gp) +8 = 0(3)

which is a contradiction.

Case 3.4
r=3ro+1, q¢=3q. (101)

Now (97) and (101) give us
3(3r2 + 3rogo + 2ro + 642 + qo) + 1 = 0(3)

which is impossible.
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Case 3.5
r=3ro+1, gq=3q¢+1.

From (97) and (102) it follows
3(37’(2) + 3roqo + 310 + 6q(2) +5q0) +4=0(3)

which is a contradiction.

Case 3.6
r=3ro+1, q=3q+2.

Now (97) and (103) lead to
3(3r8 + 3roqo + 410 + 62 +9g0) + 11 = 0(3)

which is impossible.

Case 3.7
7/':'37/'04‘2, q:3q0

By (97) and (104) we obtain
3(3r2 + 3rogo + 470 + 3¢2 + 2q0) + 4 = 0(3)

which is a contradiction.

Case 3.8
T:3T0+27 q:3CI0+1

Now (97) and (105) assure us that
3(3r2 + 3rogo -+ 570 + 62 + 6g0) + 8 = 0(3)

which is impossible.

Case 3.9
r=3rg+2, q=3q +2.

From (97) and (106) we write
3(3r2 + 3rogo + 619 + 6¢2 + 100) + 16 = 0 (3)

which is a contradiction.
This completes the proof of the lemma.
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4 Proof of the theorem

Using (4) and the well-known identity

) =3 u(d)

d?|n
we get
I'(X) = Z p1(d1)p(do) Z 1=T1(X) + (X)), (107)
dy,do 1<n<X
(dq,dg)=1 n2+n+120(d%)
n24n+2=0(d3)
where
NX) = S pld)u(d)S(X, d2, &), (108)
didg<z
(dq,dg)=1
Ly(X) = > p(d)p(d) (X, dF,d3), (109)
dido>z
(d1,dg)=1
S(XdLd) = Y, (110)
1<n<X

n24n4+1=0(d?)
n24n+2=0 (d%)

VX <z2<X, (111)

where z is to be chosen later.

4.1 Estimation of I';(X)

Assume that q; = d?, ¢ = d3, where d; and d are square-free, (q1,¢q2) = 1 and
didy < z. Define
QAX,q1,q2,n) = Z 1. (112)
m<X
m=n (q192)
Obviously
X
QX,q1,q2,n) = — + O(1). (113)
q192

By (110) and (112) we obtain upon partitioning the sum (110) into residue classes modulo

4192
E(Xv CJ17(J2) = Z Q<X7 Q17q27n)' (114)

1<n<q192
n2+4+n+1=0 (q1)
n24n+2=0 (q2)
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From (3), (114) and (113) we get

A1,
Z(X, q1, q2) =X (;quQQ) + O(A(QD q2>) .
142

Taking into account (3) and that the number of solutions of the congruence

n*+n+1l=alq)
is less than or equal to 7(¢;) we deduce

M1, q2) < Ma1, 1) € 7(q1) € 7(q1¢2) -

Now (115), (116) and the inequalities
T(q1g2) < (q1g2)” < X°

imply
Ma1, g2)

Z(Xv qi1, q2) =X
q1492

+O(X°).

Using (108), (111) and (117) we obtain

2

=X > M dsz(dl’d)J“O(ZXa)

di1do<z
(dy,dg)=1
pu(dr)p(da) N (df, d3) :
=X — X E Pl +O(ZX),
dido>z 172
(dy,dg)=1

where

p(d)p(d2) \(dF, d3)
Z d2d2 ‘

dy,dy=1
(dy,d2)=1

By (116) it follows

fu(dy) pu(d2)A(di, d3)
<
= > Gar <L
(dy,dg)=1 (dy,dg)=1

(115)

(116)

(117)

(118)

(119)

(120)

It remains to see that the product (8) and the sum (119) coincide. From Lemma 5 and

(dy,dy) = 1 we have
Mdi, d3) = A(di, DAL, d3) .
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Now (119) and (121) yield

p(d)N(d?,1) u(do)N(1, d3
- Z l)dQ( 1 Z 2)d2( )fdl (dg) (122)
dl 1 d2 1
where
1 if (dy,dy) =1,
fa,(d) = . (ch, o)
0 if (dl,dg) >1.
It is easy to see that the function
w(da) A (1, d3
%fdl(dﬂ
is multiplicative with respect to dy and the series
p(da)N(1, d3
Z %ﬁh(dﬂ
da=1
is absolutely convergent. Using the Euler product we write
u(d)A(1, d3 (1, p?
> ML) ) = [T (1~ A2
do=1 ptd
AL, p?) ALpA)\
P pld1
From (122) and (123) we get
00 -1
p(d di ( 2)) ( A(Lﬁ))
= 1 —
- SHRE (I
1= pld1
(dy) 1,p*)\
:H<1— )Z“ Y 2( H(1—A(’zp)) . (124)
P di=1 d pldi p

It is easy to see that the function

p(di)A(di, 1)
R H (1 _

1 pld1

A1, p?)
p2

) -1
is multiplicative with respect to d; and the series

> MBI (1

di=1 p|d1

A1, p?)

20
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is absolutely convergent. Using again the Euler product from (3) and (124) we deduce

| (1 ) A(;ﬁ)) 1 (1 B A(];;, D (1 B /\(;2]#))_1)

p p

11 <1 A1)+ A(Lpg)) . (125)

p2

Summarizing (111), (118), (120) and (125) we establish
I'(X)=0X+0(2X°), (126)

where ¢ is given by the product (8).

4.2 Estimation of I'y(X)

Bearing in mind (109), (110) and splitting the range of d; and ds into dyadic subin-
tervals of the form Dy < dy < 2Dy, Dy < dy < 2Dy we obtain

Do(X) < (log X2 > Y o1, (127)

n<X D1<d;<2D; Dy <dy<2Dy
n24n+1=0(d?) n2+n+2=0(d3)

where

<D.,Dy<VX2F X 12, D1D2>Z. (128)

N —

On the one hand (127) implies
Fo(X) <« X%, (129)

where

Si=) >, 1. (130)

n<X Dj<d;<2D;
n24n4+1=0(d?)

On the other hand (127) gives us
[o(X) < X3, (131)

where

Sp=)_ > 1 (132)

n<X Dy<dy<2Dy
n2+4+n+2=0 (d%)

Estimation of X
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Arguing as in [3] we get

2, < XDy (133)
Estimation of X,
Define
Nd ={neN:1<n<d n*+n+2=0(d)}, (134)
N(d) ={neN:1<n<d® n*+n+2=0(d}. (135)

From (132) and (135) we write

SR SN SRR SR ol (L e

D3<d2<2D2 neN'(d2) TS()ZQ) D2<d2<2D2 neN’(d2
n X —n
-y z( () - ()
Dy<ds<2Dy neN’ (ds 2
< XDy + 1S 4|35, (136)

where

s= Y Y (g) (137)

Dy<d2<2D2 neN’(d2)

M- >3 (g

D2<d2<2D3 neN’(d2)

) . (138)

Arguing as in [3] we deduce
¥, < XDyt (139)

Further we consider the sum %4 defined by (138). Let Dy < Xz. The trivial estimation
leads to

<y di < Xt (140)
Do<do<2Do
Let
Dy > Xz, (141)

We notice that all summands in the sum (132) for which 7 | dy are equal to zero because
the congruences
n®+n+2=0(49) (142)
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has no solution. That’s why in the estimation of (132) we will consider that 7 { ds.
Let f(z) = ana™ + a,_12" ' + -+ + ap be a polynomial with integral coefficients and

ri,...,7 be all solutions of the congruence

flx)y=0(p'). (143)

From the theory of the congruences we know that when p t f'(r;) for i = 1,... k then
the number of solutions of the congruence

fz)=0(p"). (144)

is also equal to k, that is, congruences (143) and (144) have an equal number of solutions.
Taking into account the above considerations, we derive that the congruences

n*+n+2=0(d3) (145)

and

n*+n+2=0(dy) (146)

will have an equal number of solutions if we show that for arbitrary prime divisor p of ds
and arbitrary solution r of (146) we have that

pi2r+1.

We assume the opposite. Hence

_ph—1

5 (147)

r

where h € Z. Now (147) and
r?+r+2=0(p)

yield
p*h* +7=0(4p)

which means p = 7. But we have already excluded the case when 7 is a prime divisor of
dy. Therefore congruences (145) and (146) have an equal number of solutions. We note

2
that the sum over n in (132) does not contain terms with n = %2 and n = d3. Moreover

for any n satisfying the congruence (145) and such that 1 <n < % the number d3 —n — 1
satisfies the same congruence. The same is true for the congruence (146). We also note
that if n = d3 —n — 1 then d3 | 7 which is impossible and if n = dy —n — 1 then dy = 7

which we excluded as an possibility. Using this facts and notations (134), (135) we denote
k= #N(dy) = #N'(d2) , (148)
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ni,...,nk € N(da), nj,....,n. € N'(ds). (149)
Now (134), (135), (141), (148), (149) and ds > D give us

(X (X -n 1)
2 2 9
nE./\// da) d2 nEN’(dQ) d2 2
X 1> Pty (= = 1)+ (d -y — 1)
2 5 2
nE/\f’ d2 d2 2 d2
B <X 1) k(&2 — 1)
- 2 9] T T o2
neN (dz) d2 2 2d2
X 1 n1—|—~--—i—nk/g+(d2—n1—1)+---+(d2—nk/g—1) 1
- & 2)” d "t
neN(ds) N 2 2 2
X 1 1
-y G-0-(H) >z
neN (dz) neN (dz)
= e _Z
neN (dza) d2 d d2 neN (da) d 2
X X X —
x () (5)
neN (dz) 2 2 2 neN(dz) 2
From (138), (141) and (150) it follows
N X3 |5 (151)

where
Ss= ), > w( ) (152)

D2<d2<2D> neN (d2)
Using (152) and Lemma 2 with
M= X2 (153)

we obtain

S N C> Wf”@(f(ﬁ)))

D3<d2<2D2 neN (dz)
=34+ 35, (154)
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where

Om
M=
4 Z 2mim’ (155)
1<|m|<M
VXm nm
Om= > e< % > e(—d—z), (156)
D3<d2<2D> neN (da)

Si= > ). m(*ﬁ;”) (157)

D2<d2<2D2 neN (dz2)

By (156), (157) and Lemma 2 we derive

Y5 = Z Z Z by (m)e (Jyd;nm> = Z br (m)O,,

D2<d2<2D2 neN (dz) m=—o0 m=—00

log M log M
< [©ol + =7 ST 10nl+ D [bu(m)]|04]

M
1<|m|<M1+e |m|>M1+e

log M . logM -

1<m< M1+e |m|>M1+e

logM .. logM
<Dy — > 16wl (158)

1<m<Mi+e

Now (154), (155) and (158) imply
e Dy ‘Gml
Ny < X7 2+ > = (159)
Define
F(d) = {(u,v) : v>+uv+20*=d, (u,v)=1, u,veZ\{0}}. (160)
According to Lemma 6 there exists a bijection
B F(d) — N(d)

from F(d) to N(d) defined by (134) that associates to each couple (u,v) € F(d) the
element n € N(d) satisfying
nv = u(d). (161)

Now (161) yields

N = U4 (d)
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thus

Ny 6u2+uv+2v2
: 1). 162
d uu2+uv+2v2() (162)

From (162) and Lemma 3 it follows

Nyp U Uy
— = — 1 163
d v(u?+uv+20%) v (1), (163)
n u+ 2v v,
o= = (1). 164
d u(u2+uv+2v2)+u (1) (164)
Bearing in mind (156), (160), (163) and (164) we get

- (’”d ) 5. (i)
D2<d2<2D2 2 (uw)EF(dz) 2
myv X mu mﬂh}‘
d ‘ _v(u2—|—uv+202)+ v
D2<d2<2D2 2 (u, v)EJ-'(dz)
0<ul<o]
<m ) ( m(u + 2v) m@u)
e ——
2 2
D2<d2<2D2 d2 (u,0) €F (dg) u(u? +uv + 20%) U
o< |v|<|ul
mv X mu MU|y|
- Z o 2 2 oy T
u? +uv+ 202 v(u? + uv + 20?) v
Do <u24uv+2v2<2Dy
0<|u|<|v|
(u,v)=1
N Z mv X N m(u + 2v) mu,
6 —
u? +uv + 202 u(u? 4 uv + 20?) u
Dy <u24uv42v2<2Dqy
o< |v|<|ul
(u,v)=1
=0, +0/, (165)

say. Consider ©,. Let for any fixed y/£2 < |v| < /D, the interval [n(v),n2(v)] is a
solution with respect to u of the system

u? 4+ uv + 20% < 2D,
u? +uv + 202 > Dy . (166)
0 < |u| < v

g<u>=e< mvX = ) (167)

u? 4+ uv+ 202 v(u? + uv + 20?)

Kom(t) = ) e(%) (168)

11 (v)<u<t
(u,v)=1

Denote
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By (165) — (168) and Abel’s summation formula we deduce

o= Y% atwe(")

) <
/D2<‘U|<\/— 711(1()11 :<n2(v)

n2(v)
d
/B2 <lol<v/Da o
mv X
< 1+ max Kvm 1. 169
Z ( v? ) nl(v)ﬁtﬁnz(v)’ m(t)] (169)

V 22 <|v|<v/D2

We are now in a good position to apply Lemma 4 because the sum defined by (168) is
incomplete Kloosterman sum. We have

Kym(t) < [v]27F (v,m)? | (170)
From (169) and (170) we derive

X
0, < Y (1+mv2 >|u|é+8(v,m)é

D2 <jv|<v Dz

1 1 _3 1
< X° (D; +mX3D, ) NRCROS (171)
0<wv<v/Dgy

On the other hand

S vm%gZ%ZKa)?Zm«D m) < X°D3 . (172)

0<v<y/Ds v<yPa I|m
The estimations (171) and (172) lead to
o < X° (D§ + mX%D;i) . (173)
Working in a similar way for ©” from (165) we deduce
0" < X° (D§ + mX%D;%> . (174)
Now (165), (173) and (174) yield
0, < X* (D§ + mX%D;i) . (175)
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From (159) and (175) we write
Sy < X (DM + Di+ X%MD;i> |
Using (128), (153) and (176) we obtain
S, < XD,
Bearing in mind (128), (136), (139), (140), (151) and (177) we find
S, < XD,

Estimation of I'x(X)
Now (128), (129), (131), (133) and (178) imply

To(X) < X'Hezs

4.3 The end of the proof

(176)

(177)

(178)

(179)

Summarizing (107), (126), (179) and choosing z = X5 we establish the asymptotic

formula (7).
This completes the proof of the theorem.
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