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Abstract

In this paper we prove by asymptotic formula that there exist infinitely many
square-free pairs of the form n2 + n+ 1, n2 + n+ 2. A key point in our proof is the
establishment of bijective correspondence between the number of representations of
number by binary quadratic form and the incongruent solutions of quadratic con-
gruence.
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1 Notations

Let X be a sufficiently large positive number. The letter ε denotes an arbitrary small

positive number, not the same in all appearances. As usual [t] and {t} denote the integer

part, respectively, the fractional part of t. Further µ(n) is Möbius’ function and τ(n)

denotes the number of positive divisors of n. Instead of m ≡ n (mod k) we write for

simplicity m ≡ n (k). Moreover (m,n) is the greatest common divisor of m and n. The

letter p will always denote prime number. We write e(t)=exp(2πit) and ψ(t) = {t}−1/2.

For x, y ∈ R we write x ≡ y (1) when x− y ∈ Z. For any n and q such that (n, q) = 1 we

denote by nq the inverse of n modulo q. By G(q,m, n) we shall denote the Gauss sums

G(q,m, n) =

q∑
x=1

e

(
mx2 + nx

q

)
. (1)

By K(r, h) we shall denote the incomplete Kloosterman sum

K(r, h) =
∑
α≤x<β
(x,r)=1

e

(
hx|r|
r

)
, (2)
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where

h, r ∈ Z, hr 6= 0, 0 < β − α ≤ 2|r|.

We also define

λ(q1, q2) =
∑

1≤n≤q1q2
n2+n+1≡0 (q1)

n2+n+2≡0 (q2)

1 , (3)

Γ(X) =
∑

1≤n≤X

µ2(n2 + n+ 1)µ2(n2 + n+ 2) , (4)

2 Introduction and statement of the result

We say that an integer n ∈ N is square-free if for any prime p | n, one has p2 - n.

Information on the distribution of square-free numbers was given in 1885 by Gegenbauer

[6]. He proved the following asymptotic formula∑
n≤X

µ2(n) =
6

π2
X +O

(
X

1
2

)
. (5)

Gegenbauer’s argument is very simple, but despite the passage of 137 years the exponent

1/2 appearing above has never been improved. Any reduction in the exponent 1/2 would

appear to require a quasi Riemann Hypothesis.

Let k and n be integers and k ≥ 2. We say that n is k-free if there is no prime p such

that pk|n. Consider the irreducible polynomial f(x) ∈ Z[x] of degree d. Assume that for

every prime p there is at least one integer np for which pk - f(np). It is conjectured that

the set f(Z) = {f(n), n ∈ Z} contains infinitely many k-free values. A lot of articles are

devoted to problems of this type. We point out the papers [1], [4], [8], [9], [10], [11], [15].

Another interesting problem we know in number theory is consecutive square-free

numbers. In 1932 Carlitz [2] showed that there exist infinitely many pairs of consecutive

square-free numbers. More precisely he proved the asymptotic formula∑
n≤X

µ2(n)µ2(n+ 1) =
∏
p

(
1− 2

p2

)
X +O

(
Xθ+ε

)
, (6)

where θ = 2/3. Afterwards the reminder term of (6) was improved by Mirsky [13] and

Heath-Brown [7]. The best result up to now belongs to Reuss [14] with θ = (26+
√

433)/81.

Recently [3] the author showed that there exist infinitely many square-free numbers of
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the form n2 + n+ 1. More precisely we established the asymptotic formula∑
1≤n≤X

µ2(n2 + n+ 1) = cX +O
(
X

4
5
+ε
)
,

where

c =
∏
p

(
1− λ(p2)

p2

)
and

λ(q) =
∑

1≤n≤q
n2+n+1≡0 (q)

1 .

Motivated by these investigations we prove the following theorem.

Theorem 1. For the sum Γ(X) defined by (4) the asymptotic formula

Γ(X) = σX +O
(
X

8
9
+ε
)

(7)

holds. Here

σ =
∏
p

(
1− λ(p2, 1) + λ(1, p2)

p2

)
. (8)

From Theorem 1 it follows that there exist infinitely many consecutive square-free

numbers of the form n2 + n+ 1, n2 + n+ 2, where n runs over naturals.

3 Lemmas

Lemma 1. Let (q1, q2) = 1. Then for the Gauss sum denoted by (1) we have

G(q1q2,m1q2 +m2q1, n) = G(q1,m1q
2
2, n)G(q2,m2q

2
1, n) .

Proof. See [5].

Lemma 2. For any M ≥ 2, we have

ψ(t) = −
∑

1≤|m|≤M

e(mt)

2πim
+O

(
fM(t)

)
,

where fM(t) is a positive function of t which is infinitely many times differentiable and

periodic with period 1. It can be expanded into the Fourier series

fM(t) =
+∞∑

m=−∞

bM(m)e(mt) ,
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with coefficients bM(m) such that

bM(m)� logM

M
for all m

and ∑
|m|>M1+ε

|bM(m)| �M−A .

Here A > 0 is arbitrarily large and the constant in the � - symbol depends on A and ε.

Proof. See ([16], Theorem 1).

The next lemma we need is well-known.

Lemma 3. Let A,B ∈ Z \ {0} and (A,B) = 1. Then

A|B|
B

+
B|A|
A
≡ 1

AB
( 1 ).

Lemma 4. For the sum denoted by (2) the estimate

K(r, h)� |r|
1
2
+ε (r, h)

1
2

holds.

Proof. Follows easily from A. Weil’s estimate for the Kloosterman sum. See ([12], Ch.

11, Corollary 11.12).

Lemma 5. The function λ(q1, q2) defined by (3) is multiplicative, i.e. if

(q1q2, q3q4) = (q1, q2) = (q3, q4) = 1 (9)

then

λ(q1q2, q3q4) = λ(q1, q3)λ(q2, q4) .
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Proof. On the one hand (1), (3), (9) and Lemma 1 imply

λ(q1q2, q3q4) =

=
1

q1q2q3q4

∑
1≤n≤q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1(n

2 + n+ 1)

q1q2

) ∑
1≤h2≤q3q4

e

(
h2(n

2 + n+ 2)

q3q4

)
=

1

q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1
q1q2

) ∑
1≤h2≤q3q4

e

(
2h2
q3q4

)
×G(q1q2q3q4, h1q3q4 + h2q1q2, h1q3q4 + h2q1q2)

=
1

q1q2q3q4

∑
1≤h1≤q1q2

e

(
h1
q1q2

) ∑
1≤h2≤q3q4

e

(
2h2
q3q4

)
G(q1q2, h1q

2
3q

2
4, h1q3q4 + h2q1q2)

×G(q3q4, h2q
2
1q

2
2, h1q3q4 + h2q1q2)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1q2, h1q2q

2
3q

2
4 + h2q1q

2
3q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

×G(q3q4, h3q4q
2
1q

2
2 + h4q3q

2
1q

2
2, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1, h1q

2
2q

2
3q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

×G(q2, h2q
2
1q

2
3q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

×G(q3, h3q
2
1q

2
2q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

×G(q4, h4q
2
1q

2
2q

2
3, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4) . (10)
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On the other hand (1), (3) and Lemma 1 yield

λ(q1, q3)λ(q2, q4) =

=
1

q1q2q3q4

∑
1≤n≤q1q3

∑
1≤h1≤q1

e

(
h1(n

2 + n+ 1)

q1

) ∑
1≤h3≤q3

e

(
h3(n

2 + n+ 2)

q3

)
×

∑
1≤m≤q2q4

∑
1≤h2≤q2

e

(
h2(m

2 +m+ 1)

q2

) ∑
1≤h4≤q4

e

(
h4(m

2 +m+ 2)

q4

)
=

1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1q3, h1q3 + h3q1, h1q3 + h3q1)G(q2q4, h2q4 + h4q2, h2q4 + h4q2)

=
1

q1q2q3q4

∑
1≤h1≤q1
1≤h2≤q2

e

(
h1q2 + h2q1

q1q2

) ∑
1≤h3≤q3
1≤h4≤q4

e

(
2(h3q4 + h4q3)

q3q4

)
×G(q1, h1q

2
3, h1q3 + h3q1)G(q3, h3q

2
1, h1q3 + h3q1)

×G(q2, h2q
2
4, h2q4 + h4q2)G(q4, h4q

2
2, h2q4 + h4q2) . (11)

Using the substitution n→ (q2q4)q1q3n we get

G(q1, h1q
2
2q

2
3q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)

=

q1∑
n=1

e

(
h1q

2
2q

2
3q

2
4n

2 + (h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4)n

q1

)

=

q1∑
n=1

e

(
h1q

2
3n

2 + (h1q3 + h3q1)n

q1

)
= G(q1, h1q

2
3, h1q3 + h3q1) (12)

Arguing in a similar way, we obtain

G(q2, h2q
2
1q

2
3q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4) = G(q2, h2q

2
4, h2q4 + h4q2) ,

(13)

G(q3, h3q
2
1q

2
2q

2
4, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4) = G(q3, h3q

2
1, h1q3 + h3q1) ,

(14)

G(q4, h4q
2
1q

2
2q

2
3, h1q2q3q4 + q1h2q3q4 + q1q2h3q4 + q1q2q3h4) = G(q4, h4q

2
2, h2q4 + h4q2) .

(15)

Summarizing (11) – (15) we complete the proof of the lemma.

The following lemma is the main weapon of the theorem.
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Lemma 6. Let n ≥ 5. There exists a bijective function from the solution set of the

equation

x2 + xy + 2y2 = n, (x, y) = 1, x, y ∈ Z \ {0} (16)

to the incongruent solutions modulo n of the congruence

z2 + z + 2 ≡ 0 (n) . (17)

Proof. Let us denote by F the set of ordered pairs (x, y) satisfying (16) and by E the set

of solutions of the congruence (17). Every residue class modulo n with representatives

satisfying (17) will be considered as one solution of (17).

Let (x, y) ∈ F . By (16) we have that (n, y) = 1. Then there exists a unique residue

class z modulo n such that

zy ≡ x (n). (18)

For this class we write

(z2 + z + 2)y2 ≡ (zy)2 + (zy)y + 2y2 ≡ x2 + xy + 2y2 ≡ 0 (n).

The last congruence and (n, y) = 1 yield z2 + z + 2 ≡ 0 (n) that is z ∈ E. We define the

map

β : F → E (19)

that associates to each pair (x, y) ∈ F the residue class z = xyn satisfying (18).

We will first prove that the map (19) is a injection. Let (x, y), (x′, y′) ∈ F that is∣∣∣∣ x2 + xy + 2y2 = n
x′2 + x′y′ + 2y′2 = n

, (20)

(x, y) = (x′, y′) = 1 (21)

and

(x, y) 6= (x′, y′) . (22)

Assume that

β(x, y) = β(x′, y′) . (23)

Hence there exists z ∈ E such that ∣∣∣∣ zy ≡ x (n)
zy′ ≡ x′ (n)

. (24)

The system (24) yields

xy′ − x′y ≡ 0 (n) . (25)
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Since the discriminants of the quadratic equations in (20) must be nonnegative and n ≥ 5

we derive ∣∣∣∣∣∣ 0 < |x|, |x′| ≤
√

8n
7

0 < |y|, |y′| ≤
√

4n
7

. (26)

We first consider the case

xx′yy′ > 0 . (27)

By (26) it follows ∣∣∣∣∣ 0 < |xy′| < 4
√
2n
7

0 < |x′y| < 4
√
2n
7

and bearing in mind (27) we obtain

−n < xy′ − x′y < n . (28)

Now (25) and (28) lead to

xy′ − x′y = 0

which together with (21) gives us

x = x′ , y = y′ . (29)

From (22) and (29) we get a contradiction.

Next we consider the case

xx′yy′ < 0 . (30)

By (20), (26) and (30) we deduce∣∣∣∣∣∣∣∣∣∣
0 < |x| ≤

√
8n
7

0 < |y| ≤
√

4n
7

0 < |x′| <
√
n

0 < |y′| <
√

n
2

or

∣∣∣∣∣∣∣∣∣∣
0 < |x| <

√
n

0 < |y| <
√

n
2

0 < |x′| ≤
√

8n
7

0 < |y′| ≤
√

4n
7

(31)

and therefore

−2n < xy′ − x′y < 2n . (32)

Now (25) and (32) imply

xy′ − x′y = n (33)

or

xy′ − x′y = −n . (34)
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After multiplying the congruence (17) by yy′ and using (24) we deduce

z2yy′ + zyy′ + 2yy′ ≡ 0 (n)

thus

xx′ + xy′ + 2yy′ ≡ 0 (n) (35)

and

xx′ + x′y + 2yy′ ≡ 0 (n) . (36)

On the other hand (31) yields ∣∣∣∣∣∣∣∣∣
0 < |xx′| < 2

√
2n√
7

0 < |2yy′| < 2
√
2n√
7

0 < |xy′| < 2n√
7

0 < |x′y| < 2n√
7

which together with (30) gives us

|xx′ + xy′ + 2yy′| ≤ |xx′ + 2yy′|+ |xy′| < 2
√

2 + 2√
7

n < 2n (37)

and

|xx′ + x′y + 2yy′| ≤ |xx′ + 2yy′|+ |x′y| < 2
√

2 + 2√
7

n < 2n . (38)

Let (33) be true. Now (35) and (37) lead to three possibilities

xx′ + xy′ + 2yy′ = 0 (39)

or

xx′ + xy′ + 2yy′ = n (40)

or

xx′ + xy′ + 2yy′ = −n . (41)

On the one hand (21) and (39) imply x = ±y′ and therefore

x′ + y′ = ±2y .

From the last equation and (20) we derive

xy ± xx′ = 2y2
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which contradicts (21). On the other hand (33) and (40) give us

xx′ + x′y + 2yy′ = 0 (42)

which together with (21) yields x′ = ±y and therefore

x+ y = ±2y′ .

From the last equation and (20) we derive

x′y′ ± xx′ = 2y′2

which contradicts (21). Finally (33) and (41) lead to

xx′ + x′y + 2yy′ = −2n

which contradicts (38).

Let (34) be true. Now (36) and (38) lead to three possibilities

xx′ + x′y + 2yy′ = 0

or

xx′ + x′y + 2yy′ = n (43)

or

xx′ + x′y + 2yy′ = −n . (44)

The first equation coincides with (42). The equation (43) due to (34) coincides with (39).

The equation (44) due to (34) implies

xx′ + xy′ + 2yy′ = −2n

which contradicts (37). The resulting contradictions show that the assumption (23) is not

true. This proves the injectivity of β.

It remains to show that the map (19) is a surjection. Let z ∈ E. According to

Dirichlet’s approximation theorem there exist integers a and q such that∣∣∣∣ zn − a

q

∣∣∣∣ < 1

q
√
n
, 1 ≤ q ≤

√
n, (a, q) = 1. (45)

Put

r = zq − an . (46)
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Therefore

r2 + rq + 2q2 = z2q2 − 2zqan+ a2n2 + (zq − an)q + 2q2 ≡ (z2 + z + 2)q2 (n). (47)

Now (17) and (47) imply

r2 + rq + 2q2 ≡ 0 (n). (48)

By (45) and (46) we get

|r| <
√
n. (49)

Using (45) and (49) we deduce

0 < r2 + rq + 2q2 < 4n. (50)

From (48) and (50) it follows that r2+rq+2q2 = n, r2+rq+2q2 = 2n or r2+rq+2q2 = 3n.

Consider all cases.

Case 1

r2 + rq + 2q2 = n . (51)

From (46) and (51) we obtain

n = (zq − an)2 + (zq − an)q + 2q2 = (z2 + z + 2)q2 − ran− zqan− qan

and thus

ra+ 1 = kq , (52)

where

k =
z2 + z + 2

n
q − az − a . (53)

By (17) and (53) it follows that k ∈ Z and bearing in mind (52) we get

(r, q) = 1. (54)

On the other hand (51), (54) and n ≥ 5 give us r 6= 0. Put

x = r , y = q . (55)

From (51), (54) and (55) it follows that (x, y) ∈ F . Also (46) and (55) yield (18).

Therefore β(x, y) = z.

Case 2

r2 + rq + 2q2 = 2n . (56)
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From (46) and (56) it follows that

2n = (zq − an)2 + (zq − an)q + 2q2 = (z2 + z + 2)q2 − ran− zqan− qan

and thus

ra+ 2 = kq , (57)

where k is denoted by (53). From (57) we deduce

(r, q) ≤ 2 . (58)

Now (56), (58) and n ≥ 5 lead to r 6= 0.

Case 2.1

r = 2r0 , q = 2q0 + 1 . (59)

By (56) and (59) we get

q2 + qr0 + 2r20 = n

which is equivalent to

(q + r0)
2 − r0(q + r0) + 2r20 = n . (60)

Put

x = q + r0 , y = −r0 . (61)

Now (58) and (59) imply

(q + r0, r0) = 1 . (62)

From (60), (61) and (62) we obtain that (x, y) ∈ F . Further (46) and (61) give us

2(zy − x) = −(z2 + z + 2)q + zan+ an . (63)

Bearing in mind (17) and (63) we deduce

2(zy − x) ≡ 0 (n) . (64)

Case 2.1.1

r0 = 2r1 . (65)

Now (59), (60) and (65) assure us that n is odd. Hence (64) yields (18). Consequently

β(x, y) = z.

Case 2.1.2

r0 = 2r1 + 1 . (66)
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From (59), (60), (61) and (66) it follows that n and x are even. Now (59) leads to

zq = r + an ≡ 0 (2)

that is z is even. Thus

zy − x is even. (67)

Case 2.1.2a

n = 2n0 , n0 is odd. (68)

Now (64), (67) and (68) imply (18). Therefore β(x, y) = z.

Case 2.1.2b

n = 2l+1n0 , l ≥ 1 , n0 is odd. (69)

By (17) and (69) we obtain

z2 + z + 2 ≡ 0 (2l+1) . (70)

Assume that

zy − x = 2lh , h is odd. (71)

Now (16), (69), (70) and (71) give us consistently

(yz)2 + (yz)y + 2y2 ≡ 0 (2l+1) ,

(2lh+ x)2 + (2lh+ x)y + 2y2 ≡ 0 (2l+1) ,

22lh2 + 2l+1hx+ x2 + xy + 2y2 + 2lhy ≡ 0 (2l+1) ,

2lhy ≡ 0 (2l+1) . (72)

From (61), (66) and (72) we get a contradiction. Consequently

zy − x ≡ 0 (2l+1) . (73)

Now (64), (69) and (73) yield (18). Thus β(x, y) = z.

Case 2.2

r = 2r0 , q = 2q0 . (74)

Bearing in mind (58) and (74) we get

(r0, q0) = 1 . (75)

By (56) and (74) we find

4q20 + 2q0r0 + 2r20 = n . (76)
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Case 2.2.1

r0 = 2r1 , q0 = 2q1 + 1 . (77)

We write equation (76) in the form

q2 − q(q0 + r0) + 2(q0 + r0)
2 = n . (78)

Put

x = −q , y = q0 + r0 . (79)

Now (74), (75) and (77) lead to

(−q, r0 + q0) = 1 . (80)

Taking into account (78) – (80) we conclude that (x, y) ∈ F . Further (74) – (77) assure

us that 4 | n and 4 | r. Therefore

zq = r + an ≡ 0 (4) . (81)

From (74), (77) and (81) it follows that

z = 2z0 . (82)

Using (46), (74), (79) and (82) we write

2(zy − x) = −(z2 + z + 2)2q0 − 2nz0a . (83)

By (17) and (83) we obtain (18). Consequently β(x, y) = z.

Case 2.2.2

r0 = 2r1 + 1 , q0 = 2q1 + 1 . (84)

We write equation (76) in the form

(2q0 + r0)
2 − r0(2q0 + r0) + 2r20 = n . (85)

Put

x = 2q0 + r0 , y = −r0 . (86)

Now (75) and (84) imply

(2q0 + r0,−r0) = 1 . (87)

From (85) – (87) we get (x, y) ∈ F . Further (76) and (84) give us

n ≡ 0 (4) . (88)
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If we assume that (82) is true then (46), (74), (88) and (82) yield

2r0 = zq − an = 4z0q0 − an ≡ 0 (4)

which contradicts (84). This means that z is odd, that is

z + 1 = 2z0 . (89)

Bearing in mind (46), (74) and (86) we deduce

2(zy − x) = −(z2 + z + 2)2q0 + an(z + 1) . (90)

From (17), (89) and (90) we establish (18). Therefore β(x, y) = z.

Case 2.2.3

r0 = 2r1 + 1 , q0 = 2q1 . (91)

When z is even then Case 2.2.3 coincides with Case 2.2.1. When z is odd then Case 2.2.3

coincides with Case 2.2.2.

Case 2.3

r = 2r0 + 1 , q = 2q0 + 1 . (92)

By (56) and (92) we obtain

q2 − q(q0 + r0 + 1) + 2(q0 + r0 + 1)2 = n . (93)

Put

x = −q , y = q0 + r0 + 1 . (94)

Now (58) and (92) assure us that

(−q, q0 + r0 + 1) = 1 . (95)

From (93) – (95) we conclude that (x, y) ∈ F . Further (46) and (94) lead to

2(zy − x) = (z2 + z + 2)q − zan . (96)

Using (17) and (96) we establish that (64) holds.

Case 2.3.1 The numbers r0 and q0 are of different parity. By (93) and (94) it follows

that n is odd. Hence (64) implies (18). Thus β(x, y) = z.

Case 2.3.2 The numbers r0 and q0 are of the same parity.

From (93) and (94) it follows that y is odd and n is even. Now (46) and (92) give us

that zq is odd. Therefore z is odd. Consequently zy − x is even. It remains to be seen
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that when n has the shape (68) then Case 2.3.2 coincides with Case 2.1.2a and when n

has the form (69) then Case 2.3.2 coincides with Case 2.1.2b. Hence β(x, y) = z.

Case 3

r2 + rq + 2q2 = 3n . (97)

Direct verifications will prove that Case 3 is impossible.

Case 3.1

r = 3r0 , q = 3q0 . (98)

Now (97) and (98) yield

3(r20 + r0q0 + 2q20) = n ,

i.e. 3 | n that contradicts (17) because the congruences

z2 + z + 2 ≡ 0 (3)

has no solution.

Case 3.2

r = 3r0 , q = 3q0 + 1 . (99)

By (97) and (99) we get

3(3r20 + 3r0q0 + r0 + 6q20 + 4q0) + 2 ≡ 0 (3)

which is impossible.

Case 3.3

r = 3r0 , q = 3q0 + 2 . (100)

Using (97) and (100) we deduce

3(3r20 + 3r0q0 + 2r0 + 6q20 + 8q0) + 8 ≡ 0 (3)

which is a contradiction.

Case 3.4

r = 3r0 + 1 , q = 3q0 . (101)

Now (97) and (101) give us

3(3r20 + 3r0q0 + 2r0 + 6q20 + q0) + 1 ≡ 0 (3)

which is impossible.
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Case 3.5

r = 3r0 + 1 , q = 3q0 + 1 . (102)

From (97) and (102) it follows

3(3r20 + 3r0q0 + 3r0 + 6q20 + 5q0) + 4 ≡ 0 (3)

which is a contradiction.

Case 3.6

r = 3r0 + 1 , q = 3q0 + 2 . (103)

Now (97) and (103) lead to

3(3r20 + 3r0q0 + 4r0 + 6q20 + 9q0) + 11 ≡ 0 (3)

which is impossible.

Case 3.7

r = 3r0 + 2 , q = 3q0 . (104)

By (97) and (104) we obtain

3(3r20 + 3r0q0 + 4r0 + 3q20 + 2q0) + 4 ≡ 0 (3)

which is a contradiction.

Case 3.8

r = 3r0 + 2 , q = 3q0 + 1 . (105)

Now (97) and (105) assure us that

3(3r20 + 3r0q0 + 5r0 + 6q20 + 6q0) + 8 ≡ 0 (3)

which is impossible.

Case 3.9

r = 3r0 + 2 , q = 3q0 + 2 . (106)

From (97) and (106) we write

3(3r20 + 3r0q0 + 6r0 + 6q20 + 10q0) + 16 ≡ 0 (3)

which is a contradiction.

This completes the proof of the lemma.
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4 Proof of the theorem

Using (4) and the well-known identity

µ2(n) =
∑
d2|n

µ(d)

we get

Γ(X) =
∑
d1,d2

(d1,d2)=1

µ(d1)µ(d2)
∑

1≤n≤X
n2+n+1≡0 (d21)

n2+n+2≡0 (d22)

1 = Γ1(X) + Γ2(X) , (107)

where

Γ1(X) =
∑
d1d2≤z

(d1,d2)=1

µ(d1)µ(d2)Σ(X, d21, d
2
2) , (108)

Γ2(X) =
∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)Σ(X, d21, d
2
2) , (109)

Σ(X, d21, d
2
2) =

∑
1≤n≤X

n2+n+1≡0 (d21)

n2+n+2≡0 (d22)

1 , (110)

√
X ≤ z < X , (111)

where z is to be chosen later.

4.1 Estimation of Γ1(X)

Assume that q1 = d21, q2 = d22, where d1 and d2 are square-free, (q1, q2) = 1 and

d1d2 ≤ z. Define

Ω(X, q1, q2, n) =
∑
m≤X

m≡n (q1q2)

1 . (112)

Obviously

Ω(X, q1, q2, n) =
X

q1q2
+O(1) . (113)

By (110) and (112) we obtain upon partitioning the sum (110) into residue classes modulo

q1q2

Σ(X, q1, q2) =
∑

1≤n≤q1q2
n2+n+1≡0 (q1)

n2+n+2≡0 (q2)

Ω(X, q1, q2, n) . (114)
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From (3), (114) and (113) we get

Σ(X, q1, q2) = X
λ(q1, q2)

q1q2
+O

(
λ(q1, q2)

)
. (115)

Taking into account (3) and that the number of solutions of the congruence

n2 + n+ 1 ≡ a (q1)

is less than or equal to τ(q1) we deduce

λ(q1, q2)� λ(q1, 1)� τ(q1)� τ(q1q2) . (116)

Now (115), (116) and the inequalities

τ(q1q2)� (q1q2)
ε � Xε

imply

Σ(X, q1, q2) = X
λ(q1, q2)

q1q2
+O

(
Xε
)
. (117)

Using (108), (111) and (117) we obtain

Γ1(X) = X
∑
d1d2≤z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

+O
(
zXε

)
= σX −X

∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

+O
(
zXε

)
, (118)

where

σ =
∞∑

d1,d2=1
(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

. (119)

By (116) it follows∑
d1d2>z

(d1,d2)=1

µ(d1)µ(d2)λ(d21, d
2
2)

d21d
2
2

�
∑
d1d2>z

(d1,d2)=1

(d1d2)
ε

(d1d2)2
�
∑
n>z

τ(n)

n2−ε � zε−1 . (120)

It remains to see that the product (8) and the sum (119) coincide. From Lemma 5 and

(d1, d2) = 1 we have

λ(d21, d
2
2) = λ(d21, 1)λ(1, d22) . (121)
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Now (119) and (121) yield

σ =
∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2) , (122)

where

fd1(d2) =

{
1 if (d1, d2) = 1 ,

0 if (d1, d2) > 1 .

It is easy to see that the function

µ(d2)λ(1, d22)

d22
fd1(d2)

is multiplicative with respect to d2 and the series

∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2)

is absolutely convergent. Using the Euler product we write

∞∑
d2=1

µ(d2)λ(1, d22)

d22
fd1(d2) =

∏
p-d1

(
1− λ(1, p2)

p2

)

=
∏
p

(
1− λ(1, p2)

p2

)∏
p|d1

(
1− λ(1, p2)

p2

)−1
. (123)

From (122) and (123) we get

σ =
∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p

(
1− λ(1, p2)

p2

)∏
p|d1

(
1− λ(1, p2)

p2

)−1
=
∏
p

(
1− λ(1, p2)

p2

) ∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
. (124)

It is easy to see that the function

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
is multiplicative with respect to d1 and the series

∞∑
d1=1

µ(d1)λ(d21, 1)

d21

∏
p|d1

(
1− λ(1, p2)

p2

)−1
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is absolutely convergent. Using again the Euler product from (3) and (124) we deduce

σ =
∏
p

(
1− λ(1, p2)

p2

)∏
p

(
1− λ(p2, 1)

p2

(
1− λ(1, p2)

p2

)−1)

=
∏
p

(
1− λ(p2, 1) + λ(1, p2)

p2

)
. (125)

Summarizing (111), (118), (120) and (125) we establish

Γ1(X) = σX +O
(
zXε

)
, (126)

where σ is given by the product (8).

4.2 Estimation of Γ2(X)

Bearing in mind (109), (110) and splitting the range of d1 and d2 into dyadic subin-

tervals of the form D1 ≤ d1 < 2D1, D2 ≤ d2 < 2D2 we obtain

Γ2(X)� (logX)2
∑
n≤X

∑
D1≤d1<2D1
n2+n+1≡0 (d21)

∑
D2≤d2<2D2
n2+n+2≡0 (d22)

1 , (127)

where
1

2
≤ D1, D2 ≤

√
X2 +X + 2 , D1D2 >

z

4
. (128)

On the one hand (127) implies

Γ2(X)� XεΣ1 , (129)

where

Σ1 =
∑
n≤X

∑
D1≤d1<2D1
n2+n+1≡0 (d21)

1 . (130)

On the other hand (127) gives us

Γ2(X)� XεΣ2 , (131)

where

Σ2 =
∑
n≤X

∑
D2≤d2<2D2
n2+n+2≡0 (d22)

1 . (132)

Estimation of Σ1
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Arguing as in [3] we get

Σ1 � X1+εD
− 1

4
1 . (133)

Estimation of Σ2

Define

N (d) = {n ∈ N : 1 ≤ n ≤ d, n2 + n+ 2 ≡ 0 (d)} , (134)

N ′(d) = {n ∈ N : 1 ≤ n ≤ d2, n2 + n+ 2 ≡ 0 (d2)} . (135)

From (132) and (135) we write

Σ2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

∑
m≤X

m≡n (d22)

1 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

([
X − n
d22

]
−
[
−n
d22

])

=
∑

D2≤d2<2D2

∑
n∈N ′(d2)

(
X

d22
+ ψ

(
−n
d22

)
− ψ

(
X − n
d22

))
� X1+εD−12 + |Σ′2|+ |Σ′′2| , (136)

where

Σ′2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

ψ

(
−n
d22

)
, (137)

Σ′′2 =
∑

D2≤d2<2D2

∑
n∈N ′(d2)

ψ

(
X − n
d22

)
. (138)

Arguing as in [3] we deduce

Σ′2 � XεD−12 . (139)

Further we consider the sum Σ′′2 defined by (138). Let D2 ≤ X
1
2 . The trivial estimation

leads to

Σ′′2 �
∑

D2≤d2<2D2

dε2 � X
1
2
+ε . (140)

Let

D2 > X
1
2 . (141)

We notice that all summands in the sum (132) for which 7 | d2 are equal to zero because

the congruences

n2 + n+ 2 ≡ 0 (49) (142)
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has no solution. That’s why in the estimation of (132) we will consider that 7 - d2.
Let f(x) = anx

n + an−1x
n−1 + · · · + a0 be a polynomial with integral coefficients and

r1, . . . , rk be all solutions of the congruence

f(x) ≡ 0 (pl−1) . (143)

From the theory of the congruences we know that when p - f ′(ri) for i = 1, . . . , k then

the number of solutions of the congruence

f(x) ≡ 0 (pl) . (144)

is also equal to k, that is, congruences (143) and (144) have an equal number of solutions.

Taking into account the above considerations, we derive that the congruences

n2 + n+ 2 ≡ 0 (d22) (145)

and

n2 + n+ 2 ≡ 0 (d2) (146)

will have an equal number of solutions if we show that for arbitrary prime divisor p of d2

and arbitrary solution r of (146) we have that

p - 2r + 1 .

We assume the opposite. Hence

r =
ph− 1

2
, (147)

where h ∈ Z. Now (147) and

r2 + r + 2 ≡ 0 (p)

yield

p2h2 + 7 ≡ 0 (4p)

which means p = 7. But we have already excluded the case when 7 is a prime divisor of

d2. Therefore congruences (145) and (146) have an equal number of solutions. We note

that the sum over n in (132) does not contain terms with n =
d22
2

and n = d22. Moreover

for any n satisfying the congruence (145) and such that 1 ≤ n <
d22
2

the number d22−n−1

satisfies the same congruence. The same is true for the congruence (146). We also note

that if n = d22 − n − 1 then d22 | 7 which is impossible and if n = d2 − n − 1 then d2 = 7

which we excluded as an possibility. Using this facts and notations (134), (135) we denote

k = #N (d2) = #N ′(d2) , (148)
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n1, . . . , nk ∈ N (d2) , n′1, . . . , n
′
k ∈ N ′(d2) . (149)

Now (134), (135), (141), (148), (149) and d2 ≥ D2 give us∑
n∈N ′(d2)

ψ

(
X − n
d22

)
=

∑
n∈N ′(d2)

(
X − n
d22

− 1

2

)

=
∑

n∈N ′(d2)

(
X

d22
− 1

2

)
−
n′1 + · · ·+ n′k/2 + (d22 − n′1 − 1) + · · ·+ (d22 − n′k/2 − 1)

d22

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
− k(d22 − 1)

2d22

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
−
n1 + · · ·+ nk/2 + (d2 − n1 − 1) + · · ·+ (d2 − nk/2 − 1)

d2

(
1 +

1

d2

)

=
∑

n∈N (d2)

(
X

d22
− 1

2

)
−
(

1 +
1

d2

) ∑
n∈N (d2)

n

d2

=
∑

n∈N (d2)

(
X

d22
−
√
X

d2
− n

d22

)
+

∑
n∈N (d2)

(√
X − n
d2

− 1

2

)

=
∑

n∈N (d2)

(
X

d22
−
√
X

d2
− n

d22

)
+

∑
n∈N (d2)

ψ

(√
X − n
d2

)
. (150)

From (138), (141) and (150) it follows

Σ′′2 � X
1
2
+ε + |Σ3| , (151)

where

Σ3 =
∑

D2≤d2<2D2

∑
n∈N (d2)

ψ

(√
X − n
d2

)
. (152)

Using (152) and Lemma 2 with

M = X
1
2 (153)

we obtain

Σ3 =
∑

D2≤d2<2D2

∑
n∈N (d2)

(
−

∑
1≤|m|≤M

e
(
m
(√

X−n
d2

))
2πim

+O

(
fM

(√
X − n
d2

)))
= Σ4 + Σ5 , (154)
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where

Σ4 =
∑

1≤|m|≤M

Θm

2πim
, (155)

Θm =
∑

D2≤d2<2D2

e

(√
Xm

d2

) ∑
n∈N (d2)

e

(
−nm
d2

)
, (156)

Σ5 =
∑

D2≤d2<2D2

∑
n∈N (d2)

fM

(√
X − n
d2

)
. (157)

By (156), (157) and Lemma 2 we derive

Σ5 =
∑

D2≤d2<2D2

∑
n∈N (d2)

+∞∑
m=−∞

bM(m)e

(√
X − n
d2

m

)
=

+∞∑
m=−∞

bM(m)Θm

� logM

M
|Θ0|+

logM

M

∑
1≤|m|≤M1+ε

|Θm|+
∑

|m|>M1+ε

|bM(m)||Θm|

� logM

M
D1+ε

2 +
logM

M

∑
1≤m≤M1+ε

|Θm|+D1+ε
2

∑
|m|>M1+ε

|bM(m)|

� logM

M
D1+ε

2 +
logM

M

∑
1≤m≤M1+ε

|Θm| . (158)

Now (154), (155) and (158) imply

Σ3 � Xε

D2

M
+

∑
1≤m≤M1+ε

|Θm|
m

 . (159)

Define

F(d) = {(u, v) : u2 + uv + 2v2 = d, (u, v) = 1, u, v ∈ Z \ {0}}. (160)

According to Lemma 6 there exists a bijection

β : F(d)→ N (d)

from F(d) to N (d) defined by (134) that associates to each couple (u, v) ∈ F(d) the

element n ∈ N (d) satisfying

nv ≡ u (d). (161)

Now (161) yields

nu,v ≡ uvd (d)
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thus
nu,v
d
≡ u

vu2+uv+2v2

u2 + uv + 2v2
(1) . (162)

From (162) and Lemma 3 it follows

nu,v
d
≡ u

v(u2 + uv + 2v2)
−
u|v|
v

(1) , (163)

nu,v
d
≡ − u+ 2v

u(u2 + uv + 2v2)
+
vu
u

(1). (164)

Bearing in mind (156), (160), (163) and (164) we get

Θm =
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)

e

(
−nu,v
d2

m

)

=
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)
0<|u|<|v|

e

(
− mu

v(u2 + uv + 2v2)
+
mu|v|
v

)

+
∑

D2≤d2<2D2

e

(
m
√
X

d2

) ∑
(u,v)∈F(d2)
0<|v|<|u|

e

(
m(u+ 2v)

u(u2 + uv + 2v2)
− mvu

u

)

=
∑

D2≤u2+uv+2v2<2D2
0<|u|<|v|
(u,v)=1

e

(
m
√
X

u2 + uv + 2v2
− mu

v(u2 + uv + 2v2)
+
mu|v|
v

)

+
∑

D2≤u2+uv+2v2<2D2
0<|v|<|u|
(u,v)=1

e

(
m
√
X

u2 + uv + 2v2
+

m(u+ 2v)

u(u2 + uv + 2v2)
− mvu

u

)

= Θ′m + Θ′′m , (165)

say. Consider Θ′m. Let for any fixed
√

D2

4
≤ |v| <

√
D2 the interval

[
η1(v), η2(v)

]
is a

solution with respect to u of the system∣∣∣∣∣∣
u2 + uv + 2v2 < 2D2

u2 + uv + 2v2 ≥ D2

0 < |u| < |v|
. (166)

Denote

g(u) = e

(
m
√
X

u2 + uv + 2v2
− mu

v(u2 + uv + 2v2)

)
, (167)

Kv,m(t) =
∑

η1(v)≤u<t
(u,v)=1

e

(
mu|v|
v

)
. (168)
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By (165) – (168) and Abel’s summation formula we deduce

Θ′m =
∑

√
D2
4
≤|v|<

√
D2

∑
η1(v)≤u<η2(v)

(u,v)=1

g(u)e

(
mu|v|
v

)

=
∑

√
D2
4
≤|v|<

√
D2

g(η2(v)
)
Kv,m

(
η2(v)

)
−

η2(v)∫
η1(v)

Kv,m(t)

(
d

dt
g(t)

)
dt


�

∑
√
D2
4
≤|v|<

√
D2

(
1 +

m
√
X

v2

)
max

η1(v)≤t≤η2(v)
|Kv,m(t)| . (169)

We are now in a good position to apply Lemma 4 because the sum defined by (168) is

incomplete Kloosterman sum. We have

Kv,m(t)� |v|
1
2
+ε (v,m)

1
2 . (170)

From (169) and (170) we derive

Θ′m �
∑

√
D2
4
≤|v|<

√
D2

(
1 +

m
√
X

v2

)
|v|

1
2
+ε (v,m)

1
2

� Xε
(
D

1
4
2 +mX

1
2D
− 3

4
2

) ∑
0<v<

√
D2

(v,m)
1
2 . (171)

On the other hand∑
0<v<

√
D2

(v,m)
1
2 ≤

∑
l|m

l
1
2

∑
v≤
√
D2

v≡0 (l)

1� D
1
2
2

∑
l|m

l−
1
2 � D

1
2
2 τ(m)� XεD

1
2
2 . (172)

The estimations (171) and (172) lead to

Θ′m � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (173)

Working in a similar way for Θ′′m from (165) we deduce

Θ′′m � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (174)

Now (165), (173) and (174) yield

Θm � Xε
(
D

3
4
2 +mX

1
2D
− 1

4
2

)
. (175)
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From (159) and (175) we write

Σ3 � Xε
(
D2M

−1 +D
3
4
2 +X

1
2MD

− 1
4

2

)
. (176)

Using (128), (153) and (176) we obtain

Σ3 � X1+εD
− 1

4
2 . (177)

Bearing in mind (128), (136), (139), (140), (151) and (177) we find

Σ2 � X1+εD
− 1

4
2 . (178)

Estimation of Γ2(X)

Now (128), (129), (131), (133) and (178) imply

Γ2(X)� X1+εz−
1
8 . (179)

4.3 The end of the proof

Summarizing (107), (126), (179) and choosing z = X
8
9 we establish the asymptotic

formula (7).

This completes the proof of the theorem.
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