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Abstract

Individualized treatment rules (ITRs) are deterministic decision rules that rec-
ommend treatments to individuals based on their characteristics. Though ubiquitous
in medicine, ITRs are hardly ever evaluated in randomized controlled trials. To
evaluate ITRs from observational data, we introduce a new probabilistic model and
distinguish two situations: i) the situation of a newly developed ITR, where data
are from a population where no patient implements the ITR, and ii) the situation
of a partially implemented ITR, where data are from a population where the ITR
is implemented in some unidentified patients. In the former situation, we propose a
procedure to explore the impact of an ITR under various implementation schemes. In
the latter situation, on top of the fundamental problem of causal inference, we need
to handle an additional latent variable denoting implementation. To evaluate ITRs
in this situation, we propose an estimation procedure that relies on an expectation-
maximization algorithm. In Monte Carlo simulations our estimators appear unbiased
with confidence intervals achieving nominal coverage. We illustrate our approach
on the MIMIC-III database, focusing on ITRs for dialysis initiation in patients with
acute kidney injury.

Keywords: Personalized medicine, Causal inference, Off-policy evaluation, Mixture of ex-
perts, Expectation-maximization algorithm
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1 Introduction

Individualized treatment rules (ITRs) are decision rules that recommend treatments to

individuals based on their observed characteristics to maximize favorable outcomes on av-

erage. ITRs are widespread in medicine. In fact, most guidelines as well as the recently

released computerized clinical decision support tools can be viewed as ITRs (Sutton et al.

2020). Notable examples include decision tools for revascularization strategies in patients

with coronary artery disease (Takahashi et al. 2020) and for the personalization of blood

pressure targets in hypertensive patients (Basu et al. 2017). For evaluating the impact of

an ITR, the gold standard would be to conduct a randomized controlled trial (RCT) com-

paring the implementation of that ITR to usual care. Yet, there are practical challenges to

conducting such RCTs (Tannock & Hickman 2016). As ITRs often recommend treatments

similar to usual care, the expected population-level effect is likely small and necessitating

very large sample sizes. Moreover, health agency oversight is less stringent for the im-

plementation of ITRs than for drug compounds and so, both the incentives and funding

opportunities for conducting RCTs of ITRs are scarce. In practice, these RCTs remain

rare. As a result, many ITRs are being implemented despite the lack of evidence support-

ing their benefit. In this paper, we develop a framework to evaluate from observational

data the impact of ITRs.

To fit with most ITRs available in medicine (e.g., computerized clinical decision sup-

port tools, or guidelines), we view ITRs as deterministic maps recommending one of two

treatment options. To make inference accounting for real-life prescription of treatment

by physicians, we consider that deterministic ITRs are stochastically implemented with

a probability of implementation depending on patient characteristics. Critically, we then

distinguish two situations: i) the ITR was just released and treatment prescription was
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never based on it in the population, or ii) the ITR was available and, for some patients

in the population, treatment prescription was based on it. We term these two situations

the new ITR and the partially implemented ITR situations, respectively. In the former

situation, we propose to numerically explore the benefit an ITR may have under different

implementation schemes. In the latter situation, inference is more challenging as we are

typically given observational data where we do not know which patients had implemented

the ITR. That is, on top of the fundamental problem of causal inference, we need to handle

an additional latent variable denoting implementation. To address this situation, we de-

velop a new probability model and rely on a mixture of experts fitted via an EM algorithm

for inference.

ITR estimation and evaluation has been considered in the literature of both statistics

(Qian & Murphy 2011, Zhao et al. 2012, Luedtke & van der Laan 2016) and machine

learning (Kallus 2018, Thomas & Brunskill 2016). Works most related to ours include the

evaluation of stochastic rules (Dı́az & van der Laan 2013), biomarker performance (Janes

et al. 2014), and ITR value accounting for the number of treated units (Imai & Li 2021).

To our knowledge, no work has focused on data originating from a partially implemented

ITR situation, nor pursued to develop a comprehensive framework for the evaluation of

ITRs from observational data.

This article is organized as follows. In the evaluation metrics section, we introduce

our causal model as well as our three estimands of interest: the Average Rule Effect

(ARE), the Average Implementation Effect (AIE), and the Maximal Implementation Gain

(MIG). In the inference section, we provide a method to estimate the ARE, AIE, and MIG

and compute their standard error in both the new ITR and partially implemented ITR

situations. In the simulation section, we study the properties of our estimators in the more

challenging partially implemented ITR situation. Finally, in the application section, we
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illustrate our approach on the MIMIC-III database, focusing on ITRs for dialysis initiation

in patients with acute kidney injury. We evaluate two ITRs corresponding to the new ITR

and the partially implemented ITR situations. The computer code for simulation studies

and data applications is available at https://github.com/fcgrolleau/ITReval.

2 Setup and evaluation metrics

Following Neyman-Rubin causal model, we consider that a patient with observed outcome

Y has two potential outcomes Y a=0 and Y a=1 representing the outcome s/he would achieve

if, possibly contrary to fact, s/he had received treatment option A = 0 or A = 1 respectively

(Neyman 1923, Rubin 1974). Without loss of generality, we consider A = 1 indicates

that a patient received a specific treatment, and A = 0 indicates s/he received a control.

Additionally, we consider for each patient, a vector of pre-treatment covariates X with

values in X .

We assume that we are given an ITR that is, a deterministic map r : X → {0; 1} which

assigns a treatment option to each patient with covariates x. We model the implementation

of the rule by the binary random variable S where S = 1 indicates that, based on the ITR,

the physician prescribed the recommended treatment. For the rest of this paper, we term

S = 1 as implementing the ITR. On the contrary, S = 0 indicates that the physician did

not use the ITR to prescribe the treatment and therefore did not implement the ITR. Note

that when S = 0 the prescribed treatment may still match the treatment recommended by

the ITR—i.e., the physician did not base her/his decision on the ITR recommendation but

chose the treatment on other grounds. We define the stochastic implementation function

as the conditional distribution ρ(x) = E[S|X = x].1

1Note that we consider here the stochastic implementation of a deterministic rule r through ρ. This is
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We define the propensity score π as the conditional distribution π(x) = E[A|X = x]

and the treatment-specific prognostic functions µ0, µ1 as the functions satisfying µ1(x) =

E[Y a=1|X = x] and µ0(x) = E[Y a=0|X = x]. We denote τ the individual treatment effect

(ITE) function i.e., τ(x) = E[Y a=1 − Y a=0|X = x] = µ1(x)− µ0(x).

2.1 A probability model for the data generating mechanism

Our goal in this subsection is to introduce a new causal model that allows to determine

the causal effect of implementing versus not implementing an ITR. We introduce As=1,

the potential treatment that would be given to a patient if her/his physician implemented

the ITR i.e., As=1 = r(X), and As=0 the potential treatment s/he would be given if

her/his physician did not implement the ITR. Similarly, we define Y s=1 and Y s=0, patient’s

potential outcomes when physicians do or do not implement the ITR, respectively. We

further imagine the following two situations:

A. The situation where physicians never implement the ITR. In this situation, we write

with superscript (−)s=0 the observable random variables of the patients of these

physicians. That is, for the patients of these physicians X = Xs=0, S = Ss=0, A =

As=0, Y = Y s=0. From this point onward, we call this situation the new ITR situation.

B. The situation where physicians sometimes implement the ITR to prescribe treatment.

In this situation, we write with superscript (−)∗ the observable random variables

of the patients of these physicians. That is, for the patients of these physicians

X = X∗, S = S∗, A = A∗, Y = Y ∗. For the remainder of this paper, we refer to this

situation as the partially implemented ITR situation.

different from defining a function X → [0; 1] which would assign to each value x a probability to allocate

treatment A = 1. This would correspond to what we call a stochastic rule — which r is not.
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We consider that implementing the ITR has no impact on X, that is, we consider that the

equality Xs=0 = X∗ holds. For clarity, we thus drop superscripts on X. To identify causal

effects, we rely on the subsequent assumptions of consistency, exchangeability and overlap.

Assumption 1 (consistency). The effect of the ITR on the outcome Y is only mediated

through the treatment, that is,

Y s=1 = As=1Y a=1 +
(
1− As=1

)
Y a=0, (1)

Y s=0 = As=0Y a=1 + (1− As=0)Y a=0, (2)

A∗ = S∗As=1 + (1− S∗)As=0, (3)

Y ∗ = A∗Y a=1 + (1− A∗)Y a=0. (4)

Assumption 2 (exchangeability). All confounders and variables causing implementa-

tion are measured, that is,

{Y a=1, Y a=0} ⊥⊥ As=0|X, (5)

{Y a=1, Y a=0} ⊥⊥ A∗|X, (6)

As=0 ⊥⊥ S∗|X. (7)

Assumption 3 (overlap). Within all realistic levels of covariates, the patients could re-

ceive either treatment—including in the absence of ITR implementation. That is, denoting

πs=0 the propensity score in the absence of ITR implementation, i.e., πs=0(x) = E[As=0|X =

x],

∀ x ∈ X , 0 < π(x) < 1, and 0 < πs=0(x) < 1.

Observing the overlap assumption, we see that as the propensity score functions π

and πs=0 can never be deterministic rules, they are thus stochastic rules. We define two

additional stochastic rules: the propensity score under stochastic implementation π∗ that
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is π∗(x) = E[A∗|X = x], and the stochastic implementation function under implementation

ρ∗ i.e., ρ∗(x) = E[S∗|X = x].

Summarizing the consistency equations (1), (2), (3), (4) and the exchangeability equa-

tions (5), (6), (7), the data generating mechanism in the new ITR and the partially imple-

mented ITR situations can be represented by the probabilistic graphical models in Figure

1A and 1B, respectively.
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Figure 1: The probabilistic graphical model associated with the data generating mechanism

in the new ITR situation (Panel A) and the partially implemented ITR situation (Panel

B).

In our setup, it will prove convenient to define q1, the prognostic function under ITR

implementation, as q1(x) = E[Y s=1|X = x] and q0, the prognostic function in the absence

of ITR implementation, as q0(x) = E[Y s=0|X = x]. Conditioning equation (1) with respect

to X leads to q1(x) = r(x)µ1(x) + {1− r(x)}µ0(x).
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2.2 Estimands of interest

We now introduce three estimands. First, the Average Rule Effect (ARE) of an ITR r:

∆(r) = E[Y s=1 − Y s=0].

This represents the population-level effect of the ITR on outcome Y in a randomized

trial comparing a group where patients are systematially given the treatment recommended

by ITR to usual care in the absence of ITR implementation.

Second, we define the Average Implementation Effect (AIE) of r as

Λ(r, ρ∗) = E[Y ∗ − Y s=0].

This represents the population-level effect of the ITR on outcome Y in a randomized

trial comparing a group where physicians are provided with the ITR’s treatment recom-

mendation to usual care under no implementation. We may thus consider that in the

experimental group the treatment A is prescribed according to a stochastic implementa-

tion ρ∗ of r. Note that the ARE can be considered as a special case of the AIE where

the stochastic implementation is perfect (ρ∗ ≡ 1). We however single it out because this

representation allows to assess whether the ITR has a potential population-level benefit,

or if it is instead poorly designed.

Last, we define the Maximal Implementation Gain (MIG) of r:

Γ(r, ρ∗) = E[Y s=1 − Y ∗].

This represents the difference in average outcome between a full implementation of the

ITR and the current or future partial implementation of the rule. From these definitions,

it follows that

∆(r) = Λ(r, ρ∗) + Γ(r, ρ∗).
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3 Inference

We assume we are given a single random sample of n independent and identically distributed

(i.i.d.) units (XT
i , Ai, Yi)1≤i≤n from a target population. As in the previous section, we

distinguish between data originating from new and partially implemented ITR situations:

A. In data originating from the new ITR situation, we have Si = Ss=0
i = 0, Ai = As=0

i , and

Yi = Y s=0
i . Note that the second equality implies π = πs=0. In this situation, we drop

all (−)s=0 superscripts and use π rather than πs=0 for clarity. Clearly, estimation of

the AIE and MIG is not possible from data alone in this situation. Nonetheless, in the

next section, we propose to explore their behaviour by hypothesizing implementation

schemes.

B. In data originating from the partially implemented ITR situation, we have Si = S∗i ,

Ai = A∗i , and Yi = Y ∗i . Note that the first two equalities imply ρ = ρ∗ and π = π∗.

In this situation, we thus drop all (−)∗ superscripts for clarity. Because we expect

that Si will not have been collected in this situation, we treat it as a latent variable.

3.1 New individualized treatment rule situation

3.1.1 Average rule effect

Using consistency (1), exchangeability (2), and positivity (3), in the new ITR situation, we

have

∆(r) = E
[
q1(X)− Y

]
= E

[{ A

π(X)
+ {1− r(X)} 1− A

1− π(X)
− 1
}
Y

]
.
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These equations suggest the following two estimators for ∆(r)

∆̂Q(r) = n−1

n∑
i=1

r(Xi)µ̂1(Xi) +
(
1− r(Xi)

)
µ̂0(Xi)− Yi, (8)

∆̂IPW (r) = n−1

n∑
i=1

[
r(Xi)

Ai
π̂(Xi)

+ {1− r(Xi)}
1− Ai

1− π̂(Xi)
− 1
]
Yi, (9)

where as for all estimators proposed hereafter, µ0(·), µ1(·), and π(·) can be estimated

via any supervised learning method from observations (Xµ
i , Yi)i:Ai=0, (Xµ

i , Yi)i:Ai=1, and

(Xπ
i , Ai)1≤i≤n respectively.2 An augmented counterpart of these estimators can be derived

from Zhang et al. (2012):

∆̂AIPW (r) = n−1

n∑
i=1

[ Cri Yi
π̂(Xi)Cri + {1− π̂(Xi)}(1− Cri )

− C
r
i − [π̂(Xi)Cri + {1− π̂(Xi)}(1− Cri )]
π̂(Xi)Cri + {1− π̂(Xi)}(1− Cri )

q̂1(Xi)− Yi
]

(10)

where we set Cri = 1{r(Xi) = Ai} and q̂1(Xi) = r(Xi)µ̂1(Xi)+
{

1−r(Xi)
}
µ̂0(Xi) for clarity.

We refer the reader to Tsiatis et al. (2019, section 3.3.3 p. 61) for an extensive study of

this specific case and the derivation of approximate large sample distribution. Using the

ITE, the ARE can also be reformulated as

∆(r) = E
[
{r(X)− π(X)}τ(X)

]
(11)

(a proof is given in Appendix A). This leads to the following estimator

∆̂ITE(r) = n−1

n∑
i=1

{r(Xi)− π̂(Xi)}τ̂(Xi).

Though the latter estimator requires to estimate the ITE τ , and hence may be less practical

than estimators (8), (9), or (10), the equation (11) makes explicit the respective contribu-

tion of τ , r and π to the ARE.

2Here, Xµ
i and Xπ

i denote two subsets of the relevant variables contained in Xi.
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3.1.2 AIE, MIG under the modeling of the stochastic implementation func-

tions

When the ITR is new and has never been deployed, the way in which it will be implemented

is unpredictable. Hence, the AIE and the MIG cannot be estimated from data alone.

However, it can be interesting to study numerically how the AIE and MIG would vary

under different stochastic implementation schemes as this can provide information about

the appropriateness of future ITR deployment. In the new ITR situation, it is possible to

show that

Λ(r, ρ∗) = E
[
{π∗(X)− π(X)}τ(X)

]
(12)

= E
[
ρ∗(X){r(X)− π(X)}τ(X)

]
, (13)

and

Γ(r, ρ∗) = E
[
{r(X)− π∗(X)}τ(X)

]
= E

[
{1− ρ∗(X)}{r(X)− π(X)}τ(X)

]
(a proof is given in Appendix B). Hence, given an estimate τ̂ of the ITE function (see Jacob

2021, for a review of the available estimation methods), an estimate π̂ of the propensity

score and a numerical model of ρ∗ for a future stochastic implementation function, estimates

of the AIE and the MIG are computable via

Λ̂ITE(r, ρ∗) = n−1

n∑
i=1

ρ∗(Xi){r(Xi)− π̂(Xi)}τ̂(Xi),

and

Γ̂ITE(r, ρ∗) = n−1

n∑
i=1

{1− ρ∗(Xi)}{r(Xi)− π̂(Xi)}τ̂(Xi).

Below, we propose, three schemes that model the form the stochastic implementation

function may take in future deployment of the ITR:
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• The random implementation scheme, where we model ρ∗(·) as

ρ∗rd,α(x) = α

with α ∈ [0; 1] a parameter modelling the random implementation such that, uni-

formly for all patients, higher values of α are associated with higher probabilities of

following the rule. This model of ρ∗ describes a situation where patients are treated

according to an implementation of the rule at random with probability α regardless

of their characteristics.

• The cognitive bias scheme, where we model ρ∗(·) as

ρ∗cb,α(x) = {1− |r(x)− π(x)|}
1
2

log α+1
1−α

with α ∈ [0; 1[ a cognitive bias parameter such that higher values of α are associated

with lower probabilities of following the rule for a given gap between the recommen-

dation from the ITR and usual care under no implementation. This implementation

scheme describes a situation where physicians follow the ITR recommendation more

often when recommendations are similar to current practices and this trend to resist

change increases as α increases.

• The confidence level scheme, where we assume that the ITR was constructed from es-

timated ITEs, τ̃(x), as in for instance r(x) = 1[τ̃(x) < 0]. For this scheme to be

actionable, τ̃(x) and their standard errors seτ̃(x) must be provided along the ITR

they helped build. Under such conditions, we model ρ∗(·) as

ρ∗cl,α(x) = 1[{τ̃(x)− q1−α/2seτ̃(x)}{τ̃(x) + q1−α/2seτ̃(x)} > 0]

for ITEs provided on an absolute scale (i.e., individual absolute risk difference) with

α ∈ [0; 1] a type I error parameter such that smaller values of α lead to wider con-

fidence intervals for τ̃(x). This scheme describes a situation where physicians follow
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the ITR recommendation only when there is evidence that τ(x) 6= 0 at significance

level α.

3.1.3 Illustrative examples

In this section, we aim to provide a sense of what our method is trying to achieve when

applied in the new ITR situation. For that purpose, in this subsection, we provide a toy

model. Observing Formula (12), we see that the AIE of a new ITR r gets far off from

zero as increases the difference between current treatment allocation and future treatment

allocation under a stochastic implementation of r. More precisely, observing Formula (13),

we note that the AIE of a new ITR r gets far off from zero as patients with common

levels of covariates x have i) a high probability ρ∗(x) of implementing the rule, and/or ii)

a difference r(x) − π(x) between recommendation from the ITR and usual care under no

implementation far off from zero, and/or iii) large ITEs τ(x).

For illustration purposes, we imagined a disease for which only one patient character-

istic, the age x, is relevant to treatment decision-making. In a population of patients with

mean age 50 (standard deviation 15), we wish to evaluate the effectiveness of an ITR r with

respect to the occurrence of an unfavorable binary outcome (i.e., 10-year mortality). In our

two examples, ground truth is such that the treatment is beneficial for patients aged 40 to

60, detrimental for patients aged 60 to 80, and has almost no effect outside these ranges.

For the sake of simplicity, we suppose that in both examples r is r(X) = 1[τ(X) < 0] that

is, the rule is optimal (Figure 2 Panels A and B).

In our first example (Figure 2A), the usual care under no implementation is such that

younger patients are treated more often while in our second example (Figure 2B), older

patients are treated more often. In the random implementation schemes (Figure 2 Panels

C and D), physicians follow the ITR’s recommendation at random with probability 1/3
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(red lines) or 2/3 (green lines). In the cognitive bias schemes (Figure 2 Panels E and F),

physicians follow the ITR’s recommendation more often when the ITR’s recommendation

tracks the usual care under no implementation. Cognitive bias parameter is 2/3 (red lines)

or 1/3 (green lines), and higher parameter values are associated with lower probabilities of

complying with the ITR. In the confidence level schemes (Figure 2 Panels G and H), physi-

cians follow the ITR’s recommendation only when confidence intervals for the predicted

ITEs do no cross zero. Type I error parameters for the confidence intervals are 0.05 (red

lines) or 0.45 (green lines) with higher values associated with tighter confidence intervals

and therefore higher probabilities of implementing the ITR.

Despite the fact that both examples relied on the implementation of an identical ITR

based on the true ITE function, the population-level benefit of this ITR is different between

examples for all schemes. The ARE of the deterministic rule was −0.16 in the population

from example 1 and −0.24 in the population from example 2, indicating an 8% greater

benefit of implementing the ITR in population 2 than in population 1 if physicians always

followed the ITR’s recommendation. Similarly, in the stochastic implementation schemes,

the population-level benefit of the ITR differ in the two example populations. In the

random implementation scheme, AIEs are −0.11 and −0.05 in population 1 (Figure 2C)

versus−0.16 and−0.08 in population 2 (Figure 2D) for random implementation parameters

2/3 and 1/3 respectively. We find similar differences in AIEs between population 1 and

population 2 in the cognitive bias scheme (Figure 2 Panels E and F) and confidence level

scheme (Figure 2 Panels G and H).
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Figure 2: Panel A displays our first illustrative example where under no implementation usual care is such that younger

patients are treated more often. Panel B displays our second illustrative example where under no implementation usual care

is such that older patients are treated more often. The random implementation scheme is given panels C and D for both

examples, respectively, the cognitive bias scheme on panels E and F, and the confidence level scheme panels G and H. The

dotted lines correspond to the ITEs plus/minus its standard errors. AIEs are reported for each of implementation schemes

and lower values indicate greater benefit from ITR implementation. We denote pX the probability density of X (we re-scale

pX(x) by a factor 35 for illustration purposes).

3.2 Partially implemented individualized treatment rule situa-

tion

In this subsection, our aim is to estimate the ARE, AIE and MIG with data sampled from

a population where the ITR r is partially implemented. Two cases have to be distinguished
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depending on whether the variable S is collected. If S is collected, estimating the ARE,

AIE and MIG can be achieved by using a suitable adaptation of the IPW/AIPW estimators

for the average treatment effect (Lunceford & Davidian 2004). However, in practice, we

expect that the variable S will not have been collected. Hence, we focus our attention on

the case where S needs to be regarded as a latent variable. Recall that in this subsection,

we are dealing with a partially implemented ITR where the observed treatment follows

either from the ITR being implemented or from the physicians disregarding the ITR to

make treatment decisions. Inference in the partially implemented ITR situation relies on

assumptions (1-3). Because in this situation estimation of the MIG is more straightforward

than estimation of the ARE and AIE, we distinguish between the two cases.

3.2.1 Maximal implementation gain

We start by studying the MIG, as neither S nor ρ play a role for this estimand in the partially

implemented ITR situation. In fact in this situation, using consistency (1), exchangeability

(2), and positivity (3), we have

Γ(r, ρ) = E
[
q1(X)− Y

]
= E

[{
r(X)

A

π(X)
+ {1− r(X)} 1− A

1− π(X)
− 1
}
Y

]
.

This suggests the estimators

Γ̂Q(r, ρ) = n−1

n∑
i=1

r(Xi)µ̂1(Xi) + {1− r(Xi)}µ̂0(Xi)− Yi,

and

Γ̂IPW (r, ρ) = n−1

n∑
i=1

[
r(Xi)

Ai
π̂(Xi)

+ {1− r(Xi)}
1− Ai

1− π̂(Xi)
− 1
]
Yi.

The derivation is similar to that of the ARE in the new ITR situation (equations 8 and

9). We refer the reader to section 3.1.1, equation (10) for an augmented version of this

estimator.
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3.2.2 Average rule effect and average implementation effect

Note that the MIG estimand is distinct from the ARE and AIE in that is does not involve

the expectation term E(Y s=0). In contrast, the ARE and AIE depend on the pairs of

expectations E(Y s=1), E(Y s=0) and E(Y ), E(Y s=0) respectively. The quantity E(Y ) is

straightforward to estimate. The expectation E(Y s=1) can be estimated by various means,

for instance by taking the expectation of q̂1(X) as in section 3.2.1.

Estimation of E(Y s=0) is more challenging than that of E(Y s=1) because, substitution

of Y s=0 by its definition in (2) involves the potential outcome As=0 which is not identifiable

from equation (3) as S is a latent variable. Our approach to estimate E(Y s=0) relies on the

following result.

Lemma 1. In the partially implemented ITR, the following relations holds

(i) π(x) = ρ(x)r(x) + {1− ρ(x)}πs=0(x), (14)

(ii) q0(x) = µ1(x)πs=0(x) + µ0(x)
{

1− πs=0(x)
}
. (15)

A proof of the lemma is given in Appendix C. Lemma 1 shows that the functions π and q0

can be represented by mixtures of experts (Jordan & Jacobs 1994). In particular, observing

equation (14), we see that π can be viewed as a mixture of the known expert r and the

unknown expert πs=0, while the component of the mixture depends on the unknown gating

network ρ. Equation (15) suggest to rewrite ∆(r) and Λ(r, ρ) as

∆(r) = E
[
q1(X)− q0(X)

]
= E

[
{r(X)− πs=0(X)}τ(X)

]
and

Λ(r, ρ) = E
[
Y − q0(X)

]
= E

[
Y − µ1(X)πs=0(X) + µ0(X){1− πs=0(X)}

]
.
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Because πs=0 is unknown, we propose to estimate it via the procedure detailed in Algorithm

1. This procedure details an EM algorithm, based on the fitting algorithm of Xu & Jordan

(1993) and Jordan & Jacobs (1994). Figure 3 depicts the graphical model for the approach

to estimating πs=0(·). Estimating µ0(·), µ1(·), and τ(·) as in section 3.1, mixture of experts

estimators for the ARE and AIE are given by

∆̂ME(r) = n−1

n∑
i=1

{r(Xi)− π̂s=0(Xi)}τ̂(Xi),

and

Λ̂ME(r, ρ) = n−1

n∑
i=1

Yi − µ̂1(Xi)π̂
s=0(Xi) + µ̂0(Xi){1− π̂s=0(Xi)}.

We propose to estimate the variance of the ∆̂ME(r) and Λ̂ME(r, ρ) estimators via the

boostrap. We assess the validity of this strategy in Monte Carlo simulations.

A

π(X)

OO

Gating
Network

ρ(·)
g0 �

g1

�

Xρ

OO

Expert
Network

p0

FF

πs=0(·) Expert
Network

r(X)

XX

r(·)

Xπs=0

OO

X

OO

Figure 3: The graphical representation of the mixture of experts fitted by Algorithm 1. Note

that we consider r as a known deterministic expert network, while both the expert network πs=0

and the gating network ρ are unknown stochastic rules.
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Algorithm 1 The EM procedure for estimating πs=0(·) in the partially implemented ITR situation.

Input: The ITR r : X → {0; 1}, and data (XT
i , Ai)1≤i≤n where Xπs0

i and Xρ
i are two relevant subsets of

the variables contained in Xi.

Initialize the prior probabilities associated with the nodes of the tree as g0,i ← 0.5, and g1,i ← 0.5.

Initialize the parameters ζ of the expert πs=0(·) at random e.g., ζ ∼ N (0, D) with D a diagonal matrix.

Compute individual contributions to r’s likelihood as P1,i ← r(Xi)
Ai{1− r(Xi)}1−Ai .

Compute individual predictions from the initiated expert network πs=0(·) as p0,i ← expit(ζTXπs0

i ).

Iterate until convergence on the parameters ζ:

Compute individual contributions to πs=0’s likelihood as P0,i ← pAi
0,i

(
1− p0,i

)1−Ai
.

Compute the posterior probabilities associated with the nodes of the tree as . E-step

h0,i ← g0,iP0,i

g0,iP0,i+g1,iP1,i
and h1,i ← g1,iP1,i

g0,iP0,i+g1,iP1,i
.

For the gating network ρ(·) estimate parameters γ by solving the IRLS problem . M-step

γ ← arg max
γ

∑n
i=1 h1,i ln

{
expit(γTXρ

i )
}

+ (1− h1,i) ln
{

1− expit(γTXρ
i )
}

For the expert network πs=0(·) estimate parameters ζ by solving the IRLS problem

ζ ← arg max
ζ

∑n
i=1 h0,i

[
Ai ln

{
expit(ζTXπs0

i )
}

+ (1−Ai) ln
{

1− expit(ζTXπs0

i )
}]

Update the prior probabilities associated with the nodes of the tree as

g1,i ← expit(γTXρ
i ) and g0,i ← 1− g1,i.

Update the predictions from the expert network πs=0(·) as p0,i ← expit(ζTXπs=0

i ).

Return: π̂s=0(x) = expit(ζTx).
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4 Simulations

4.1 Setup

In this section, we study the properties of the MIG, ARE and AIE estimators in the partially

implemented ITR situation. To this end, we simulate data analysis in a setting where an

ITR was partially implemented. We generate synthetic datasets comprising six Bernoulli,

log-normally or normally distributed covariates X = (X1, X2, . . . , X6) as follows.

Step 1 We randomly generate intermediate covariates X ′1, X
′
2, . . . , X

′
6 from a multivariate

gaussian distribution

(X ′1, X
′
2, . . . , X

′
6)
T ∼ N (0, Σ).

To generate Σ, we chose 6 eigenvalues (λ1, λ2, . . . , λ6) = (1, 1.2, 1.4, 1.6, 1.8, 2), and

sample a random orthogonal matrix O of size 6 × 6. The covariance matrix Σ is

obtained via

Σ = O



λ1 0 . . . 0

0 λ2
. . .

...

...
. . . . . . 0

0 . . . 0 λ6


OT .

Step 2 To allow for the Bernoulli or log-normal distribution of covariates, we generate

X1, X2, . . . , X6 as follows (X1, X2) = (1{X ′1 < 0},1{X ′2 < 0}), (X3, X4, X5) =(
exp(X ′3), exp(X ′4), exp(X ′5)

)
, X6 = X ′6. We add X0 ≡ 1 to allow for intercepts.
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Step 3 We generate data from the covariates in this manner:

S|X = x ∼ Bernouilli
(

expit(γTx)
)
,

r(X) = 1{δTx < 0},

As=0|X = x ∼ Bernouilli
(

expit(ζTx)
)
,

As=1 = r(X),

A = SAs=1 + (1− S)As=0,

Y a=0|X = x ∼ Bernouilli
(

expit(αTx)
)
,

Y a=1|X = x ∼ Bernouilli
(

expit(βTx)
)
,

Y s=0 = As=0Y a=1 + (1− As=0)Y a=0,

Y s=1 = As=1Y a=1 + (1− As=1)Y a=0,

Y = AY a=1 + (1− A)Y a=0

with

γ =(0, 0, 0, 0, 0, 0, 1)T , δ = (0.05,−0.5, 0.5,−0.5, 0.5, 0, 0)T ,

α =(0,−0.3,−0.05, 0.5,−0.15,−0.2, 0)T , β = (0,−0.2, 0.05, 0.3,−0.1,−0.1, 0)T

and we vary ζ.

In scenario A, we set ζ = δ which corresponds to a situation where treatment allocation in

the absence of the ITR is different from the ITR. In scenario B, we set ζ = (0, 0, 0, 0, 0, 0, 0)

which corresponds to a situation where treatment allocation in the absence of the ITR is

random with probability 0.5. In scenario C, we set ζ = −δ which corresponds to a situation

where treatment allocation in the absence of the ITR resembles the ITR. In each scenario

we generate a target population of two million individuals from which we approximate

ground truth for our estimands and drew random samples. We vary the sample size: n =

200, 800, 2000. The potential outcomes as well as the variable S are regarded as unobserved

variables. Models for µ0 and µ1 are correctly specified with Xµ = (X2, X3, X4, X5, X6) as

explanatory variables. We fit the mixture of expert in equation (14) with Algorithm 1,

specifying the gating network ρ with Xρ = X7 and the expert network πs=0 with variables
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Xπs0 = (X1, X2, X3, X4, X5). For each scenario/sample size combination, we implement

1000 simulation iterations and 999 bootstrap replications to generate confidence intervals.

4.2 Results

The results of our simulations are reported in Table 1 and Figure 4. The MIG estimator

Γ̂Q(r, ρ) which does not rely on an EM procedure exhibits, as expected, the properties of

unbiasness and consistency. The ARE estimator ∆̂ME(r) and the AIE estimator Λ̂ME(r, ρ)

appear unbiased and consistent as well. Their standard error is comparable to that of the

MIG estimator Γ̂Q(r, ρ). Ninety five percent bootstrap confidence intervals achieve close to

nominal coverage for all three estimators.
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Figure 4: Absolute bias and Root Mean Square Error (RMSE) for the MIG, ARE and AIE estimators

across 1000 simulation iterations in nine scenario/sample size combinations. Absolute bias is the darker

portion of each bar ; RMSE corresponds to the total bar size. The MIG, ARE and AIE estimators are

from Γ̂Q(r, ρ), ∆̂ME(r), Λ̂ME(r, ρ) respectively.
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5 Applications on the MIMIC-III database

The Multi-Parameter Intelligent Monitoring in Intensive Care III (MIMIC-III) database is

a publicly available electronic health record that contain data from 53,423 patients hos-

Table 1: Simulation results for the MIG, AIE and ARE estimators under all nine scenario/sample size

combinations. The MIG, ARE and AIE estimators are from Γ̂Q(r, ρ), ∆̂ME(r), Λ̂ME(r, ρ) respectively. SE:

standard error; RMSE: root mean squared error; CI: 95% confidence interval. Coverage probabilities are

for 95% confidence intervals.

Scenario A Scenario B Scenario C

n MIG ARE AIE MIG ARE AIE MIG ARE AIE

True value -0.013 -0.026 -0.013 -0.008 -0.016 -0.008 -0.004 -0.007 -0.003

Relative bias

200 0.102 0.028 0.057 0.000 0.000 0.000 0.192 0.163 0.365

800 0.012 -0.044 -0.090 0.082 0.002 0.005 0.037 0.090 0.201

2000 -0.009 -0.027 -0.055 0.029 -0.016 -0.032 -0.013 0.069 0.155

Bias

200 -0.001 -0.001 0.001 0.000 0.000 0.000 -0.001 -0.001 0.000

800 0.000 0.001 0.001 -0.001 0.000 0.001 0.000 -0.001 0.000

2000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 -0.001

Empirical SE

200 0.024 0.037 0.024 0.020 0.027 0.020 0.017 0.016 0.017

800 0.012 0.018 0.012 0.010 0.013 0.010 0.008 0.008 0.008

2000 0.007 0.011 0.008 0.006 0.008 0.006 0.005 0.005 0.005

RMSE

200 0.024 0.037 0.024 0.020 0.027 0.020 0.017 0.016 0.017

800 0.012 0.018 0.012 0.010 0.013 0.010 0.008 0.008 0.008

2000 0.007 0.011 0.008 0.006 0.008 0.006 0.005 0.005 0.005

Coverage

200 0.964 0.954 0.937 0.953 0.976 0.941 0.936 0.979 0.944

800 0.945 0.953 0.949 0.945 0.956 0.947 0.953 0.957 0.949

2000 0.959 0.951 0.934 0.948 0.946 0.950 0.962 0.946 0.947

CI width

200 0.099 0.153 0.096 0.080 0.113 0.082 0.067 0.073 0.067

800 0.047 0.071 0.046 0.039 0.050 0.039 0.033 0.031 0.033

2000 0.029 0.044 0.029 0.024 0.031 0.024 0.021 0.019 0.021
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pitalized in intensive care at Beth Israel Deaconess Medical Center from 2001 to 2012

(Johnson et al. 2016). From these, we include the 3,748 intensive care unit adult patients

with severe acute kidney injury who had received either invasive mechanical ventilation

or vasopressor infusion. We report the full inclusion/exclusion criteria in the Appendix D

and the inclusion flow-diagram in the Appendix E. The patients we include are eligible

for recommendation from both ITRs described below. For the sake of focusing on the es-

timators in our methodology, we handle patients with missing data by conducting a single

imputation using chained equations (White et al. 2011).

In this section, we consider two example ITRs. In the first example, we evaluate a

new ITR for dialysis initiation.3 This last ITR was not available at the time of data

collection and decision to initiate dialysis never followed from its implementation. In the

second example, we evaluate an ITR that was partially implemented at the time of data

collection. Specifically, we evaluate the impact of an ITR that recommends initiating

dialysis in the most severe patients based on the Sequential Organ Failure Assessment

(SOFA) score (Vincent et al. 1996).

5.1 New ITR: dialysis initiation based on a combination of six

biomarkers

Grolleau et al. (2022) have recently developed a new ITR for dialysis initiation in the in-

tensive care unit using data from two RCTs. Briefly, this new ITR recommends initiating

dialysis within 24 hours only in specific patients based on a combination of six biomarkers

(SOFA score, pH, potassium, blood urea nitrogen, weight and, the prescription of im-

3In this section, we use the term “dialysis” loosely to refer to all kidney support therapies suitable for

acute kidney injury patients (i.e., including but not limited to intermittent hemodialysis and continuous

hemofiltration).
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munosuppressive drug). Following the methodology detailed in section 3.1, we evaluate

the impact of this new ITR on 60-day mortality. We estimate the ARE using a double

robust estimator as detailed in section 3.1.1. We explore the impact of various degrees

of implementation under either cognitive bias or confidence level schemes. The estimated

values of AIE are given in Figure 5. Estimation of the ARE shows a trend for benefit from

the implementation of the new ITR (∆̂AIPW (r) = -0.02; 95% confidence interval [-0.06 to

0.01]). Note that the ARE estimate is not equal to estimation of the AIE under full imple-

mentation as, contrary to the ARE case, for the AIE we use an ITE model. The variables

included in each model are reported in Appendix G.
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Figure 5: Evaluation of the impact of a new ITR (i.e., dialysis initiation within 24 hours only in specific

patients based on a combination of six biomarkers) on 60-day mortality using the MIMIC-III observational

database. Ninety-five percent confidence intervals are from the bootstrap. Blue diamonds are for the

cognitive bias scheme; orange diamonds are for the confidence level scheme. Panels A depict the AIE for

different values of implementation parameter α, Panels B depict the AIE as a function of the proportion of

(future) patients implementing the new ITR: n−1
∑n
i=1 ρ

∗
·,α(Xi). More negative values of the AIE indicate

greater benefit from ITR implementation. Ninety-five percent confidence intervals are from the bootstrap.
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5.2 Partially implemented ITR: dialysis initiation based on SOFA

scores

We evaluate the impact on 60-day mortality of a partially implemented, yet never eval-

uated, ITR that recommended initiating dialysis within 24 hours only in the patients

with a Sequential Organ Failure Assessment (SOFA) score greater than 11. Following

the methodology of section 3.2, we posit models for the treatment-specific prognosis func-

tions, the propensity score in the absence of ITR implementation (expert network) and the

stochastic implementation function (gating network). Specification of propensity score in

the absence of ITR implementation include the variables thought to have caused treatment

initiation while specification of the stochastic implementation function include all variables

thought to be associated with ITR implementation. The variables included in each model

are reported in Appendix F. The estimates of the MIG, ARE and AIE are given in Figure

6. Estimation of the MIG shows evidence of harm from further implementing the ITR

(Γ̂Q(r, ρ) = 4.7%; 95% confidence interval [2.7% to 6.8%]). Similarly, estimation of the

ARE shows a trend for harm in implementing the ITR in all patients versus in no one

(∆̂Q(r) = 1.8%; 95% confidence interval [-0.1% to 3.9%]) indicating that the ITR may be

poorly designed. However, estimation of the AIE shows that the withdrawal of the ITR

would on average yield outcomes worse than in the current situation (Λ̂Q(r, ρ) = -2.9%;

95% confidence interval [-3.1% to -2.6%]). This suggest that even though the ITR may

be poorly designed, physicians identify correctly the patients who benefit from ITR imple-

mentation. In sum, these results indicate that neither full nor null implementation of the

ITR would improve patient outcomes (at the population level). Rather, either one of these

changes in ITR implementation, our analysis suggest, would worsen patient outcomes (at

the population level).
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Figure 6: Evaluation of the impact of a partially implemented ITR (i.e., dialysis initiation within 24

hours only in the patients with a SOFA score greater than 11) on 60-day mortality using the MIMIC-III

observational database. Ninety-five percent confidence intervals are from the bootstrap. MIG=Maximal

Implementation Gain. ARE=Average Rule Effect. AIE=Average Implementation Effect.

6 Discussion

Our goal was to construct an ecosystem for the evaluation of ITRs that will ultimately

benefit patients. We believe that the probability model and inferential approach we in-

troduced in this paper provide actionable tools to move this agenda forward. Below, we

discuss some limitations of our approach.

In the new ITR situation, the exploration of the AIE relies on assuming future imple-

mentation schemes. Though sensible, the three implementation schemes we propose are

subjective. Other realistic implementation schemes can be assumed and readily imple-

mented in our methodology.

In the partially implemented ITR situation, inference relies on assuming a new proba-

bilistic model. This model is largely inspired by the Neyman-Rubin causal model. As in

the original model, our model requires assuming that the effect of an ITR is mediated only

by the treatment prescribed by physicians to their patients. This consistency assumption
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may not hold in some specific settings. In cases where the decision to implement the ITR

is taken by the patients—not the physicians—, it is possible that the mere “human-ITR

interaction” affects outcomes. For instance, if an ITR recommends a patient treatment A,

this patient may choose treatment B and compensate for not implementing the ITR by

taking another effective treatment say C. This indirect effect of the ITR through treat-

ment C would not be accounted for in our framework. With respect to the exchangeability

assumption, our methodology relies on expert knowledge of the variables causing ITR im-

plementation. For some research questions, such expert knowledge may be lacking thereby,

limiting the usefulness of our approach. However, we do not believe that any statistical

method can provide helpful workarounds under such conditions. Finally, as in the conven-

tional average treatment effect, one may be tempted to estimate the prognostic function q0

directly, rather than estimating the propensity score π from a mixture model. As Y s=0
i are

not observed, this would require to posit a hierarchical mixture of experts model. Though

compelling at first glance, this approach may be impractical as hierarchical mixture of

experts were shown to have likelihoods with arbitrary bad local maxima yielding EM al-

gorithms sensible to initialization conditions. In contrast, for mixtures of two experts, the

EM algorithm with a random initialization is believed to be successful with high probability

(Jin et al. 2016). Notwithstanding the empirical evidence, to our knowledge, there is no

formal proof of this last statement. In a related vein, our simulations suggest that fitting a

mixture of two experts with an EM algorithm, the resulting ARE and AIE estimators are

unbiased and consistent with bootstrap confidence intervals achieving nominal coverage.

We note that ∆̂ME(r) and Λ̂ME(r, ρ) are M-estimators. Thus, assuming models for µ0(·),

µ1(·), τ(·), and π(·) are correctly specified with parameters estimated for instance via max-

imum likelihood, ∆̂ME(r) and Λ̂ME(r, ρ) have unbiased estimating equations. Appealing to

M-estimation theory, one could derive these estimators’ consistency, asymptotic normality,
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and variance. We hope to study mixture of experts estimators’ theoretical properties and

explicit variance in future work.

Other future directions for our work may include the adaptation of algorithm 1 to non-

parametric networks and the extension of the proposed framework to non-binary treatments

and dynamic ITRs.
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Appendix

A Proof for the ARE formula in the new ITR situation

∆(r) =E
[
Y s=1 − Y s=0

]
=E

[
r(X)Y a=1 + {1− r(X)}Y a=0 − AY a=1 − (1− A)Y a=0

]
=E

[
{r(X)− A}{Y a=1 − Y a=0}

]
=E

[
E
[
{r(X)− A}{Y a=1 − Y a=0}|X

]]
=E

[
{r(X)− π(X)}τ(X)

]
(A1)

where equality in (A1) uses equation (5) from assumption 2 and the fact that in the new

ITR situation A = As=0.

B Proof for the AIE/MIG formulas in the new ITR situation

Λ(r, ρ∗) =E
[
{Y ∗ − Y s=0}

]
=E

[
A∗Y a=1 + (1− A∗)Y a=0 − As=0Y a=1 − (1− As=0)Y a=0

]
=E

[
{A∗ − A}{Y a=1 − Y a=0}

]
=E

[
E
[
{A∗ − A}{Y a=1 − Y a=0}|X

]]
=E

[{
π∗(X)− π(X)

}
τ(X)

]
(B1)

=E
[
ρ∗(X)

{
r(X)− π(X)

}
τ(X)

]
(B2)

where equality in (B1) uses equations (5) and (6) from assumption 2 and the fact that in
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the new ITR situation A = As=0. The equality in (B2) follows from

π∗(X) = E[A∗|X]

= E[S∗As=1 + (1− S∗)As=0|X]

= ρ∗(X)r(X) +
{

1− ρ∗(X)
}
π(X)

where the last equality uses the fact that As=1 = r(X) and equation (7) from assumption

2. The proof for the Γ(r, ρ∗) formula follows a similar argument.

C Proof of lemma 1 in the partially implemented ITR situation

(i) π(X) =E[A|X]

=E[Sr(X) + (1− S)As=0|X]

=r(X)E[S|X] + E[(1− S)As=0|X]

=r(X)ρ(X) + E[1− S|X]E[As=0|X] (C1)

=r(X)ρ(X) + {1− ρ(X)}πs=0(X)

Equality in (C1) relies on equation (7) from assumption 2 and the fact that in the partially

implemented ITR situation S = S∗.

(ii) q0(X) =E[Y s=0|X]

=E[As=0Y a=1 + (1− As=0)Y a=0|X]

=E[As=0Y a=1|X] + E[(1− As=0)Y a=0|X]

=E[As=0|X]E[Y a=1|X] + E[(1− As=0)|X]E[Y a=0|X] (C2)

=πs=0(X)µ1(X) +
{

1− πs=0(X)
}
µ0(X)

Equality in (C2) relies on equation (5) from assumption 2.
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D Inclusion and exclusion criteria from the MIMIC-III analysis

Inclusion criteria were (all needed be fulfilled):

• Admission to an intensive care unit

• Age greater than 18 years on the day of intensive care admission

• Evidence of severe acute kidney injury (stage 3 in the Kidney Disease Improving

Global Outcomes classification) during the stay in intensive care

• Initiation of either mechanical ventilation or intravenous vasopressors during the stay

in intensive care, prior to severe acute kidney injury

Exclusion criteria were (all needed be absent):

• End-stage renal kidney disease at intensive care admission

• Renal replacement therapy initiated prior to severe acute kidney injury

• Patients included in the study for an earlier episode of severe acute kidney injury in

intensive care

• Patients expected to die within three days
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E Patient inclusion diagram from the MIMIC-III database

61051 ICU stays

52894 ICU stays

49635 ICU stays

7007 ICU stays

5332 ICU stays

4863 unique ICU patients

4662 unique ICU patients

3748 unique ICU patients
included

8157 ICU stays where patients were less than 18 yo at ICU admission

3259 ICU stays where patients had ESRD at ICU admission

42628 ICU stays where patients did not have severe AKI

1675 ICU stays where patients had neither mechanical ventiltion nor 
vasopressors prior to severe AKI

469 ICU stays corresponding to patients eligible in an earlier ICU stay 
(only first epidsodes were included)

201 patients had RRT prior to inclusion

914 died within three days of inclusion

Figure E1: Patient inclusion diagram from the MIMIC-III database. ICU=Intensive Care

Unit. ESRD=End-Stage Kidney Renal Disease. AKI=Acute Kidney Injury. RRT=Renal

Replacement Therapy.
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F Model specification in the MIMIC-III analysis for a partially

implemented ITR: dialysis initiation based on SOFA scores

For this analysis, we specify the models as follows.

• Treatment-specific prognosis functions

µ̂0(Xµ) = P(Death at day 60|Patient characteristics)

∼ Age + SOFA

µ̂1(Xµ) = P(Death at day 60|Patient characteristics)

∼ Age + SOFA

• Propensity score in the absence of ITR implementation (expert network)

π̂s=0(Xπs0 ) = P(Dialysis initiation within 24h|Patient characteristics, S = 0)

∼ Age + Weight + BUN + pH + Potassium + SOFA

• Stochastic implementation function (gating network)

ρ̂(Xρ) ∼ Age + BUN + pH + Potassium

BUN=Blood Urea Nitrogen. SOFA=Sequential Organ Failure Assessment.
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G Model specification in the MIMIC-III analysis for the new

ITR: dialysis initiation based on a combination of six biomark-

ers

For this analysis, we specify the models as follows.

• Propensity score model

π̂(Xπ) = P(Dialysis initiation within 24h|Patient characteristics)

∼ Age + Weight + BUN + pH + Potassium + SOFA + Immunosuppressive drug

• Prognosis model

Ê[Y |X,A] = P(Death at day 60|Patient characteristics, Dialysis initiation within 24h)

∼ Age + Weight + BUN + pH + Potassium + SOFA

+ Dialysis initiation within 24h×
[
Age + Weight + BUN + pH + Potassium + SOFA

]
• ITE model

τ̂(X) = Ê[Y |X,A = 1]− Ê[Y |X,A = 0]

• Prognostic function under the ITR

q̂1(X) = r(X)Ê[Y |X,A = 1] + {1− r(X)}Ê[Y |X,A = 0]

BUN=Blood Urea Nitrogen. SOFA=Sequential Organ Failure Assessment. ITE=Individualized

Treatment Effect. ITR=Individualized Treatment Rule.
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