Pluto's atmosphere from stellar occultations in 2012 and 2013 - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Pluto's atmosphere from stellar occultations in 2012 and 2013

F. Braga-Ribas
  • Fonction : Auteur
Christophe Dumas
  • Fonction : Auteur
ESO
Marcelo Emilio
  • Fonction : Auteur
J. H. V. Girard
  • Fonction : Auteur
ESO
G. K. T. Hau
  • Fonction : Auteur
ESO
Valentin D. Ivanov
  • Fonction : Auteur
ESO
Rodrigo Leiva
  • Fonction : Auteur
PUC
Alain Maury
  • Fonction : Auteur
Leslie Nagy
  • Fonction : Auteur
Leonardo Vanzi
  • Fonction : Auteur
PUC

Résumé

We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large telescopes (including the 8.2-m VLT at ESO/Paranal). The high SNR ratios and multi-chord coverage provide amoung the best Pluto atmospheric profiles ever obtained from the ground.We show that a spherically symmetric, clear (no-haze) and pure N2 atmosphere with a unique temperature profile satisfactorily fits the twelve lightcurves provided by the two events. We find, however, a small but significant increase of pressure of 6% (6-sigma level) between the two dates, with values of 2.16 ± 0.2 and 2.30 ± 0.01 mubar at the reference radius 1275 km, respectively.We provide atmospheric constrains between 1190 km and 1450 km from Pluto's center, and we determine the temperature profile with accuracy of a few km in vertical scale. Our model shows a stratosphere with strong positive gradient between 1190 km (at 36 K, 11 mubar) and r =1215 km (6.0 mubar), where a temperature maximum of 110 K is reached. Above it is a mesosphere with negative thermal gradient of -0.2 K/km up to 1,390 km (0.25 mubar), at which point, the mesosphere connects itself to a more isothermal upper branch at 81 K. This profile provides (assuming no troposphere) a Pluto surface radius of 1190 ± 5 km, consistent with preliminary values obtained by New Horizons. Currently measured CO abundances are too low to explain the negative mesospheric thermal gradient. We explore the possibility of an HCN (recently detected by ALMA) cooling. This model, however, requires largely supersaturated HCN. Zonal winds and vertical compositional variations of the atmosphere are also unable to explain the observed mesospheric trend.These events are the last useful ground-based occultations recorded before the 29 June 2015 occultation observed from Australia and New Zealand, and before the NASA's New Horizons flyby of July 2015. This work can serve as a benchmark in the New Horizons context, enabling comparisons between ground-based and space results concerning Pluto's atmospheric structure and temporal evolution.
Fichier non déposé

Dates et versions

hal-03735165 , version 1 (21-07-2022)

Identifiants

Citer

Alex Dias-Oliveira, Bruno Sicardy, Emmanuel Lellouch, Roberto Vieira Martins, Marcelo Assafin, et al.. Pluto's atmosphere from stellar occultations in 2012 and 2013. AAS/Division for Planetary Sciences Meeting #47, Nov 2015, National Harbor, MD, United States. ⟨hal-03735165⟩
19 Consultations
0 Téléchargements

Partager

More