

PSCC 2022 27th June to 1st July 2022 XXII Power Systems Computation Conference

Identification and Quantification of the **Flexibility Potential of a Complex Industrial Process for Ancillary Services Provision**

Presented by: Sylvain Ledur

Sylvain Ledur^{1,2}, Robin Molinier¹, Fabrizio Sossan², Jean-Authors: Christophe Alais¹, Moulay-Driss El Alaoui Faris¹, Georges Kariniotakis²

⁽¹⁾ Air Liquide, Paris Innovation Campus, Les-Loges-en-Josas, France ⁽²⁾ MINES Paris – PSL University, PERSEE Center, Sophia-Antipolis, France

Need to identify and quantify the flexibility available

INDUSTRIAL FLEXIBILITY QUANTIFICATION

Feasible Region of a Process: All operating points satisfying every constraints of the industrial process

Industrial flexibility quantification:

- > Representing the outer or the whole envelope of the feasibility region
- > Test for feasibility of operation under a set of uncertainty

Need to quantify the benefits of moving voluntarily within the feasible space

Research Questions

How can we represent this feasible space of operation and its corresponding flexibility ?

What bids could a given plant send during operation ?

OBJECTIVES

USE CASE

Characteristics:

- > Operating range: **11.5 MW to 15 MW**
- > **Two storable products** with hourly demand

1 €/U

3 €/U

- > 2 Power Components (Compressors)
- Product Value:

Product 1: Product 2:

Specific process constraints:

- Multiple interconnected outputs
- Variable amount of product waste with a minimum necessary value

LP OPTIMIZATION MODEL

7

FEASIBLE SPACE OF OPERATION AND RAMPING POTENTIAL

2 product outputs: The feasible space can be plotted in 2D3 main steps:

Creation of a grid of operating point based on maximal and minimal theoretical outputs

=> New Constraint added to the problem:

$$Q_{t, \{p1, p2\}}^{OUT} = Q_{t, \{p1, p2\}}^{FIXED}$$

- Check for feasibility and extract optimal power consumption
- Heatmap representing the optimal power consumption for each feasible operating point

FEASIBLE SPACE OF OPERATION

- Minimal and maximal outputs cannot be reached for both products at the same time
- Some operating points are more efficient than others

RAMPING POTENTIAL

> For each feasible point of operation, assess the largest power shift available

> From 0 to 2 MW for unilateral ramping, and 0 to 1.5 MW for symmetrical ramping

FINANCIAL IMPACT OF SUBOPTIMAL OPERATION

- > Increase the power consumption without changing the product output
- > Allow for downward regulation while under hard product output constraints
- > Link the cost of lost product to unlocked ramping

Conclusions:

- Lost revenue ranges from 60 to
 220 €/MWh
- A higher product 1 output reduces the necessary revenue
- Additional information needed to assess the cost of such operation

USUAL OPERATING POINTS

- > Observe the changes in consumption and storage levels
- > Extract the usual operating points and assess their frequency of appearance

AVAILABLE ANCILLARY SERVICE BIDS

PERCENTAGE OF AVAILABLE RAMP

Ramp	Up	Down	Symmetric
>500 kW	59%	93%	52%
>1000 kW	59%	65%	24%
>1500 kW	59%	64%	23%
>2000 kW	35%	41%	0%

CONCLUSIONS

Representation of the feasible space and the potential ramping

- Visual representation of the limits coming from the product interdependency
- > Visual representation of the ramping available for each operating point within the feasible space

Analysis of suboptimal operation

- > Last resort option to provide reserve when no other way is possible
- > Cash flow is likely to be negative for that kind of operation

Usual operating points and available ramping

- > Extract the usual operating points and their frequency of appearance
- Maximum of 2 MW of asymmetrical flexibility (35/40% frequency)
- Maximum of 1.5 MW of symmetrical flexibility (23% frequency)

THANK YOU !

This work is performed in the frame of a PhD supported in part by ANRT through a Cifre Grant.

