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We derive from the Einstein equation an evolution law for the area of a trapping or dynamical horizon.
The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the
equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two
features contrast with the event horizon case, where the noncausal evolution of the area and the negative
bulk viscosity require teleological boundary conditions. This reflects the local character of trapping
horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/
entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution
of an initial marginally trapped surface.
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I. Introduction.—A new paradigm has recently emerged
in the theoretical approaches to black holes, following the
introduction of future outer trapping horizons (FOTH) by
Hayward [1,2] and that of dynamical horizons (DH) by
Ashtekar and Krishnan [3] (see Refs. [4,5] for reviews).
This new approach relies on local characterizations of
black holes, via trapped surfaces, and contrasts with the
traditional treatment which is based on the notion of event
horizon (EH). The latter is a highly nonlocal concept and
requires the knowledge of the whole spacetime to be
determined. This feature makes the EH a not very practical
representation of black holes for studies in numerical
relativity and quantum gravity, and motivated the new
approach.

In this note, we focus on the evolution of the area of
cross sections of FOTHs and DHs. We obtain an area law
of different nature from the ‘‘area increase law’’ derived by
Ashtekar and Krishnan [3,4]. Inspired by the membrane
paradigm developed for EHs [6,7], we treat the cross
sections of FOTHs and DHs as viscous fluid bubbles and
interpret the area law as an internal energy balance equa-
tion, completing the Navier-Stokes-like momentum law
derived previously [8]. It is then apparent that the bulk
viscosity is positive. Associating area with entropy, we also
discuss the use of an entropy principle to pick up a unique
dynamical horizon in an evolution. Both a maximum en-
tropy production and a time convexity requirement (inter-
pretable in terms of Clausius-Duhem inequality) are
considered.

II. Evolution of the horizon area.—Both the EH and the
FOTH/DH approaches to black holes can be formulated in
terms of a hypersurface H embedded in a four-
dimensional spacetime �M; g�, and foliated by a family
of closed (topologically S2) spacelike 2-surfaces �St�t2R.
If it represents an EH, H is a null hypersurface and any
foliation �St�t2R is admissible. In the case of a DH, H is a

spacelike hypersurface and the foliation �St�t2R is unique
[t defined up to a relabeling t � t0 � f�t�], each St being a
marginally trapped surface [9].

Given the foliation �St�t2R of H , there is a unique
‘‘time evolution’’ vector h that is tangent to H , orthogonal
to St and obeys Lht � 1, where Lh denotes the Lie deriva-
tive along h: Lht � h�@�t. The latter property implies that
the 2-surfaces St are Lie-dragged by h. Let C be half the
scalar square of h with respect to the metric g: h � h � 2C.
It is easy to see that the sign of C gives the signature of the
hypersurface H :C is positive, zero, and negative for,
respectively, spacelike, null, and timelike hypersurfaces.
There exists a unique pair �‘; k� of null vectors normal to
St and a unique vector m normal to H such that

 h � ‘� Ck; m � ‘� Ck and ‘ � k � �1: (1)

For any vector field v normal to St, such as h,m, ‘ or k, we
define the expansion ��v� and the shear tensor ��v� of the
surface St when Lie-dragged along v by

 L vq � ��v�q� 2��v� and tr ��v� � 0; (2)

where q is the induced metric on St (q is positive definite
since St is assumed to be spacelike), Lvq is its Lie deriva-
tive resulting from the dragging of the surface St along the
normal vector v, and tr ��v� is the trace of��v� with respect
to the metric q. A consequence of (2) is that ��v� governs
the variation of the surface element 2-form �S of St
according to Lv�S � ��v��S.

Let us recall that St is called a trapped surface if ��k� <
0 and ��‘� < 0, and a marginally trapped surface (MTS) if
��k� < 0 and ��‘� � 0. The hypersurface H �

S
t2RSt is

said to be a FOTH if (i) each St is a MTS and (ii) the (local)
outermost condition Lk�

�‘� < 0 is satisfied [1]. H is said
to be a DH if (i) each St is a MTS and (ii) H is a spacelike
hypersurface [3]. Note that in generic dynamical situations,
the notions of FOTH and DH are equivalent [5]. In sta-
tionary situations, a FOTH becomes a null hypersurface,
whereas a DH (which by definition is spacelike) cannot
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exist; it should be replaced by the notion of isolated
horizon (IH) [4,5,10,11].

If H is an EH, the 2-surfaces St are not MTS, except in
stationary configurations (Kerr black hole). On the con-
trary they are expanding, by the famous Hawking area
increase law [12]: ��‘� > 0.

Let us denote by � the component along ‘ of the
‘‘acceleration’’ of h in the decomposition [13]

 r hh � �‘� �C�� LhC�k�DC; (3)

where r is the spacetime connection and D the connection
associated with the metric q in St. Besides let ��‘� be the
normal fundamental form of the surface St (also called
connection on the normal bundle) defined by ��‘�: � �k �
r ~q‘, where ~q denotes the orthogonal projector on the
surface St (see, e.g., Sec. III.D of Ref. [8]).

From the Einstein equation, one can derive the following
evolution law for any foliated hypersurface H (details are
provided in Ref. [13]):
 

Lh��m� � ���h� �
1

2
��h���m� � ��h�: ��m� � 8�T�m;h�

� ��k�LhC�D � �2C ~��‘�
� ~DC�; (4)

where T is the energy-momentum tensor of matter (if any),
an upper arrow indicates index raising with the metric q
and the notation ‘‘:’’ stands for the double contraction, i.e.,
��h�:��m� :� ��h�ab�

�m�ab. If we specialize Eq. (4) to the
cases of (i) an EH and (ii) a FOTH or a DH, we obtain
respectively

 L ‘��‘� � ���‘��2 � ���‘� �
1

2
���‘��2 � ��‘�:��‘�

� 8�T�‘; ‘� (5)

 L h�
�h� � ���h��2 � ���h� �

1

2
���h��2 � ��h�:��m�

� 8�T�m;h� � ��k�LhC

�D � � ~DC� 2C ~��‘�
�:

(6)

For the EH, we have used the null character of H , which
implies C � 0 and h � m � ‘, yielding Eq. (5). This is
nothing but the null Raychaudhuri equation for a surface-
orthogonal congruence [14]. In this case Eq. (3) reduces to
r‘‘ � �‘, i.e., � is the nonaffinity coefficient of ‘ and
coincides with the so-called surface gravity for a stationary
horizon, provided that ‘ is normalized in terms of the
stationarity Killing vector. For the FOTH/DH case
[Eq. (6)], we have used the property ��‘� � 0 to write
��m� � ���h�, since Eq. (1) gives ��m� � ���h� � 2��‘�.

The area of the 2-surface St is A�t� �
R
St
�S. Since the

surfaces St are Lie-dragged by the vector h associated with
t, the first and second derivative of the area with respect to t
are dA=dt �

R
St
��h��S and d2A=dt2 �

R
St
�Lh��h� �

���h��2��S . Then, assuming C> 0 in Eq. (6) (i.e., consid-

ering a DH only), we may introduce �0 :� �C�1‘ �
rhh � �� Lh lnC [cf. Equation (3)], and integrate
Eqs. (5) and (6) over St, noticing that the integral of the
divergence term in Eq. (6) vanishes, to get respectively
 

d2A

dt2
� ��

dA
dt
� �

Z
St

�
8�T�‘; ‘� � ��‘�:��‘� �

���‘��2

2

� � ��� ����‘���S; (7)

 

d2A

dt2
� ��0

dA
dt
�
Z
St

�
8�T�m;h� � ��h�:��m�

�
���h��2

2
� � ��0 � �0���h�

�
�S;

(8)

where �� and ��0 denote the mean value over St of � and �0:
�� � ���t� :� A�1

R
St
��S (idem for �0). Assume for a mo-

ment that �� and ��0 are constant and positive, as for the EH
of a Kerr black hole with foliations compatible with the
stationarity Killing vector. Let us consider first the evolu-
tion of an EH, i.e., the differential Eq. (7). The general
solution of the corresponding homogeneous equation is
A�t� � const1 � exp� ��t� � const2. Thus, if one were solv-
ing Eq. (7) as a Cauchy problem, one would obtain ex-
ponentially diverging solutions (since �� > 0). It is well
known that the correct treatment must be teleological
([6,14] or Sec. VI.C.6 of Ref. [7]), i.e., one imposes the
boundary condition dA=dt � 0 at t � �1, to get

 

dA
dt
�
Z �1
t

D�u�e ���t�u�du; (9)

where D � D�t� stands for the integral in the right-hand
side of Eq. (7). On the contrary, the differential Eq. (8) for
the DH area is such that the solutions of the homogeneous
equation are decaying exponentially. Accordingly, the
treatment as a standard Cauchy problem from the initial
condition dA=dt�0� � _A0 leads to the nondiverging solu-
tion

 

dA
dt
� _A0 �

Z t

0
D0�u�e ��0�u�t�du; (10)

where D0 � D0�t� stands for the integral in the right-hand
side of Eq. (8). The striking difference between Eqs. (9)
and (10) is that Eq. (10) is causal (the solution at a given
instant t depends only on the behavior of the source D0 at
instants u 	 t), whereas Eq. (9) is not. This reflects the
nonlocal character of EHs mentioned in the Introduction.
Of course, in general �� and ��0 are not constant (except for
small perturbations of a stationary black hole [15]), but the
behavior described above should remain the same.

Comparing with previous works, one can show that at
the limit of small departure from an IH, the area law (8)
reduces to that established for slowly evolving horizons by
Booth and Fairhurst [15]. In the full dynamical regime, the
evolution law (8) is different from the area law obtained by
Ashtekar and Krishnan [3,4] (see also [16]). Indeed the
latter is derived from a different component of the Einstein
equation: the T�m; ‘� one instead of T�m;h� for Eq. (8).
More precisely, the Ashtekar-Krishnan law is written in
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terms of the areal radius R :�
������������
A=4�

p
and expresses the

variation of R between two surfaces St1 and St2
(cf. Eq. (3.25) of Ref. [3]). Using our notations
(cf. Table II of Ref. [8] for the correspondence) its differ-
ential version (i.e., writing t2 � t1 � dt) is

 

1

2

dR
dt
�

1

8�

Z
St

�
��~‘� � ~��~‘�

�
1

C
��‘�:��‘�

�
dR
dt
�S

�
Z
St

1

C
T�m; ‘�

dR
dt
�S; (11)

where ��~‘� :���‘� �D lnC. Notice that this is a first
order equation in A�t� � 4�R�t�2, whereas Eq. (8) is of
second order. Moreover, it contains dR=dt on both sides, so
that one can divide by dR=dt to get an equation which does
not contain R�t�. In this respect, Eq. (11) does not appear as
an evolution equation for A�t�. Actually, as shown by
Hayward [2], Eq. (11) can be obtained by integrating
over St the relation expressing that Lh�

�‘� � 0 on H .
This relation involves T�m; ‘�, in the same manner as
Eq. (4) relates Lh��m� and T�m;h�. Explicitly we have
[2,13]
 

C
�
D � ~��~‘�

���~‘� � ~��~‘�
�

1

2
R

�
� ��‘�:��‘�

� 8�T�m; ‘� � 0; (12)

where R denotes the Ricci scalar associated with the
metric q in St. Dividing Eq. (12) by 8�C, integrating
over St, invoking the Gauss-Bonnet theorem to set the
integral of R to 8� and multiplying by dR=dt leads to
the differential form (11) of Ashtekar-Krishnan law.

III. Energy dissipation and bulk viscosity.—In the mem-
brane paradigm approach to black holes, Price and Thorne
[7] defined the surface energy density of an EH as " :�
���‘�=8� and interpreted Eq. (5) as an energy balance law,
with heat production resulting from viscous stresses. By
analogy, let us define the surface energy density of a
FOTH/DH as " :� ���m�=8�, where the role of the nor-
mal to H is now taken by m instead of ‘. Since ��m� �
���h� for a FOTH/DH, we have " � ��h�=8� and we may
rewrite Eq. (6) as
 

Lh"� ��h�" � �
�

8�
��h� �

1

8�
��h�:��m� �

���h��2

16�

�D �Q� T�m;h� �
��k�

8�
LhC; (13)

with Q :� 1
4� �C

~��‘�
� 1=2 ~DC� � � C

4� ~$, where $ is
the anholonomicity 1-form (or twist 1-form) of the 2-
surface St [1] (see also Sec. IV.A of Ref. [8]) and ~$
denotes its metric dual. It is worth writing aside Eq. (13)
the generalized Damour-Navier-Stokes equation [8]
 

Lh�� ��h�� � �D
�
�

8�

�
�D �

�
~��m�

8�

�
�

D��h�

16�

� T�m; ~q� �
��k�

8�
DC; (14)

where � :� ���‘�=8�. It is striking that Eqs. (13) and
(14) are fully analogous to the equations that govern a two-
dimensional nonrelativistic fluid of internal energy density
", momentum density �, pressure �=8�, shear stress ten-
sor ��m�=8�, bulk viscosity � � 1=16�, shear strain ten-
sor ��h�, expansion ��h�, subject to the external force
density �T�m; ~q� � ��k�=8�DC, external energy produc-
tion rate T�m;h� � ��k�=8�LhC and heat fluxQ (see, e.g.,
Ref. [17]). Let us notice that the shear viscosity � does not
appear in Eqs. (13) and (14), because the standard
Newtonian-fluid relation between the shear stress tensor
��m�=8� and the shear strain tensor ��h�, namely
��m�=8� � 2���h�, does not hold. Here we have
��m�=8� � ���h� � 2C��k��=8�, so that the Newtonian-
fluid assumption is fulfilled only if C � 0 (IH limit). On
the contrary, it appears from Eqs. (13) and (14) that the
trace part of the viscous stress tensor Svisc obeys the
Newtonian-fluid law, being proportional to the trace part
of the strain tensor (i.e., the expansion ��h�): trSvisc �

3���h�.
Let us point out two differences with the EH case [6,7].

First the heat flux Q is not vanishing for a FOTH/DH,
whereas it was zero for an EH. Notice that Q is a vector
tangent to St so that the integration of Eq. (13) over the
closed surface St to get a global internal energy balance
law would not contain any net heat flux. The second major
difference is that the bulk viscosity � is positive, being
equal to 1=16�, whereas it was found to be negative, being
equal to �1=16�, for EHs [6,7]. This negative value,
which would yield to a dilation or contraction instability
in an ordinary fluid, is in agreement with the tendency of a
null hypersurface to continually contract or expand, the EH
being stabilized by the teleological condition imposing its
expansion to vanish in the far future. The positive value of
the bulk viscosity found here shows that FOTHs and DHs
behave as ‘‘ordinary’’ physical objects and is in perfect
agreement with their local nature.

IV. Entropy evolution and choice of H .—Hitherto we
have discussed the horizon H as a given hypersurface in
M. We adopt now a 3� 1 approach and consider, in the
line of Ref. [18], the world-tube evolution of a MTS S0

contained in an initial Cauchy slice �0 of a 3� 1 foliation
��t�t2R. Denoting by s the unit-normal vector to S0 con-
tained in �0 and by n the unit-normal vector to �0, we
decompose H ’s ‘‘time evolution’’ vector as h � Nn�
bs, where N is the lapse function associated with the time
parameter t of the 3� 1 foliation. Introducing the null
vectors ‘̂ :� n� s and k̂ :� �n� s�=2, we get h � �b�
N�=2 ‘̂� �b� N� k̂ and C � �b2 � N2�=2. Combined
uniqueness results from Refs. [9,18] show that: (i) to
each 3� 1 foliation ��t�t2R there corresponds a unique
DH containing S0 and sliced by MTSs St 
 �t; and
(ii) different 3� 1 slicings lead generically to different
DHs. In other words, the evolution of S0 into MTSs is an
ill-defined concept, since different DHs pass through S0. A
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natural question consists in introducing a notion of pre-
ferred DH or, equivalently, of a preferred 3� 1 slicing.

With this ultimate aim, let us push forward the viscous
fluid interpretation of FOTH/DHs. As an ever growing
quantity on H , it is natural to interpret the area A as
proportional to the entropy of the horizon, the equilibrium
case providing the relation S � kB

4@A [1,3,15]. In this sense,
Eq. (5) for an EH has been interpreted in the membrane
paradigm [6,7] as a viscous fluid entropy dissipation equa-
tion for the differential element of entropy, with the spe-
cificity of involving a second time derivative term in the
entropy production. Instead of the analogous discussion for
FOTH/DHs based on Eq. (6), we take the condition
Lh��‘� � 0, i.e., Eq. (12), as a starting point. When ex-
pressed in terms of 3� 1 quantities, it becomes an elliptic
equation on (b� N) with a source proportional to (b� N)
[13,19]. In this 3� 1 approach, a second relation between
(b� N) and (b� N) is necessary in order to determine
H .

In a first attempt to get this second relation, we consider
a maximum entropy production criterion, which can be
motivated in the context of nonequilibrium thermodynam-
ics [20]. Maximizing dS=dt leads to [13]

 b� N � �const � ��k̂�; �const > 0�: (15)

In loose terms, and independently of thermodynamic con-
siderations, Eq. (15) singles out the DH that approaches
‘‘the fastest’’ to the EH. However it leads to a function A�t�
which is only C0 in the matching with an initial IH.

Alternatively, we can control the response of H to the
arrival of energy/matter, by prescribing the convexity of
the entropy in time. We propose a phenomenological

choice for the second derivative of the area element �a :�
Lh�

�h� � ���h��2:

 �a � F�sources� � �
��h�

C
LhC� �

��h�

C
LhLhC; (16)

such that F�sources�> 0 whenever matter or gravitational
radiation crosses the horizon [e.g., T�‘; ‘� � 0 and/or
��‘� � 0], and F�sources� 	 0 otherwise. Inserting
Eq. (16) into Eq. (6) leads to a second-order evolution
equation for C � �b2 � N2�=2, whose resolution provides
the additional relation between (b� N) and (b� N).
Initial condition C � 0 guarantees the C1 matching with
an IH, whereas the choice of initial LhC amounts to the
choice of DH (consistency requires an appropriate choice
of parameters �, �). Alternatively, the equation for C can
be seen as a (now first-order) balance equation for the
element of entropy. Interpreting it as a nonequilibrium
thermodynamics Clausius-Duhem-like inequality [20] (by
enforcing the positivity of the entropy production), pro-
vides a guideline for fixing the phenomenological term
F�sources�. Other phenomenological options to Eq. (16)
can be proposed, and we aim at exploring them numeri-
cally [13]. A tempting possibility is to base the (unavoid-
able) choice of DH upon an entropy principle derived
solely from the structure of the hyperbolic system defined
by (part of) the Einstein equations on H .
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