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[1] In part 1 of this study (Prigent et al., 2004), in situ measurements were used to analyze
and describe the sensitivities of satellite measurements (i.e., active and passive microwave
observations and surface skin temperature diurnal cycle amplitude) to the soil
moisture variations to describe the complex relationships that exist between them. Soil
moisture was considered in the first 10-cm layer on a 0.25� equal-area grid and a monthly
timescale. In this study, the lessons from the first paper are exploited to document the
sensitivity of the satellite data to the global large-scale variations of soil moisture. A
statistical model based on neural networks is developed to link the satellite observations
and soil moisture estimates. Given the lack of available in situ soil moisture measurements
on a global basis, National Centers for Environmental Prediction (NCEP) and
European Centre for Medium-Range Weather Forecasts (ECMWF) soil moisture
reanalyses are used as a realistic global indicator of soil moisture. As a consequence, the
statistical model cannot be considered as a retrieval scheme per se, but it shows the
feasibility of such an approach. It also quantifies the information content that can be
expected from the satellite observations. Applications of such a statistical model include
checking the consistency of surface model, and as the basis for variational assimilation of
satellite observations into a numerical surface model.

Citation: Aires, F., C. Prigent, and W. B. Rossow (2005), Sensitivity of satellite microwave and infrared observations to soil moisture

at a global scale: 2. Global statistical relationships, J. Geophys. Res., 110, D11103, doi:10.1029/2004JD005094.

1. Introduction

[2] In part 1 [Prigent et al., 2005], the sensitivity of active
and passive microwave observations and surface skin tem-
perature diurnal cycle amplitude to soil moisture variability
is analyzed based on in situ measurements. Observations
from ERS and SSM/I were used for this purpose. These two
instruments were not designed to monitor soil moisture. The
frequencies and the spatial/temporal resolutions have not
been specifically chosen for continental studies. Future
missions like SMOS or HYDROS are dedicated to soil
moisture retrieval, but they will not be launched for several
years. The study showed that the link between satellite
observations and soil moisture is complex and can be due to
an indirect relationship through the correlation between
vegetation and soil moisture. Soil moisture is defined as
the volumetric percent of water in the first 10 cm and a

0.25� equal-area grid, and a monthly timescale. In particu-
lar, the differences of polarization of passive microwave
(SSM/I) are more sensitive to vegetation than to soil
moisture itself. Depending on the location, the vegetation
can be correlated or anti-correlated with soil moisture and,
as a consequence, some indirect and sometimes conflicting
information from satellite observations can be used to
monitor soil moisture if the relationship is locally adjusted.
This explains why soil moisture retrieval algorithms can
work locally when a priori information about the particular
location helps constrain the problem and avoid external
large-scale variabilities. Although a few studies have exam-
ined the use of NDVI data in addition to infrared [e.g.,
Goetz, 1997] or passive microwave for specific regions, to
our knowledge, a systematic analysis of the available
observations in the various frequency domains has not been
conducted on a global basis.
[3] Soil moisture retrievals from satellite observations are

traditionally based on radiative transfer calculations. The
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radiative transfer model describes the link between the soil
moisture and the satellite measured radiation, and algo-
rithms are developed to invert this relationship, i.e., to
provide an estimate of the soil moisture that corresponds
to a given measured radiance. To our knowledge, no
radiative transfer model is able to correctly reproduce the
satellite observations over land on a global basis. Two main
reasons explain this failure. First, many of the inputs for
the radiative transfer model (e.g., soil texture, roughness,
and moisture, vegetation characteristics) are not available
on a global basis with the required accuracy. Second, the
radiative transfer models are still unable to reproduce
the complexity and variety of land surface mechanisms.
Classic inversion schemes based on radiative transfer
models can be successful in specific regions where addi-
tional information is available to ‘‘tune’’ out those local
dependencies that are not explicitly accounted for, but
extension to global applications is still questionable. In
addition, using various satellite sources requires having
adequate and consistent radiative transfer models for all
wavelength ranges.
[4] A global soil moisture retrieval method requires:

(1) multiple sources of information from various wave-
lengths to account for the different surface parameters
involved and, in particular, to disentangle the vegetation
and soil moisture effects, and (2) nonlinearity to account for
the situation-dependence (the relationships between satellite
observations and surface parameters can change with loca-
tion) and to better exploit parameters inter dependencies.
Neural network (NN) methods are a natural candidate to
provide such capabilities: They are well adapted to benefit
from the synergy between multiple instruments, and they
are nonlinear by design.
[5] In this study, we focus on the variability of soil

moisture at a global scale. The major objective of this
analysis is to assess the potential of satellite observations
for monitoring the large-scale variability of soil moisture.
Given the scarcity of in situ measurements and the limited
climate regimes they represent, National Centers for Envi-
ronmental Prediction (NCEP) and European Centre for
Medium-Range Weather Forecasts (ECMWF) soil moisture
reanalyses are used as realistic global indicators for soil
moisture. A statistical model based on NN is developed to
link the satellite observations and the soil moisture esti-
mates. This statistical model cannot be considered as a
retrieval scheme per se. To develop a soil moisture retrieval
scheme, we should have either a comprehensive radiative
transfer model to calculate the satellite-observed radiances
from a global land surface properties and soil moisture data
set (i.e., physical retrieval) or a matched global set of
satellites observations and soil moisture measurements
(i.e., empirical retrieval). However, we lack both a com-
prehensive radiative transfer model and a global soil
moisture data set, so to assess the potential of the available
satellite observations to constrain estimates of soil moisture,
we train a NN to relate the satellite observations to the soil
moisture produced by the NCEP and ECMWF reanalyses.
We will use in this paper the term prediction instead of
retrieval, and errors refer to the prediction of the reanalyses
soil moisture estimates from the satellite measurements.
These soil moisture values are produced by land surface
models coupled to atmospheric models with meteorological

properties constrained by observations of atmospheric tem-
perature, humidity, horizontal winds, and surface tempera-
ture and pressure.
[6] In this situation, the trained NN represents a statis-

tical model linking satellite observations to estimated soil
moisture. If the NN is able to find robust relationships
between these two quantities, this link can be used to
check the consistency of the reanalyses products with the
satellite observations. The statistical link can also be
exploited as an additional constraint in a variational
assimilation scheme. This is a necessary first step toward
the evaluation of existing global soil moisture data sets,
the development of new land surface models, or the
assimilation of satellite observations into a numerical
land surface models. The results of this study should
be, first, an improved understanding of both remote
sensing observations and model outputs by quantifying
the information content that can be expected from the
various satellite observations. Second, this work should
produce a methodology/data sets to be used as input
and diagnostics for land surface model evaluations and
comparisons.
[7] Section 2 presents the NCEP and ECMWF soil

moisture reanalyses used in this study. Global linear statis-
tics between the satellite observations and the soil moisture
model outputs are examined and interpreted in section 3.
The NN statistical inverse model is described in section 4
and potential applications are discussed in section 5. Con-
clusions and perspective are presented in section 6.

2. Soil Moisture From NCEP and ECMWF
Reanalysis

[8] In this study, the standard reanalysis soil moisture
products from NCEP and ECMWF are used. In numerical
weather prediction (NWP) models, land surface schemes
have been added, essentially to predict latent and sensible
fluxes. This is valid for real time forecast and for the
reanalysis mode since the same model is used in both cases.
Soil moisture is a by-product of these calculations. The
NWP models are fed several times daily by atmosphere
observations. For NCEP, in reanalysis mode, the land
surface schemes are forced with model generated precipi-
tation and radiation, whereas today, in real time mode,
observed precipitation is often added.
[9] For considerations of calculation speed, the reanaly-

sis schemes use land surface models less sophisticated
than the more advanced models available today. In the last
10 years, land surface modeling has triggered a lot of
developments and significant progress has been made that
has not yet benefited the reanalysis models. However, as
the model intercomparisons tend to prove (Atmospheric
Model Intercomparison Project (AMIP) or Global Soil
Wetness Project (GSWP)), up-to-date models still have
serious problems in comparison to actual soil moisture
measurements, and it is very difficult to decide among
them. Thirty model outputs have been compared during
AMIP, more than 10 during GSWP. Which one should be
selected? In this context, the NWP reanalysis have been
chosen because they are easily and widely accessible
products; their problems have been identified and are
rather well documented.
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[10] The NCEP/NCAR reanalysis covers 40 years
[Kalnay et al., 1996]. It uses a multi-layer soil vegetation
hydrology model [Mahrt and Pan, 1984; Pan and Mahrt,
1987] that is adjusted to the Mintz and Serafini [1992]
climatology. Soil moisture is derived from the 6-hour
forecast, not from observations ‘‘and should be used with
caution. . . but generally contains useful information’’
[Chen and Mitchell, 1999]. In numerical weather models,
it is common to control the soil moisture so that it does
not drift to unrealistic values: This is what is called
nudging. There are different method to soil moisture
nudging in the models. The most basic one consists in
resetting the soil moisture to a climatological value on a
regular basis. In the NCEP/NCAR reanalysis, the nudging
toward the climatology leads to too large a soil moisture
annual cycle amplitude and reduced interannual variability
[Roads et al., 1999; Chen and Mitchell, 1999]. Efforts are
now being directed toward exploring alternatives to the
climatological nudging and using observed precipitation
assimilation.
[11] The ECMWF 40-year reanalysis (ERA 40) [Simmons

and Gibson, 2000] uses a recent version of a land surface
scheme [Van den Hurk et al., 2000; Viterbo and Beljaars,
1995] and an optimal interpolation scheme [Douville et al.,
2000]. The emphasis of the land surface scheme is on the
correct modeling of the long-time timescale of water
exchanges, in contrast to most studies that focus on the
short timescale. The model has four layers for moisture and
temperature and has been tested against measurement cam-
paigns in different regimes (United States, Netherlands, and
Brazil) [Viterbo and Beljaars, 1995; Van den Hurk et al.,
2000; Betts et al., 2003a, 2003b].
[12] The monthly mean soil moisture values are selected

for the upper layer (10 cm and 7 cm in the NCEP and
ECMWF reanalysis, respectively). The original NCEP and
ECMWF data are mapped on Gaussian grids. To match the
reanalysis data with the satellite observations, they are
interpolated, in this study, onto an 0.25� � 0.25� equal area
grid, using distance-weighted averages.
[13] The satellite observations analyzed here cover a large

portion of the electromagnetic spectrum: (1) the passive
microwave SSM/I emissivities between 19 and 85 GHz
(i.e., from 1.58 cm to 0.35 cm in wavelength); (2) ERS-1
active instrument backscattering coefficient at 5.25 GHz
(wavelength = 5.71 cm); (3) the diurnal amplitude of the
surface skin temperature, derived from the thermal infrared
observations from both the NOAA polar orbiters and the
geostationary meteorological satellites; (4) the NDVI
derived from the AVHRR visible (0.58–0.68 m m) and
near-infrared (0.73–1.1 mm) reflectances. See part 1 of this

study Prigent et al. [2005] for a detailed description of the
satellite observations.

3. Global Statistical Analysis of the Monthly Data
Sets

[14] The following statistics are determined for the
monthly means in a 2-year data set that includes the
satellite-derived variables and the NWP soil moisture esti-
mates, all gridded on a 0.25� � 0.25� equal area grid. The
satellite data have been described in part 1 of this study
[Prigent et al., 2005].
[15] The linear correlations have been calculated globally

between the satellite variables and the NCEP and ECMWF
surface soil moistures for the 2 years, and results are
reported in Table 1. Global mean linear correlations be-
tween active microwave responses, Ts amplitude, and the
NWP soil moisture are significant and have the expected
signs [see Prigent et al., 2005], with rather similar values
for both NWP reanalyses. In contrast, passive microwaves
are not well correlated with NWP soil moisture, with the
sign of the correlation opposite to the expectation. For all
satellite variables, except the active microwave measure-
ments at low incidence angles, the correlation is stronger
with the vegetation index (NDVI) than with the NWP soil
moistures. A strong correlation also exists between both
NWP soil moistures and the NDVI.
[16] When analyzing the in situ soil moisture measure-

ments with the satellite variables, we showed that the
relationship between soil moisture and vegetation is partly
responsible for the correlation between the satellite obser-
vations and soil moisture [Prigent et al., 2005]. In partic-
ular, the effects of vegetation on the measurements changes
their relationship with soil moisture, from region to region.
In this global study, the linear correlations between the
monthly-mean NCEP soil moisture and NDVI vegetation
index have been calculated over the 2 years for each
location and are presented in Figure 1. Strong regional
patterns appear related to climate regimes. Midlatitudes
are characterized by wet winters and dry summers that
translate into a highly negative correlation between vegeta-
tion and soil moisture (e.g., Europe and eastern United
States). In semi-arid tropical regions, vegetation growth is
tightly related to the onset of precipitation, leading to a high
positive correlation between soil moisture and vegetation. In
desert areas in North Africa, the NWP estimates are often
fixed to a nominal value, so the correlations should be
considered with caution.
[17] The correlation between the ERS scatterometer

observations for low incidence angles and soil moisture is
generally strongly positive (Figure 1c), as expected, except
in desert areas where the reanalysis values might not be
representative (see remark above). The correlation between
the normalized amplitude of the Ts diurnal cycle and the soil
moisture from the model is strongly negative (Figure 1b),
especially in regions where the correlation between soil
moisture and vegetation is also high. At midlatitudes where
the soil moisture is anti-correlated with vegetation, the
linear correlation between the satellite IR derived informa-
tion and the soil moisture decreases in absolute value. The
amplitude of the Ts diurnal cycle is expected to decrease
both with increasing soil moisture and with increasing

Table 1. Linear Correlation Coefficient Between the Soil

Moisture and NDVI Values and the Satellite-Derived Variables

Variable
NCEP

Soil Moisture
ECMWF

Soil Moisture
NDVI

Vegetation

Passive MW SSM/I e19V-H �0.26 �0.27 �0.33
Passive MW SSM/I e37V-H �0.12 �0.12 �0.15
Active MW ERS small ang 0.58 0.55 0.63
Active MW ERS large ang 0.56 0.48 0.48
IR normalized Ts amplitude �0.69 �0.58 �0.74
NVDI vegetation 0.65 0.58 1
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vegetation density: When these two variables are correlated,
the anti-correlation between soil moisture and the Ts
amplitude is particularly strong, but when these two
variables are anti-correlated, they have opposite effects
on the Ts amplitude leading to a decreased correlation (in
absolute value) between the Ts amplitude and the soil
moisture. Figure 1d shows the correlation between NCEP
surface soil moisture and the passive microwave emissivity
polarization difference at 19 GHz. A positive correlation is
expected between these two variables: With increasing soil
moisture, the emissivity polarization difference should
increase. In midlatitude regions (e.g., in Europe), a positive
correlation is observed between soil moisture and the
passive microwave observations. However, a strong nega-
tive correlation prevails in semi-arid regions, especially in
Africa. This behavior is similar to what has been described
with in situ soil moisture measurements in the first part of
this study. The passive microwaves react primarily to the
vegetation density: When the vegetation density and the
soil moisture are negatively correlated, the passive micro-
waves vary as expected with soil moisture only because of
the opposing effects of soil moisture and vegetation on the
signal. Similar to Prigent et al.’s [2005] Figure 3, Figure 2
shows that the linear correlation between the soil moisture
and the passive microwave signal depends on the linear
correlation between the soil moisture and the vegetation
density. Very similar results are observed with ECMWF
(not shown).
[18] The above analysis confirms the interpretation of the

relationships between the in situ soil moisture measure-
ments and the satellite observations described in the first
part of this study [Prigent et al., 2005]. Yet the soil moisture
estimates used in this analysis are very different in nature:
Global model reanalysis results in contrast to local in situ

measurements. Thus the derived interpretation is verified at
various scales. In addition, it tends to validate the use of
NWP model data that have similar fundamental behavior as
the in situ measurements.
[19] Whatever the satellite observations, the relationship

between the satellite-derived information and the soil mois-
ture is complex and shows strong regional variations. Most
of the time, this relation is not direct but linked to the soil
moisture/vegetation relationship. For a given region, a low
correlation (in absolute value) is observed between a par-
ticular satellite measurement and the soil moisture whereas
other satellite measurements provide a stronger relationship
to the soil moisture. The opposite might prevail in another
region. Using more than one source of satellite data makes it
possible to benefit from these complementarities. A neural
network analysis is selected to account for these intricate
relationships between the satellite observations and the
soil moisture and to exploit the different regional sensitiv-
ities of the merged satellite observations to the soil moisture
variations.

4. Integrated Analysis of Spectral Variations
Using a Neural Network Technique

[20] In this section, we evaluate the possibility of infer-
ring soil moisture information from satellite measurements.
The method is based on a neural network (NN) analysis.
Traditionally, for remote sensing applications, this statistical
model requires a data set of satellite measurements (simu-
lated or observed) collocated with a data set of the variables
to be predicted (the soil moisture in this application). The
role of the NN is then to reproduce the relationships
inherently described by these two collocated data sets.
Unfortunately, in situ measurements are scarce, and the
existing measurements do not represent the large spatial
and temporal diversity existing over the globe. In addition,
outputs from global surface models are not sufficiently
reliable and validated to be used with complete confidence.
As a consequence, the goal of the present analysis cannot be
the development of a definite retrieval algorithm. Instead, a
sensitivity analysis of the relations of the large-scale soil
moisture variability to the various sources of available
satellite observations is performed at a global scale: This
analysis can be considered as a feasibility study for the
development of a retrieval algorithm. The NN is trained to
predict the soil moisture estimates; ‘‘error’’ refers to the
prediction errors of the reanalysis soil moisture, not error in
the ‘‘true’’ soil moisture which is unknown. It also allows
for the characterization and selection of the pertinent
satellite information for soil moisture retrieval. This is an
important step for the assimilation of satellite data in land
surface models or for the development of a soil moisture
retrieval strategy for the next generation of satellite instru-
ments. Two direct applications of the NN model will be
described in section 5.

4.1. Method

[21] The correlations between satellite observations and
soil moisture content are complex and partly produced by
the correlation that exists between vegetation and soil
moisture. At a given location, the correlation between the
vegetation and soil moisture can be positive or negative,

Figure 2. Linear correlation between passive MW SSM/I
polarization difference at 19 GHz and the NCEP soil
moisture versus the linear correlation between vegetation
(NDVI) and the NCEP soil moisture.
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depending on the climate and the surface type (see section 3
and Figure 1). Disentangling this mixture of indirect rela-
tionships is not an easy task. Instead of avoiding or
suppressing the correlation between vegetation and soil
moisture, we try to use it. The idea is to integrate in the
inversion scheme all the information available on the
vegetation to capitalize on the indirect relationships between
vegetation and soil moisture. Without a reliable radiative
transfer forward model available for each satellite observa-
tion type and with only partial information content coming
from each piece of information, the use of a statistical
method is almost mandatory. In our case, a nonlinear
statistical method is required to disentangle the difficult
multivariate, indirect, and nonlinear relationships among the
satellite observations, the vegetation and other surface
effects, and the soil moisture. NN have proved in the past
to be useful for such difficult problems.
[22] The Multi-Layered Perceptron (MLP) is adopted

here [Rumelhart et al., 1986]. This NN is a nonlinear
mapping model. Given an input X, it provides an output
Y. The inputs X are the predictors, they represent any source
of information for the prediction, and the output Y repre-
sents the predicted variables. In our case, X is composed of
various satellite observations. In the following, the number
of inputs will vary, depending on the availability of obser-
vations (input dimension goes from 1 to 9), to test the
contribution of each satellite observation. The prediction Y
is the soil moisture estimate from NCEP and ECMWF
reanalysis (output dimension is 2). Both NCEP and
ECMWF soil moisture estimates will be predicted simulta-
neously in the output of the NN to provide a composite of
the two models. Tests (not shown) compared their separate
prediction with simultaneous predictions and show no
significant difference.
[23] The neural network is trained to reproduce the

behavior described by a data set of samples composed of
an input Xe and its associated output Ye (e = 1, . . ., N is the
sample number in the training data set). Provided that
enough samples (Xe, Ye) are available, any continuous
relationship as complex as it is, can be represented by a
MLP [Hornik et al., 1989; Cybenko, 1989]. The data set
used to train the NN is composed of the satellite observa-
tions described in part 1 [Prigent et al., 2005] and the soil
moisture reanalyses of the NCEP and ECMWF for the 2
years of data already described (1993 and 1994).
[24] Soil moisture retrieval methods rarely consider esti-

mating the anomaly instead of the retrieval of the absolute
value. This is actually a classical approach when using a
statistical model: predicting the change (second order) with
respect to the mean state instead of predicting its absolute
value (first order). Of course, the NN approach assumes that

the mean state is known. A large number of local studies
implicitly use this principle, but when working at global
scales, the mean state of soil moisture content is not
available. Furthermore, the mean state value is also of
interest. However, if a reliable data set of soil moisture
was available in the future for the training of the NN, such
mean state could be used as well, and our prediction
technique would greatly benefit from this information.
The mean state is not used in this study.

4.2. Univariate Prediction Results

[25] In the first experiment, we use a univariate NN
model: only one NN input (i.e., a particular satellite obser-
vation) and one output. All the satellite observations are
individually and successively considered as inputs: the
passive microwave measurements from SSM/I, the ERS
active microwave observations, the IR-derived normalized
Ts amplitude, and finally the AVHRR NDVI.
[26] Table 2 provides the RMS errors for the prediction of

the NCEP and ECMWF soil moisture estimates, together
with the correlation coefficient between the predicted and
desired soil moisture.
[27] The RMS error is lower for ECMWF, but the

correlation coefficient is larger for NCEP. This suggests
that the NCEP soil moisture is more related to the satellite
observations, but that its variability is larger than that of
ECMWF. The correlations between the individual satellite
observations and the soil moisture from NCEP or ECMWF
(Table 1) have been considerably increased by transforming
the satellite observation into a soil moisture estimate using
the NN model. The nonlinearity of the NN applied to the
satellite observation allows a better fit to the soil moisture.
This indirect correlation between the observations and the
soil moisture estimates (through the prediction) can be
considered as a nonlinear correlation, in contrast to the
direct linear correlation coefficient previously presented.
[28] The best predictors are the IR normalized Ts diurnal

cycle amplitude and the active microwave measurements.
The NDVI information is next. The passive microwave
emissivity polarization differences are also acceptable pre-
dictors, even though they were not linearly correlated with
the soil moisture: The NN model manages to extract non-
linearly the soil moisture information through the indirect
vegetation/soil moisture relationships.
[29] The behavior of each univariate NN is illustrated in

Figure 3. These curves represent how a NN with a single
input (a satellite observation) changes its estimation of the
soil moisture when the satellite observation is modified.
Comparing all such univariate NN models provides a
powerful quantification of information content of each
satellite observation separately. Solid lines (dashed lines)
represent the NN mapping for the NCEP (ECMWF) soil
moisture estimates. The distribution of the satellite obser-
vations is represented below each mapping curve to indicate
where the data are concentrated in the range of variability.
Once trained, the neural networks are fixed, and by feeding
each NN with the whole variation range of its particular
input, it is possible to characterize the NN mapping. This
makes it possible to analyze the NN, in particular the
sensitivity of its outputs with respect to its inputs, and to
measure the nonlinearity of the model. It is also a way of
analyzing the data sets used to train the NN: Since the NN is

Table 2. Univariate Prediction Results

Satellite
Observation

RMS
NCEP

Correlation
NCEP

RMS
ECMWF

Correlation
ECMWF

Passive MW SSM/I e19V-H 0.072 0.592 0.060 0.578
Passive MW SSM/I e37V-H 0.074 0.561 0.061 0.542
Active MW ERS small angle 0.062 0.721 0.057 0.633
Active MW ERS large angle 0.062 0.722 0.055 0.654
IR normalized Ts amplitude 0.059 0.753 0.057 0.633
NDVI 0.065 0.686 0.059 0.593
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able to represent any continuous function with a high
accuracy, the link found by the NN between the satellite
observations and the soil moisture can be considered to be
near optimal. Furthermore, the link is only determined by
the relationships included in the data sets.
[30] The behavior of the univariate NN is coherent with

the correlation and percentage of variance explained, pro-
vided in Table 2. Of course, the gradient of the curve in
these figures is not the only pertinent information to
consider to quantify the prediction power of a particular
variable; the prediction can be more or less concentrated
along this curve. The smoothness of the NN’s behavior

Figure 3. Satellite observations for (a) active MW ERS large angle, (b) active MW ERS small angle, (c)
vegetation index from NDVI, (d) IR Normalized skin temperature diurnal cycle amplitude, (e) passive
MW SSM/I Emissivity 19V-H, and (f) passive MW SSM/I Emissivity 37V-H, showing (top) monovariate
NN behavior (solid lines for NCEP soil moisture estimates and dashed lines for ECMWF) and (bottom)
satellite observation probability distribution function (PDF).

Table 3. Multivariate Prediction Resultsa

Satellite
Observation

RMS
NCEP

Correlation
NCEP

RMS
ECMWF

Correlation
ECMWF

IR normalized Ts amplitude 0.059 0.753 0.057 0.633
Active MW ERS small angle 0.055 0.792 0.054 0.676
NDVI 0.052 0.819 0.052 0.704
Active MW ERS large angle 0.051 0.826 0.051 0.724
Passive MW SSM/I e37V-H 0.050 0.832 0.050 0.735
Passive MW SSM/I e19V-H 0.050 0.832 0.050 0.737

aAt each line, an additional source of satellite information is added.
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indicates that the learning phase performed satisfactorily,
avoiding overtraining and overparameterization. Active
microwave from ERS and IR normalized Ts diurnal cycle
have the largest gradients, which means that these two
information sources respond well to soil moisture varia-
tions from both NCEP (solid lines) and ECMWF (dashed
lines). However, the gradients are stronger for NCEP
than for ECMWF, which confirms the larger variability
of the NCEP soil moisture values. The NDVI response is
rather linear over the whole NDVI range. The passive
microwave variations are again opposite to what the
theory predicts, with a decrease of the emissivity polar-
ization difference with increasing soil moisture: Variation
of the vegetation density is obviously the dominant
factor.

4.3. Multivariate Prediction Results

[31] Since soil moisture is related to satellite observa-
tions through a variety of intricate contributions and
indirect relationships, adding together these different sat-
ellite measurements is important: Each one being sensi-
tive to different aspects of the surface can provide
different information. An ascending scheme to add up
predictors in the order of their combined importance is
developed here.
[32] In Table 3 we started with the best univariate NN

from Table 2 (lowest RMS), i.e., with the IR normalized
surface skin temperature diurnal cycle amplitude as predic-
tor. Then, an ascendant procedure is adopted to add up,
iteratively, the next best predictor. Each one of the remain-
ing predictors is then added to the first one. A NN is tested
with each of these different combinations of two inputs. The
best NN is used to determine the best combination of two
predictors. This scheme is repeated for determining the next
best combined predictors.
[33] Using this ascending aggregation of predictors, the

information content used by the NN increases: The RMS
error on soil moisture is reduced from 0.059 to 0.050 for
NCEP and from 0.057 to 0.050 for ECMWF, and the
percentage of variance explained increases from 0.75 to
0.83 for NCEP and from 0.63 to 0.73 for ECMWF. After the
addition of three or four predictors, neither the RMS errors
nor the correlation coefficients are significantly improved
because the information becomes redundant. However,
every piece of information should be used when available:
This better constrains the statistical model from satellite
observations to soil moisture and therefore makes the
solution more robust. In some locations, one or multiple
satellite observations can be missing (for example, in India
the surface skin temperature is missing). A different NN
model, with different inputs, is actually defined for each one
of these cases: The maximum number of pieces of infor-
mation is thus exploited to constrain the model and com-
pensate for missing data from any particular instrument,
while reducing discontinuity between regions (different
satellite measurements being available for different
regions).
[34] An example of prediction using the NN scheme is

presented in Figure 4a, for July 1993: The NCEP and
ECMWF reanalyses are shown together with the prediction
and the difference maps. The large-scale structures of the
soil moisture fields are well reproduced with the satellite

observations. The gradients from dry regions to humid ones
are consistent with expectations, although large errors
(differences) are present in specific regions, especially for
the NCEP reanalyses. These problems will be discussed in
the next section. The range of the predictions is smaller
than the range in the original reanalyses. This can be
explained: Much information is actually missing to describe
all the soil moisture variability. When such factors are
missing, the NN model, being a statistical model, describes
the mean behavior in the training data set, and this tends to
reduce extreme values.
[35] Figure 5 shows the RMS error statistics for the 2

years of data. Results are quite good, with a relatively
uniform error over the globe for ECMWF data. For NCEP,
the large structures in the errors already mentioned for the
prediction sample given in Figure 4 are shown again. These
regions actually correspond to known NCEP model prob-
lems (see Section 5.1).
[36] In order to check if the local-scale variability is

also correctly reproduced by the NN model, time series of
soil moisture are presented in Figure 6 for both NWP
models and the satellite estimates. This time series is for
an in situ station in India already analyzed in part 1
[Prigent et al., 2005]. The soil moisture time variations
predicted from the satellite data set are very similar to the
corresponding NCEP and ECMWF ones. The NN method
is not only capable of reproducing the large-scale spatial
and temporal patterns (for which the NN scheme has been
developed); it can also accurately describe the soil mois-
ture local variations.
[37] Focusing on a smaller range of variability could

improve the quality of the statistical prediction scheme.
For example, various models could be set up for different
types of vegetation or for different climate regimes. An
alternative could also be to specialize NN models for
different ranges of soil moisture content. We saw in section
3 that such filtering of data can significantly improve the
correlations between the soil moisture and the satellite
observations. However, thanks to its nonlinearity, the NN
model has different sensitivity depending upon the situation.
The NN is able to recognize the various ‘‘regimes,’’ to
change the relationships’ predictors/predictands accordingly
and, as a consequence, to yield good prediction statistics
globally. A linear model cannot adapt itself to all the
different and sometimes contradictory situations encoun-
tered over the globe. Using the spatial variability between a
variety of locations, the NN is also able to address the time-
variability in a particular location. This is an enormous
advantage of this method. For example, since the soil
moisture is being predicted indirectly from information on
the vegetation, with the vegetation and soil moisture corre-
lations negative or positive depending on the situation,
some studies are only able to predict soil moisture when
they are local and because the mean state of soil content is
already known. The general approach developed here pro-
vides coherent results all over the globe. This is valuable for
various reasons: (1) If the scheme can be tested in some
locations, the model can be applied with confidence in other
locations because no tuning to local conditions is per-
formed, (2) the model can be used to check the consistency
of a land surface global model outputs (see next section),
(3) the sensitivity study is more general than a local study,

D11103 AIRES ET AL.: SOIL MOISTURE FROM SATELLITE

9 of 14

D11103



Figure 5. RMS error for the prediction of monthly (a) NCEP and (b) ECMWF soil moisture. Statistics
are performed for 1993 and 1994.

Figure 6. Time series of soil moisture from NCEP (respectively ECMWF), and predicted from satellite
observations, together with in situ measurements. Station is over India.
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(and 4) the conclusions of the sensitivity study can be
directly used for satellite observation assimilation.

5. Applications of the NN Model

5.1. Consistency Checking

[38] The NN is a statistical model that allows for the
characterization of complex relationships among variables;
it is a multivariate and nonlinear model by nature. We have
defined such a model to link satellite observations to soil
moisture. These relationships have been examined in
comparison to in situ measurements [Prigent et al., 2005]
and in terms of large-scale regional pattern over the globe
(section 3).
[39] The NN model describes the global relationships

between the satellite observations and the NWP soil mois-
ture reanalysis. As such, in (smaller) areas where the
relationships between the satellite observations and the
reanalysis are anomalous (with respect to the global rela-
tions) the NN model can identify potential consistency
problems in the reanalysis model: Comparisons between
the NN model outputs derived from the satellite observa-
tions and the land surface model outputs should highlight
the problematic regions. Any given soil moisture data set
should be consistent with satellite observations. Since
global relations formed with the reanalysis soil moisture
values resemble the relations formed with in situ data, we
can conclude that the qualitative validity of the model soil
moisture treatment is high. In this way, the NN can be used
as a validation/consistency check. Any given soil moisture
data set can be confronted with the satellite measurements
using this methodology to detect incoherencies in it. This
NN consistency test is only a necessary condition for the
quality of a soil moisture data set; it is not a sufficient
condition. The set of satellite observations that we use is
large and covers many aspects of surface characteristics: It
represents a strong constraint on the data set.
[40] RMS prediction errors over the two years are pre-

sented in Figure 5 for both NWP reanalyses. As mentioned,
these statistics show that the ECMWF soil moisture seems
to be more coherent with the satellite observations than
NCEP for which large errors appear in some areas. A region
of large errors for NCEP in South America, with a north/
south orientation, around 15�S west of the Andes is espe-
cially noticeable. It corresponds to an underestimate of soil
moisture by the model in this area (see Figure 4). The NCEP
land surface modelers were asked about this feature. It
corresponds to a known problem of the NCEP model (W.
Ebisuzaki, personal communication, 2002) caused by a
precipitation deficit in the model in this region, especially
during northern winter. The difference between observed
precipitation and model precipitation exhibits a similar
pattern (not shown). Soil moisture is adjusted in the model
to correct for this problem: For a given pentad, the precip-
itation deficit is added to the top layer soil moisture during
the next pentad (equal amounts every 6 hours). However,
such a correction is not perfect, and some problems are still
present leading to soil moisture underestimation.
[41] The soil moisture/precipitation correction should

reduce the error caused by a bad model precipitation.
However, it is not sufficient, especially when the problem
is severe. See Kanamitsu et al. [2003] for a better descrip-

tion of the NCEP soil moisture. This example illustrates
how the methodology is able to identify regions of the globe
that are not consistent with the satellite observations due to
difficulties in the model. Similar analysis could be applied
to other land surface model outputs, such as the GSWP2
products that will soon be released.
[42] Other areas that are particularly affected by large

errors are mountainous regions and the seasonal wetlands.
In mountainous regions (see the Andes, for example, for the
ECMWF retrieval), two main factors can contribute to the
errors. First, the satellite data in the microwave domain,
both active and passive, are sensitive to the topographic
roughness, and this effect is likely to contaminate the
retrieval. Second, in these regions of high spatial heteroge-
neity, the NWP models are generally less reliable. It can
also be noted that for the month shown in Figure 5 (July),
part of the Andes are snow covered.
[43] Extent and seasonality of the wetlands can be deter-

mined by a combination of satellite data [Prigent et al.,
2001], mostly driven by the sensitivity of the passive
microwave observations to the presence of standing water.
However, the wetland areas are not always well character-
ized by the NN (see, for instance, the Orinoco region in
Venezuela with ECMWF). The origin of this problem
comes from the model data (ECMWF or NCEP) used to
train the NN: In some locations, the wetland is recognized
by the model, but in other wetland locations, the model soil
moisture is not affected. This introduces an incoherency in
the data set to train the NN. As a consequence, the NN does
not systematically detect the wetland areas, although these
satellite observations already showed the required sensitiv-
ity to characterize the wetland areas [Prigent et al., 2001].
This confirms that our technique is, in the current config-
uration, a consistency checking technique and not a definite
retrieval method. As a consistency checking technique, the
approach succeeded in showing that the model is not
consistent in its treatment of the wetland areas.

5.2. Variational Assimilation

[44] We showed that this set of satellite observations can
provide interesting information about the soil moisture. This
information could be a very important constraint for land
surface models. Variational assimilation is a technique
designed to introduce information from observations into
a numerical model. This technique requires a link between
the space of the model variables (geophysical variables) and
the space of the observations (satellite measurements).
[45] As already mentioned, there does not currently exist

an adequate radiative transfer model to relate the satellite
observations directly to the soil moisture as for other remote
sensing applications (for instance, satisfactory radiative
transfer models exist to reproduce the water vapor absorp-
tion in the atmosphere for water vapor profiling from
satellite data). So how can this information be used in the
framework of variational assimilation in land surface mod-
els? Since a direct physical relationship cannot be used, we
propose to use a statistical relationship instead. Actually,
each observation introduced into a variational assimilation
scheme is stochastic by nature since uncertainty information
needs to be associated with each assimilated observation.
This is why there is no limitation in using a statistical link
instead of a physical relation other than the accuracy of the
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statistical link or the accuracy of the uncertainties associated
to this statistical link. A neural network, as described in
earlier sections, is an adequate candidate to model such a
statistical link: The model is nonlinear, can describe highly
complex relationships, and is a statistical model by nature
[Aires, 2004], and uncertainty estimates can be specified in
its outputs [Aires et al., 2004a]. Furthermore, once this
statistical model is generated, it can be analyzed in terms of
its Jacobians [Aires et al., 1999, 2004b] which provides
extremely important additional information that insures the
physical significance of the statistical constraint on the
surface model.
[46] The general formalism of a 4-D variational assimi-

lation scheme uses a cost function to combine information
from observations and from the numerical model, weighted
by the uncertainty estimates for both of these sources of
information,

J1 x0ð Þ ¼ 1

2
x0 � xb0
� �T

B�1 x0 � x0
b

� �

þ 1

2

Xn

i¼0

Hi x tið Þð Þ � yið ÞTR�1
i Hi x tið Þð Þ � yið Þ; ð1Þ

where x is the state vector, the ti are the observation times, i
is the corresponding time index, yi are the vector of
observations, Hi is the ‘‘observation operator,’’ Ri is the
observation error covariance matrix (matrices are indicated
in bold) that includes measurements and representativeness
errors (i.e., null-space error), and B is the background error
covariance matrix for the background x0

b (often from short-
range forecast). The assimilation scheme described in this
paper is 4-D, but the main comments would be valid for a
simpler 1-D variational scheme too.
[47] This cost function is minimized to find the optimal

state x0. This is generally done by a gradient descent
algorithm and requires the computation of the Jacobian of
expression (1),

5J1 x0ð Þ ¼ B�1 x0 � x0
b

� �
þ
Xn

i¼0

HT
i x tið Þð ÞR�1

i Hi x tið Þð Þ � yið Þ:

ð2Þ

Estimating (2) requires the calculation of the tangent-linear
operator of the forecast model and the Jacobians (or adjoint
model), Hi, of the observation operator Hi [Le Dimet and
Talagrand, 1986].
[48] If the observations yi are satellite measurements, the

observation operator Hi is a radiative transfer model. Since a
forward radiative transfer model linking surface parameters
and satellite observations is not currently reliable enough, a
statistical model, using for example a NN model, could be
used instead. A statistical model such as a NN can be used
for such a forward direct model, but obtaining the Jacobians
of the NN forward model can be difficult [Aires et al., 1999;
Chevallier and Mahfouf, 2001], even if this is possible in
some circumstances [Aires et al., 2004b]. Furthermore,
using such an approach would mean that we add the
uncertainties of the forward model (to go from the state
variables to the observations space) to the uncertainties of

the Jacobians of this forward model (to go from the
observations space to the state variables space).
[49] Instead of this traditional approach, we suggest using

the inverse model defined in section 4. This has various
benefits: (1) It avoids the estimation of the Jacobians of the
neural network model, (2) it does not add up uncertainties of
the forward model with the uncertainties of the Jacobians,
and (3) it allows one to work directly on the state variables,
which are more directly related to the numerical model. In
order to assimilate the outputs of our inverse model, the cost
function becomes

J2 x0ð Þ ¼ 1

2
x0 � xb0
� �T

B�1 x0 � x0
b

� �

þ 1

2

Xn

i¼0

x tið Þ � xi
rð ÞTRi x tið Þð Þ�1

x tið Þ � xri
� �

; ð3Þ

where xi
r = NN(yi) is the inversion of the observations, yi,

into the state space of the xi. It should be noted that we
introduce here a dependence on the situation x(ti) for the
observation error covariance matrix Ri. An approach to
estimate the uncertainties of the NN predictions xi

r in terms
of an error covariance matrix has been developed by Aires
[2004] and Aires et al. [2004a]. This is particularly
interesting since it allows the variational assimilation
system to give more weight to the observations when the
NN inversion is reliable, and less weight when the inversion
is less reliable.
[50] The Jacobian of (3) required for the minimization is

simply

5J2 x0ð Þ ¼ B�1 x0 � x0
b

� �
þ
Xn

i¼0

Ri x tið Þð Þ�1
x tið Þ � xi

rð Þ: ð4Þ

A benefit of using the inverse statistical model instead of the
forward version is that the assimilation is performed in the
space of the numerical model state variables. It is known
that defining a precise soil moisture quantity is difficult and
this can be rather different from what would be used by a
radiative transfer model. In fact, the meaning varies from
model to model. By using the state variables of the
particular numerical model during the training of the NN,
we force coherence between the two soil moisture
definitions. The assimilation scheme enforces at the same
time: (1) a coherency of the state variables xi, and (2)
an external constraint for consistency with satellite
observations.
[51] Another advantage of this approach is its flexibility.

Any additional satellite observations can easily be used by
the NN scheme: The statistical relationships linking the state
variables of the numerical model would be even more
complex and constraining for the solution. This variational
assimilation application of the NN model defined in this
paper will be the subject of a future study.

6. Conclusions and Perspectives

[52] As suggested as early as 1980 by Schmugge et al.
[1980], an effective strategy for the detection of soil
moisture should merge in situ measurements, numerical
model, and remote sensing. This two-part study confirms
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that each one of these components is essential: In situ
measurements are used to analyze the sensitivity of satellite
observations and to validate numerical models (at least
locally), and remote sensing is required to initialize and
constrain the surface models [Robock et al., 2000].
[53] Satellite-derived quantities (active microwave back-

scattering, passive microwave emissivities, infrared-derived
Ts diurnal cycle amplitude) have been systematically and
objectively compared to the NWP soil moisture estimates
from ECMWF and NCEP. For each satellite observation
type, the optimum quantities have been previously derived
and selected. For the passive microwave, the emissivities
have been calculated [Prigent et al., 1997, 1998], instead of
using directly the brightness temperature that includes
modulation by the atmosphere and by the surface tem-
perature. The ERS scatterometer responses have been
estimated for both low and high incidence angles. The
infrared-derived Ts have been carefully analyzed to
extract the diurnal amplitude [Aires et al., 2004c] that
is normalized by incident solar flux accounting for cloud
effects.
[54] The objectives of this study were threefold: (1) to

investigate the sensitivity of the satellite observations to soil
moisture on a global basis, (2) to analyze the complemen-
tarity/interactions of the various satellite sources of soil
moisture information, and (3) to assess the potential of the
merging of such observations for soil moisture prediction.
[55] The sensitivity study conducted with the NWP soil

moisture reanalysis confirms the conclusion previously
derived from the analysis of satellite observations in
coincidence with in situ soil moisture measurements [see
Prigent et al., 2005]. At the monthly timescale, the relations
between the satellite measurements and the 10-cm soil
moisture variations are complex and often indirect, coming
through the correlation between vegetation and soil
moisture. Obtaining consistent behavior with both in situ
point measurements and large-scale NWP estimates gives
weight to our conclusions, in addition to validating the use
of the NWP soil moisture reanalysis as proxies for soil
moisture at a global scale.
[56] A synergetic analysis is conducted that benefits from

the optimum use of each instrument. A NN model is
developed to describe the link between the satellite obser-
vations and the NWP soil moisture. No radiative transfer
model today can accurately replicate this link on a global
basis. The NN model can reproduce the NWP soil moisture
outputs with a RMS error of 5% volumetric soil moisture;
this statistical performance is remarkable, close to what is
expected from the future SMOS mission retrieval (4%
volumetric soil moisture). Although the NN model cannot
be strictly seen as a retrieval algorithm because it is tightly
related to the NWP soil moisture, the fact that the indepen-
dent satellite observations can be related to model output
with this level of accuracy is a positive sign for relating
these observations to the real-world soil moisture. The fact
that the NN model is able to work on a global scale comes
from the synergetic use of observations from various wave-
lengths. Our study shows that a single source of information
is not enough for a soil moisture monitoring generalized for
all types of surfaces. We also show that the results of a
particular retrieval scheme designed locally cannot be easily
extrapolated to other surface conditions.

[57] Comparisons between the NN model output and the
NWP soil moisture reanalysis revealed some particular
problems with the NCEP land surface models that have
been confirmed by the modelers. This methodology can
thus help check the general consistency of output models
with satellite observations and diagnose specific problems
in them. We suggest using this approach to evaluate the
GSWP 2 outputs that will soon be available.
[58] Finally, a method is described to use the satellite-

derived NN model in the variational assimilation frame-
work. We propose that the soil moisture estimates from our
NN model should be assimilated instead of the raw satellite
observations, in particular to avoid the estimation of for-
ward model Jacobians that are even harder to obtain than the
forward model itself. This is particularly useful when a good
forward model does not exist. Another application in the
variational assimilation context is fault detection where the
soil moisture prediction by the numerical model would be
monitored with the satellite observations and our statistical
model.
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