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ABSTRACT

New semi-classical collision functions are used to compute the inelastic contribution to the impact electronic total width, by consid-
ering three interaction potentials (Coulomb Debye, Cut-off, and Ion Sphere). Numerical results are calculated for the neutral helium
6678 Å (21P◦−31D) and 5876 Å (23P◦−33D) visible lines. The lines corresponding to these transitions are isolated, and the plasma is
weakly non-ideal for all temperatures and electronic densities of interest. For electronic collisions, semi-classical perturbation theory
is sufficient and the impact approximation is well satisfied. The ion effects can be treated within the quasistatic approximation, and
the quasistatic ionic contribution is dominated by the polarization (or quadratic) r−4

p -interaction. To consider both the electron and the
ion effects, the microfield distributions and the complete reduced Stark profile of isolated line are calculated using different methods.
The computed total widths corresponding to the three interaction potentials are compared to the available experimental widths and
then approximated by appropriate formulae. The data we obtained provide an opportunity to test various approximations included in
the semi-classical perturbation formalism. They are also of interest for stellar spectroscopic diagnosis in dense atmospheres (white
dwarfs for instance).

Key words. atomic data – line: profiles – atomic processes

1. Introduction

Stark broadening of spectral lines by interactions of radiating
atoms or ions with perturbing electrons is of great importance
for a number of astrophysics applications. It is found to be a re-
liable tool for characterizing strongly coupled plasmas that have
become experimentally more accessible in recent years. This re-
quires, in practice, a detailed knowledge of the various govern-
ing atomic processes, especially for dense plasmas where the
screening effects are not negligible (Song & Jung 2003). To de-
scribe the interactions between the perturbing electrons and the
emitting atoms in these non-ideal plasmas, we may use either the
Cut-off VC (Ben Nessib et al. 1997) or the Ion Sphere models V IS

(Salzmann & Szichman. 1987; Gutierrez 1994; Jung & Yoon
2000a), where appropriate corrective terms for the Coulomb po-
tential are introduced.

In a previous paper (Ben Chaouacha et al. 2004), we modi-
fied the standard formalism of Stark impact broadening of spec-
tral lines by using the cut-off VC and the ion sphere V IS inter-
action potential instead of the Coulomb-Debye VCD one, which
should be more appropriate at high densities. Thus we have de-
rived new semi-classical collision functions for both the transi-
tion probability and the cross section in the case of electron-atom
collisions. These new functions take into account the plasma
screening effects by introducing a reliable cut-off in the interac-
tion potential when the electron-atom distance exceeds a certain
radius. They will be used here in order to compute the inelas-
tic contribution to the impact electronic total width: the upper

cut-off at RD (Debye length) for the Coulomb Debye model has
been replaced by Rc (mean distance between particles) for the
Cut-off and the Ion Sphere models; see below.

The purpose of this paper is to validate our theoretical ap-
proach. Our numerical results will be compared to experimental
widths. Helium is selected as an example because of its impor-
tance in stellar spectra, and because it is a simple atomic sys-
tem so that the wave functions are calculated with fair accuracy
(Griem 1964, 1974; Konjević et al. 2002).

In a recent paper, Omar et al. (2006) investigated Stark
widths of isolated neutral helium lines at electron densities less
than 5 × 1017 cm−3 using thermodynamic Green functions.

A detailed analysis of the broadening of helium spectral
lines of dense plasmas can be used to test our understanding
of correlation effects in these plasmas. The cases of the 6678 Å
(21P◦−31D) and 5876 Å (23P◦−33D) HeI visible lines are chosen
by considering the same conditions of densities Ne and temper-
atures T as the experiments of Gauthier et al. (1981) and Bücher
et al. (1995), and an upper cut-off at RD for the Coulomb Debye
model and at Rc for the Cut-off and the Ion Sphere models.

The impact inelastic electronic widths WCD
e,inel, WC

e,inel and
W IS

e,inel are obtained with the three different potentials, but the
contribution of the elastic electronic collisions WCD

e,el will be cal-
culated only with the Coulomb Debye model. Since the very
long-range collisions are not important for the elastic contribu-
tion, it is expected to be relatively weak for this line. In addi-
tion, it will be possible to consider that the results for the elastic
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contribution should not be very different in the case of the Cut-
off and the Ion Sphere potentials.

For the studied lines, the contribution of the collisions with
the ions of the plasma is important and cannot be ignored. It is
quasistatic at the considered densities, that are rather high (4 ×
1017 cm−3 < Ne < 9 × 1017 cm−3, for the 6678 Å line). The
adiabatic assumption is always valid for the ion broadening of
isolated lines. The quasistatic ionic contribution is dominated by
the polarization (or quadratic) r−4

p -interaction.
To consider both the ionic and the electronic effects, the total

width will be obtained from the Full Width at Half Maximum
(FWHM) deduced from the complete reduced Stark profile
jA,r(x) of isolated lines. The profile depends on the Debye shield-
ing parameter r and the quasistatic quadratic ion broadening pa-
rameter A which must be related to the impact electronic total
width; the associated microfield distribution Wr will be calcu-
lated with: (a) Baranger & Mozer’s method (1959, 1960); (b)
Hooper’s method (Hooper 1966, 1968a,b); and (c) the Analytic
Fitting Formulas (AFF) method (Potekhin et al. 2002).

The computed total widths WCD
tot , WC

tot and W IS
tot will be com-

pared to the experimental widths Wexp (Gauthier et al. 1981;
Bücher et al. 1995).

The results obtained in the present paper provide an opportu-
nity to test various approximations included in the semi-classical
perturbation formalism.

This paper is divided into five sections. In Sect. 2, we give
some theoretical background with the basic assumptions and
equations regarding: i) the non-ideality factor γ and the plasma
classification; ii) the isolated line approximation; iii) the valid-
ity criteria of the impact approximation; iv) the Stark broad-
ening impact theory of isolated lines; v) the main interaction
potentials describing the non-ideal plasmas; vi) the collision
functions associated with the inelastic cross-section and the tran-
sition probability; and vii) the numerical methods used to de-
rive the electrical microfield distributions. The validity criteria
of our investigated theoretical approach, as well as the applica-
bility range of the main governing parameters, are discussed in
this section. Section 3 deals with the description of the numerical
method used to calculate the different contributions to the width.
Section 4 discusses the effects of the parameters that govern the
different contributions to the width calculated for the considered
lines.

Then, we compare the three total widths WCD
tot , WC

tot and W IS
tot

with the experimental widths Wexp relative to the same transi-
tions (Gauthier et al. 1981; Bücher et al. 1995), and approximate
them with appropriate formulae. Section 5 summarizes the main
results and gives some related open problems.

2. Theoretical background

We present here a brief summary of the theory because Stark
broadening impact theory has been extensively developed since
the fundamental work by Baranger (1958a,b,c).

2.1. Non-ideality factor γ

Plasmas may be classified into different types, depending on
their temperature T and their electronic density Ne (Günther
et al. 1985; Ben Nessib et al. 1997). A plasma is ideal if the
interactions between particles of the medium can be neglected.
Non-ideality may be due to charge-charge, charge-neutral and
neutral-neutral interactions. At extremely high densities, atomic
valence electrons are shared by other atoms; such a dense plasma

is similar to liquid metals, though its free electrons are not nec-
essarily degenerate. This type of plasma is called non-ideal,
strongly coupled, non-Debye, or simply dense plasma.

Non-ideal plasmas cover the range of densities between
gases and solids. These may be obtained by gas plasma com-
pression or by extension and heating of solids and liquids. In
these conditions, the mean interaction potential energy Ep be-
tween charged particles is not small compared with their kinetic
energy Ek.

Contrary to low pressure plasmas, where the kinetic en-
ergy Ek of a particle is always high in comparison to the mean in-
teraction potential energy Ep between two neighboring charged
particles, in dense plasmas it is of the same order of magnitude
or even lower than Ep. Thus, the so-called non-ideality parame-
ter γ that characterizes this behavior:

γ =
Ep

Ek
, (1)

is expected to be greater than unity (γ ≥ 1).
At high neutral density, non-ideality due to neutrals is also

possible, but if we restrict ourselves only to charged-particle in-
teraction, the potential energy Ep may be expressed as (Vitel
et al. 1990):

Ep =
Z2e2

4πε0r0
, (2)

where the radius r0 is related to the ion charge Z and the electron
concentration Ne by:

r0 =

(
3Z

4πNe

) 1
3

· (3)

The velocity average v involved in the electron kinetic energy
(Ek =

1
2 mev

2), is expressed as (Freudenstein 1978):

v = (3kBT/me)1/2, (4)

which is expected to be convenient, because the most important
contribution to the widths comes from high velocities due to the
properties of the collision functions a(z). The non-ideality fac-
tor γ is expressed as follows:

γ = 2.693 10−3 (Ne)1/3

T
· (5)

The electronic density Ne is expressed in cm−3 and the plasma
temperature T in Kelvin. For a constant plasma density Ne, the
plasma temperature T decreases when the non-ideality factor γ
increases. Hence, the main physical characteristics are expected
to be significantly different from one plasma type to another,
which needs systematically different theoretical and experimen-
tal approaches to study their spectral responses.

Depending on the value of γ, the considered plasma may be
qualified either as ideal, weakly coupled, coupled, or strongly
coupled. Unfortunately, a γ-range relative to each of these
plasma types is not yet precisely defined in the literature, which
may be ascribed mainly to the lack of sufficient experimen-
tal data, especially for both the coupled and strongly coupled
plasmas. In modern plasma experiments, γ may approach unity,
whereas in stellar matter it can be much larger. In these cases,
correlations between plasmas particles should not be neglected.

Table 1 gives the values of the non-ideal factor γ for the stud-
ied lines, calculated by considering the conditions of densities Ne
and temperatures T of the experiments of Gauthier et al. (1981)
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Table 1. Validity criteria for the isolated line approximation and the impact approximation, calculated for the considered HeI transitions. γ: non-
ideality factor – Ne/Nl: ratio of the electronic density to the maximum electron density for which the line may be considered as isolated – Ce

impact:

impact approximation validity criterion for the electronic collisions – Ci
impact: impact approximation validity criterion for the ionic collisions –

Cs,e
impact: impact approximation validity criterion for the strong electronic collisions – Cs,i

impact: impact approximation validity criterion for the strong
ionic collisions.

Transition T Ne γ Ne/Nl Ce
impact C i

impact Cs,e
impact Cs,i

impact

(104 K) (1017 cm−3) (10−3) (10−3)

(21P◦−31D) 1.35 2.0 0.116 0.19 38.3 3.72 4.7 2.0
6678 Å 1.78 3.3 0.104 0.29 45.0 5.42 5.5 3.0

1.86 4.9 0.114 0.35 59.5 7.65 7.9 4.4
1.93 6.2 0.119 0.44 68.6 9.14 9.4 5.5
2.01 6.9 0.118 0.46 72.3 9.92 10.1 6.0
2.13 8.4 0.119 0.56 79.8 11.34 11.4 7.1
2.09 8.9 0.124 0.58 84.8 11.76 12.4 7.7
2.28 10.0 0.118 0.64 86.4 12.82 12.6 8.3
2.32 10.7 0.119 0.68 89.8 13.41 13.2 8.8
2.40 11.8 0.119 0.72 94.0 14.27 14.0 9.5
2.44 13.2 0.121 0.79 100.6 15.13 15.4 10.5
2.59 13.7 0.116 0.81 99.0 15.79 14.9 10.7
2.55 14.9 0.121 0.91 106.4 16.27 16.5 11.6

(23P◦−33D) 4.46 4.9 0.157 0.07 19.4 0.80 3.0 0.4
5876Å 5.20 10.2 0.200 0.15 34.7 1.55 5.5 0.8

5.21 12.0 0.211 0.18 40.3 1.82 6.4 0.9
5.60 18.4 0.244 0.26 56.5 2.70 9.2 1.4
6.35 24.9 0.270 0.35 67.9 3.44 11.1 1.8

and Bücher et al. (1995). As γ ≈ 0.12 for the 6678 Å line and
γ < 0.3 for the 5876 Å line, the considered plasmas are weakly
non-ideal for these densities.

Another physical parameter allowing a quantitative compar-
ison of the different plasma types is the number of particles in
the Debye sphere, ND, which is defined by:

ND =
4
3
πR3

D(Ne + Ni), (6)

where Ni = Ne designates the ion density and RD the Debye
radius, which is expressed by:

RD =

(
kBT

4πNee2

) 1
2

· (7)

Weakly non-ideal means that there is approximately one charged
particle in the Debye sphere (ND = 1). Strongly non-ideal means
that there are about one tenth or fewer particles in the Debye
sphere. This condition implies that the Debye theory is no longer
valid.

2.2. Isolated line approximation

It is not necessary to discuss uncertainties arising from all the ap-
proximations involved in the broadening calculations, since the
criteria for their application are given in detail elsewhere (Sahal-
Bréchot 1969a,b). However, we recall the conditions of valid-
ity for the isolated line approximation (Sahal-Bréchot 1969a,b;
Dimitrijević & Sahal-Bréchot 1984a,b).

A line is isolated if non-degenerate energy levels broadened
by collisions do not overlap. Denoting by 2wi and 2w f the cor-
responding level widths, we can express the specified condi-
tions by:

2wi ≤ ωii′ , 2w f ≤ ω f f ′ , (8)

where ω j j′( j = i, f ) is the energy distance to the nearest per-
turbing level [ω j j′ = min(ωii′ , ω f f ′ )]. If w ≤ ω j j′ , where w is
the half-width of the line, the line can be considered as isolated.
Thus, if we want to make certain that the line is isolated, we must
verify that (Dimitrijević & Sahal-Bréchot 1984a,b):

2w(Å)≤ C/1016, (9)

where

C = 108λ2(Å)
[
(E j − E j′)(cm−1)

]
. (10)

If half-widths are available for a certain electron density Ne (e.g.,
1016 cm−3, as reported in Dimitrijević & Sahal-Bréchot 1984a,b,
1990), an electron density Nl (cm−3) is defined as:

Nl =
C

2w(Å)
× Ne

1016
· (11)

So, for an electron density lower than Nl, the line can be treated
as isolated in the core, even if weak forbidden components due
to the failure of this approximation still appear in the wings

(Dimitrijević & Sahal-Bréchot 1984b). If
Ne

Nl
> 1 we have to

treat the problem of overlapping lines.
For the 6678 Å line, the energy distance between the upper

level (31D) and its nearest perturbing level (31P◦) is ∆E j j′ =

100 cm−1, so C = 4.5 × 1017, while for the 5876 Å line, ∆E j j′ =

537 cm−1 and C = 1.8 × 1018. Table 1 shows that the ratio
Ne

Nl
is

less than unity, especially when the temperature decreases. Thus
the lines corresponding to these transitions are well isolated in
these conditions.

2.3. Validity criteria of the Impact approximation

As already discussed by Baranger (1958c, 1962) and
Sahal-Bréchot (1969a,b), the impact (or binary) approximation
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is valid when the average effect of collisions is weak, or equiv-
alently when strong collisions are separated in time. Following
Baranger (1958a,b,c), the condition of validity of the impact ap-
proximation has been rederived by Ben Nessib et al. (1996):

Cimpact = N × π4
3
ρ3

typ ∼ Nπρ3
typ � 1, (12)

where ρtyp = τtypv is a typical impact parameter for strong colli-
sions and N is the density of the perturbers.

A typical value of the impact parameter ρtyp can be ob-
tained by

2w = Nvπρ2
typ. (13)

The mean duration of a typical collision, the so-called collision
time τtyp, must be very much smaller than the mean interval

∆T =
1

2w
between two collisions:

τtyp =
ρtyp

v
� 1

Nvπρ2
typ

, (14)

that gives:

Nπρ3
typ � 1. (15)

This means that the collision volume π 4
3ρ

3
typ must be very small

compared to the inverse of the density of the perturbers N. In
other words, there is only one particle at the same time in the
collision volume. This condition is well verified by electronic
collisions for a large range of densities. However, at high densi-
ties (Ne ≥ 1018 cm−3), one must check if the validity criterion of
the electron-impact approximation (ρw/v)� 1 is fulfilled or not.
This is a general problem of dense plasmas, since the criterion
cannot remain fulfilled with increasing densities for a constant
temperature (Griem et al. 1962; Griem 1974).

If the plasma is strongly non-ideal (high density and low
temperature), ρtyp is of the order of the thermal de Broglie length

λ =
�

mev
. Thus, for strongly non-ideal plasmas, the validity cri-

terion for the impact approximation can be written as follows
(Ben Nessib et al. 1997)

T N−2/3
e >

(
4π
3

)2/3
π�2

8mekB
· (16)

So, if the temperature is expressed in Kelvin and the density
in cm−3, this condition becomes T N−2/3

e > 9.02 × 10−12.
This allows Ben Nessib et al. (1997) to construct a diagram

representing the different plasma conditions, which shows that
there is a region where the impact approximation is valid for a
strongly non-ideal plasma.

Table 1 shows the impact validity criteria for the two stud-
ied lines, by considering the same conditions of densities Ne and
temperatures T as the experiments of Gauthier et al. (1981) and
Bücher et al. (1995) and the Coulomb Debye model with an up-
per cut-off at RD.

For the 5876 Å line, the impact approximation is always ful-
filled for collisions with electrons: the corresponding value of
Ce

impact is small compared to unity. For the 6678 Å line, Ce
impact is

of the order of 0.1 which corresponds to the limit of the impact
approximation. As reported in Gauthier et al. (1981), the impact
approximation for the treatment of the electrons breaks down at
densities greater than 1018 cm−3 .

Since the strong electronic collisions are well separated in
time (for the 6678 Å line, Cs,e

impact are of the order of 5 × 10−3 to

10−2), the impact approximation remains valid. Weak collisions
can be treated by the perturbation theory, and thus their contri-
butions are additive, allowing us to treat them with the impact
theory (Baranger 1958a,b,c, 1962), even if Ce

impact is not very
small compared to unity.

Concerning collisions of neutral atoms with ions, the im-
pact approximation is most often valid in the physical condi-
tions of hot stellar atmospheres where the density is weak (1010

to 1014 cm−3) and where the ion perturbers are light, such as pro-
tons and He+ ions. For example, at Ne = 1013 cm−3, one obtains
Ci

impact = 1, 66 × 10−4. In laboratory experiments, the density

is higher (1016−1018 cm−3) and the perturbers are heavier (Ar+

for instance). At medium densities (1016 cm−3), ion dynamics ef-
fects are generally not negligible and have to be considered (Ben
Nessib et al. 1996). At high densities (1017 cm−3 and more), the
impact approximation breaks down and the quasistatic approxi-
mation must be applied. In the studied experiment, the density is
high (1018 cm−3 and more) and the quasistatic approximation is
reliable. We will show in Sect. 3 that the quadratic interaction is
predominant and the quadrupolar one is negligible.

2.4. Stark broadening impact theory of isolated lines

The semi-classical description has been extensively used for
Stark broadening calculations and for collisional transition prob-
abilities entering the statistical equilibrium equations for non-
Local Thermodynamical Equilibrium (N-LTE) studies. The cal-
culation procedure is well described elsewhere (Sahal-Bréchot
1969a,b). We recall the basic formulae leading to the evalua-
tion of electron impact-broadening parameters of isolated spec-
tral lines, within the framework of semi-classical perturbational
formalism.

Within the impact approximation, the profile is Lorentzian
for isolated lines. Overlapping lines are outside the scope of the
present study. The following set of equations was used for the
computation of the impact total electron width We (in angular
frequency units).

For the line corresponding to the transition between the ini-
tial level i and the final level f , the half-width w and the shift d
are given by Baranger’s formula (Baranger 1958c)

w + id = Ne

∫ ∞

0
v f (v)dv

∫ ∞

0
2πρdρ (17)

×
{
1 − 〈i| S |i〉 〈 f | S −1 | f 〉

}
AV
,

where w + id is a complex number (i2 = −1). Ne denotes the
electron density, S , the scattering matrix obtained for the atom-
perturber interaction corresponding to the impact parameter ρ
of the incoming electron and the relative velocity v, f (v), the
relative atom-perturber Maxwell distribution of velocities, and,
{...}AV , the angular average over the magnetic quantum numbers
which will not be detailed here.

Equation (17) is the general result to be used in all cases
where electron broadening is treated by the impact approxi-
mation. In the derivation by Sahal-Bréchot (1969a,b), the line-
width can be expressed in terms of elastic and inelastic con-
tributions. For the transition between the levels i(niliLiS iJi)
and f (n f l f L f S f J f ), the full width at half intensity We = 2we
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can be put in the form (Sahal-Bréchot 1969a,b; Dimitrijević &
Sahal-Bréchot 1984a,b, 1985)

We = 2we = Ne

∫ ∞

0
v f (v)dvσt(v), (18)

where the total cross-section σt(v) is defined by

σt(v) =
∑
j� i

σi j(v) +
∑
j′� f

σ f j′ (v) + σel, (19)

where j and j′ respectively denote the levels that perturb i and f .
The inelastic cross-sections σi j(v) (resp. σ f j′ (v)) are given

by an integration over the impact parameter ρ of the transition
probabilities Pi j(v, ρ) (resp. P f j′ (v, ρ)) as∑
j� i

σi j(v) = πR2
1

∑
j� i

Pi j(v,R1)

+

∫ RD

R1

2πρdρ
∑
j� i

Pi j(v, ρ). (20)

The expression for Pi j (resp. P f j′ ) is given within the first order
time dependent perturbation theory by an average over the initial
Zeeman states Mi and a sum over the final states M j (Seaton
1962)

Pi j(ρ, v) =
1

2Ji + 1

∑
Mi ,Mj

1
�2

(21)

×
∣∣∣∣ ∫ +∞

−∞

〈
niliJiMi |V(t)| n jl jJ j M j

〉
exp

(
i(E j − Ei)t

�

)
dt

∣∣∣∣2,
where V(t) denotes the interaction potential between the atom
and the charged perturber moving along a classical path at time t,
and Ei (resp. E j), the energy of the i (resp. j) level.

The elastic cross-section σel is given by

σel = 2πR2
2 +

∫ RD

R2

8πρdρ sin2 δ, (22)

with

δ =
(
Φ2

p + Φ
2
q

)1/2
, (23)

where the phase-shiftsΦp and Φq are respectively due to the po-
larization potential (∼r−4) and the quadrupolar potential (∼r−3)
parts (Sahal-Bréchot 1969a,b). We refer to the original papers by
Sahal-Bréchot (1969a,b) for the choice of the cut-offs R1 and R2.

The transition probabilities, the cross-sections and the im-
pact parameter are symmetrized, in order to ensure the unitarity
and the symmetry of the collision S-matrix. We refer to Seaton
(1962), Feautrier (1968) and Sahal-Bréchot (1969a,b) for details
of the symmetrization procedures.

2.5. Interaction potentials in plasmas

In the standard formalism of Stark impact broadening of spectral
lines and of cross sections, the electrostatic Coulomb potential is
used to describe the interaction between the perturbing electrons
and the emitting atom. It is well known, however, that the ex-
treme conditions of some plasma environments can drastically
alter transition rates from their values for the corresponding iso-
lated systems. Long-range Coulomb interactions are screened by
plasmas, leading to shorter-range interactions (Stewart & Pyatt
1966). The effect of the plasma was modelled in these colli-
sion studies by static screened interactions, the justification of

which requires some rather specific conditions (Weisheit 1984;
Scheibner et al. 1987). First, the reciprocal of the electron-ion
collision duration, 1/τei = νei, must be less than the plasma

(electron) frequency, νe = (
4πe2Ne

me
). If this condition is not

fulfilled, plasma screening of the target may not be accurately
represented by a static potential arising from the average elec-
tronic charge density in the ion’s vicinity. Second, substantial
screening of the electronic interaction is achieved only when the
threshold energy of the excitation,∆E, is less than hνe; otherwise
the bound electron’s motion is too fast to permit screening by
most of the free electrons. Furthermore, in the absence of plasma
screening, it is known that as the ratio of kBT/∆E increases, the
relative importance of ion-impact excitation increases with re-
spect to electron-impact excitation.

In the case of a weakly coupled plasma, the amount of the
Coulomb forces in the interaction energy may be defined by the
Debye-Hückel theory which corresponds to a classical treatment
of the charged particle interactions (Debye & Hückel 1923). In
standard Stark broadening calculations, the following approxi-
mation is most often used:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
VCD(t) =

Zpe2(Z + N)

rp

−Zpe2 ∑N
i=1

1
rip

; rp ≤ RD

VCD(t) = 0; rp > RD

, (24)

where rp denotes the distance between the perturber electron
and the emitter center, rip is the distance between the perturber
and a bound atomic electron, Zpe is the charge of the perturber
(Zp = −1 for an electron), Ze is charge of the radiating atom
(Z = 0 for a neutral atom), and N is the number of its elec-
trons. The two-particle Coulomb field is shielded by the ensem-
ble of surrounding electrons: the electronic correlations (screen-
ing effects) are taken into account by introducing a cutoff in the
interaction when the electron-atom distance exceeds the Debye
radius RD.

This Coulomb-Debye potential VCD is often a good approx-
imation for high temperature and low density plasmas, but it is
no longer valid at the limit of low temperatures and high den-
sities, where the mean electrostatic interaction energy is much
greater in magnitude than the mean kinetic energy of the ions.
For these non-ideal plasma conditions, the Coulomb Cut-off po-
tential VC is more suited to describe the interaction between the
perturber and the emitter, since it adds a corrective term as fol-
lows (Scheibner et al. 1987):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VC(t) =
Zpe2(Z + N)

rp

−Zpe2 ∑N
i=1

1
rip

(
1 − rp

Rc

)
; rp ≤ Rc

VC(t) = 0; rp > Rc

, (25)

where Rc designates a cut-off parameter assumed to be equal to
the Ion Sphere radius Rc = (3Z/4πNe)1/3 (Scheibner et al. 1987).

A reasonable model describing the strongly correlated plas-
mas that is widely used in the literature is one in which each ion
of charge Z is surrounded by a sphere of radius Rc containing Z
uniformly distributed free electrons. In this Ion Sphere picture,
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two corrective terms are added to the Coulomb model (Salzmann
& Szichman. 1987):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V IS(t) =
Zpe2(Z + N)

rp

−Zpe2 ∑N
i=1

1
rip

⎛⎜⎜⎜⎜⎜⎝1 − 3
2

rp

Rc
+

1
2

r3
p

R3
c

⎞⎟⎟⎟⎟⎟⎠ ; rp ≤ Rc

V IS(t) = 0; rp > Rc.

(26)

Several comments about the Ion Sphere potential V IS can be
made. First, for the calculated cross sections to be significant, the
binary collision picture must be valid, that is, strong collisions
must be separated in time. Second, the Ion Sphere model may
represent only the strong screening limit. Moreover, at short dis-
tances, electronic overlapping must be considered. Account of
these quantum effects has new consequences which may be ex-
plained quasi-classically as short-range inter-particle repulsion
forces. An effective repulsion is due to electron degeneracy, al-
though that last effect appears at very high densities (γ > 1).
However, under these conditions it becomes very difficult to de-
rive exact expressions for the associated potentials.

2.6. Collision functions

In the standard formalism of Stark impact broadening of spec-
tral lines and of cross sections, the Coulomb-Debye poten-
tial Eq. (24) is used. In addition, the integration over the time
Eq. (22) is performed from –∞ to +∞ and not from –tD to +tD,
tD being the time when the atom-perturber distance is equal to
the Debye length RD. Consequently, an upper cut-off at RD is
introduced at the impact parameter integration stage.

Under this condition, the integration over the time gives the
collision function for the transition probability, ACD(z) (Griem
et al. 1962; Sahal-Bréchot 1969a,b):

ACD(z) = z2
[
K2

0 (z) + K2
1 (z)

]
. (27)

K0(z), K1(z) designate the modified Bessel functions of the zero

and first order, and z =
ρωi j

v
, where v designates the electron

perturber velocity, ρ, the impact parameter, and ωi j =
Ei − E j

�
,

where Ei, E j correspond to the energies of the states i and j.
The integration of ACD(z)/z over the impact parameter z

gives the collision function for the total inelastic cross-section,
aCD(z) (Griem et al. 1962; Sahal-Bréchot 1969a):

aCD(z) = z[K0(z)K1(z)]. (28)

The corresponding functions for the Cut-off model (Ben Nessib
et al. 1997) are denoted by AC(z) and aC(z). Their expressions
are given in Ben Chaouacha et al. (2004).

The corresponding functions for the Ion Sphere model
(Ben Chaouacha et al. 2004, 2005) are denoted by AIS(z) and
aIS(z). Their expressions are given in Ben Chaouacha et al.
(2004, 2005).

As in the standard formalism of the Coulomb-Debye poten-
tial, the integration over the time Eq. (23) is performed from –∞
to +∞ and not from –tc to +tc, tc being the time when the atom-
perturber distance is equal to the Rc. Then an upper cut-off at Rc
will be introduced at the impact parameter integration stage.

For collisions with electrons, the parameter zc =
Rcωi j

v
is

expressed as (Sahal-Bréchot 1969a,b):

zc =
1
2

√
mp

me

∆Ei j

IH

√
IH

E
Rc, (29)

where mp is the proton mass, me is the electron mass, IH is the
ionization energy of hydrogen, ∆Ei j = 100 cm−1 for the 6678 Å
HeI line (31P◦ is the nearest perturber level of 31D). For T =
40 000 K and Ne = 1016 cm−3, E = 3

2 kBT = 42250 cm−1 and
Rc = 549a0. Thus a typical value for zc is 0.40.

2.7. Electrical microfield distributions

Because of the Stark effect, stochastic electric microfields have
an effect on optical and thermodynamic properties of a plasma.
Line shape calculations in turn require as input the electric mi-
crofield distribution at the emitting atom or ion.

Various approximate theories have been proposed to evaluate
the electric microfield distribution Wr. In this section, we sum-
marize the basic relations derived in the literature that are used
for the calculations presented in this paper.

For a wide class of spectral lines, the observed frequencies
(measured from line center) are sufficiently large that the ions
in the plasma are effectively stationary over the corresponding
radiation time. The emitting atoms or ions in plasmas are un-
der the influence of electric fields produced by relatively rapidly
moving electrons and slowly moving ions. This effect is asso-
ciated with the idea that the electric microfield acting on the
test particles is the sum of all the electric fields created by the
perturbing ions, on the scale of distances at which the quasi-
neutrality condition is not fulfilled. The radiator is immersed in
a statistically fluctuating field produced by the configuration of
the plasma during the time of emission; this is assumed short
compared to times in which the configuration changes signifi-
cantly. The Hamiltonian H(F) describing the usual static Stark
effect depends on the electric field strength F produced by the
perturbing ions. Hence the evaluation of the quasistatic broaden-
ing is reduced to determining both the Stark levels of H(F) and
the proper statistical distribution function W(F) of the perturb-
ing electric fields.

2.7.1. Baranger & Mozer’s distribution

The first calculations were made neglecting all interactions be-
tween charged particles (Holtsmark 1919; Margenau & Lewis
1959). Only the Coulomb electric fields of point ions were con-
sidered and assumed to be random and static. Then the distribu-
tion function is dependent only on the ion density and may be
written as (Griem et al. 1962; Griem 1974):

W(F) =
1

F0
WH

(
F
F0

)
=

1
F0

WH(β), (30)

where the normal field strength F0 is expressed by

F0 =
2.61e
4πε0

N2/3
e ≈ (4πNe/3)2/3e

4πε0
, (31)

for singly charged ions (we assume here that Ne = Ni, where Ni
is the ion density). When cgs units are used, 4πε0 = 1.

The Holtsmark distribution function WH(β) for the normal-

ized ion field strength β =
F
F0

is (Holtsmark 1919)

WH(β) =
2
π
β

∫ ∞

0
η exp(−η3/2) sin(βη)dη. (32)

In the calculation of WH(β), it has been implicitly assumed that
the perturbing ions were statistically independent and that the
electron screening is negligible. This assumption is justified for
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very hot or rarefied plasmas for which the Coulomb coupling
parameter γ is close to zero. However, at high charged parti-
cles densities where Stark broadening is important, interactions
between perturbers are not negligible, and the probability of a
given configuration of ions depends on the electrostatic interac-
tion energy between the ions. With relation to this problem, vari-
ous theories of the electric microfield distribution have been for-
mulated that are based mainly on a cluster expansion in powers
of density (Baranger & Mozer 1959; Mozer & Baranger 1960).
The primary aim of these efforts has been to include particle-
particle correlations to various orders and thus to improve the
original work done by Holtsmark (1919).

The corrected distribution function in which ion-ion correla-
tions and Debye shielding by electrons are taken into account is
expressed as (Griem 1974)

W(F) =
1

F0
Wr

(
F
F0

)
=

1
F0

Wr(β). (33)

Then the ion field strength distribution function Wr(β) at neutral
points and at singly charged ions is expressed by Griem (1974)

Wr(β) =
2
π
β

∫ ∞

0
ηAr(η) sin(βη)dη. (34)

Wr(β) depends on the ratio r of the mean distance between the
ions Rc and the Debye length RD, i.e.:

r = Rc/RD = 61/3π1/6(kBT )−1/2eN1/6
e , (35)

The Ar(η) function designates the Fourier transform of W(F)
(Griem 1974; Mozer & Baranger 1960):

Ar(η) =
4
π

∫
exp(iηF)W(F)

F2
dF. (36)

This function was calculated using an Ursell cluster integral ex-
pansion (Mozer & Baranger 1960) and takes the following form

Ar(η) = exp
[
−η3/2χ′(rη1/2) − ψ′(rη1/2)

]
, (37)

which is reduced in the Holtsmark limit with r = 0 to

A0(η) = exp(−η3/2). (38)

The two functions χ′ and ψ′ depend only on the variable rη1/2.
They represent, respectively, the contributions of one-body and
two-body clusters to the series expansion (Mozer & Baranger
1960).

2.7.2. Hooper’s distribution

In order to extend the theory to higher densities and lower tem-
peratures, Hooper (1966, 1968a,b) developed a new method
based on a collective-coordinate technique that allows for the
inclusion of all correlations to a high degree of accuracy. The
plasma is assumed as a system of N singly charged parti-
cles moving in a uniform neutralizing background. Each of
these N particles interacts with each other through an effective
potential which includes the effect of the ion-electron interac-
tions. The plasma is assumed to be in thermal equilibrium and
macroscopically neutral. The effect of the uniform neutralizing
background may be included by writing the potential energy of
the system in terms of its Fourier expansion, which makes a dis-
tinction between the Coulomb-Debye model and the correlated

models (Hooper 1966, 1968a,b). Then, the expression for the
microfield distribution Wr(β) is written as

Wr(β) =
1

2π
β

∫ ∞

0
T (t) sin(βt)tdt. (39)

To proceed further, this integral is treated by an Ursell cluster ex-
pansion technique similar to that employed by Mayer & Mayer
(1940) and Baranger & Mozer (Baranger & Mozer 1959; Mozer
& Baranger 1960). Although the general technique is similar, the
characteristic functions T (t), in terms of which the expansion is
made, are very different from those used by Mayer & Mayer
(1940) and Baranger & Mozer (Baranger & Mozer 1959; Mozer
& Baranger 1960). The final result is given in the following.

For the correlated plasmas, the asymptotic Wr(β) curve can,
with a high degree of accuracy, be calculated using only the first
approximation to the theory. T (t) may be put into a more conve-
nient form (Hooper 1966, 1968a,b):

T (t) = exp [− γ̃L2 + I1(t)], (40)

where the functions γ̃, L and I1 depend on the potential model,
the shielding parameter r and an arbitrary, real, positive param-
eter α̃ which will be independently determined (Hooper 1966,
1968a,b).

Due to the difficulties of optimizing the adjustable parameter
α̃ (Hooper 1966, 1968a,b), a direct evaluation of the microfield
distributions Wr(β) using this method involves significant effort,
particularly when a large number of integrals at different values
of β are needed. As a result, extensive numerical tables for Wr(β)
are available (Vidal et al. 1971), which are accurate to 8 signif-
icant figures for the range 0 ≤ β ≤ 30. Beyond this range, the
known asymptotic approximation for Wr(β) can be used, while a
convenient interpolation on both r and β within the tables allows
us to derive Wr(β) in the conditions of densities Ne and temper-
atures T of the experiments of Gauthier et al. (1981) and Bücher
et al. (1995).

Hooper’s approach is not applicable for the treatment of ex-
tremely dense plasmas (solar cores), i.e. in the limit of extremely
strong coupling parameter (γ � 10): it has been primarily con-
cerned with less dense plasmas, such as those produced in the
laboratory.

2.7.3. APEX distribution and analytic fitting formula

The first theory able to provide reliable numerical results for
the microfield distributions Wr(β) in both weakly and strongly
coupled plasmas proved to be the adjustable-parameter expo-
nential approximation (APEX, Iglesias et al. 1983; Iglesias
& Lebowitz 1984; Iglesias 2000). This method can be de-
rived from a renormalized cluster expansion that maximizes
the independent-particle contribution relative to the Baranger-
Mozer series (Iglesias et al. 2000). It is based on a formalism
that expresses the Fourier transform of Wr(β) in terms of a spe-
cial term-distribution function containing a free parameter which
is then fixed to give the exact second moment of Wr(β) (Iglesias
et al. 1983; Iglesias & Lebowitz 1984; Iglesias 2000). The nu-
merical results obtained from this scheme agree well with com-
puted simulations for strongly coupled one-component plasmas.

However, the calculation of the different integrals involved
in this method needs a considerable effort, especially in the
case of correlated plasma. Thus, assuming that our system is
isotropic, the microfield distribution Wr(β) may be obtained by
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elementary differentiation of the cumulative probability distribu-
tion (CPD) Q(β) which satisfies the relation

Q(β) =
∫ β

0
W(β′)dβ′, (41)

where Q(β).dβ denotes the probability of finding a normalized
electric field β, at a singly charged or neutral point, due to a
collection of N-charged particles moving in a uniform neutral
background and contained in a volume V . The CPD function
calculated by the APEX method for a neutral point in a corre-
lated plasma can be approximated by the formula (Potekhin et al.
2002)

Q(β) =
a0β

3 − 2β9/2 + β6

a1 + a2β + a3β2 + a4β3 − β9/2 + β6
, (42)

where the fitting parameters ai can be approximated as functions
of the coupling parameter γ and the screening parameter s de-
fined as (Potekhin et al. 2002)

s = Rcks. (43)

The analytic fitting formula of Eq. (42) has been checked for
the range of the plasma parameters, i.e., at 0 ≤ Γ ≤ 100 and
0 ≤ s ≤ 3 (Potekhin et al. 2002). At Γ = 0, the differentia-
tion of the CPD function reproduces the Holtsmark data at any β
with a maximum fractional error of 0.24% (Potekhin et al. 2002).
Therefore, it is suitable for our application.

In the linear first-order perturbation approximation, the ef-
fective electron-screening wave number ks is related to the
Fermi-Dirac integral Fn(χ) of order −1/2 (Potekhin et al. 2002)

ks = C1F−1/2(χ), (44)

Fn(χ) =
∫ ∞

0

tndt
et−χ − 1

, n > −1, (45)

C1 =
e
π�3

(2me)3/2(kBT )1/2. (46)

The electronic chemical potential χ = µ/kBT is determined from
the inverse function Xn( f ) of the complete Fermi-Dirac integral
of order 1/2 (Potekhin et al. 2002)

χ = X1/2(C2), (47)

C2 =
π2
�

3

√
2

(mekBT )−3/2Ne. (48)

The solutions of Eq. (45) and Eq. (47) may be determined by us-
ing accurate Padé approximations for the complete Fermi-Dirac
integral Fn(χ) and its corresponding inverse function Xn( f )
(Antia 1993)

Fn(χ) ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eχR1
m1k1

(eχ) χ < 2

χn+1R2
m2k2

(χ−2) χ ≥ 2,
(49)

Xn( f ) ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ln[ f R1
m1k1

( f )] χ < 4

f 1/(n+1)R2
m2k2

( f −1/(n+1)) χ ≥ 4,
(50)

R1
m1k1

(χ) =
m1∑
i=1

âiχ
i/

k1∑
i=1

b̂iχ
i, (51)

R1
m2k2

(χ) =
m2∑
i=1

ĉiχ
i/

k2∑
i=1

d̂iχ
i, (52)

where the values of m1, k1, m2, k2, âi, b̂i, ĉi and d̂i are given
in Antia (1993). These rational function minima approximations
are used to efficiently compute the values of the integrals Fn(χ)
and Xn( f ) with maximum relative errors ≈10−12 and ≈10−8,
respectively.

3. Calculation of the spectral width

Numerical results are only given in the present paper for the
HeI 6678 Å (21P◦−31D) and 5876 Å (23P◦−33D) lines, but the
method can be readily extended to a wide class of spectral lines
of other atoms.

To evaluate the total width Wtot we must consider both elec-
tron and ion perturbing effects. The influence of electrons and
ions can be treated separately due to the difference in mass and
mobility. If the electron density is not very high, electron colli-
sions are treated by the impact theory which takes into account
deviations from adiabaticity. The corresponding profiles are,
therefore, of dispersion (Lorentz-Weisskopf) type. For the ion
effects, the adiabatic and in most cases the quasistatic approxi-
mation must be used, due to the high density of the experiment.

Several numerical modifications have been made in the orig-
inal Sahal-Bréchot computer code in order to introduce the new
collision functions and compute the different contributions to the
width in the case of a non-ideal plasma.

The input parameters of the code are the atomic data rela-
tive to the considered transition, the density Ne of the plasma
and its temperature T . In the present paper, energy levels and
oscillator strength for the considered lines have been taken from
TOPbase (Cunto et al. 1993; Zeippen 1995; The Opacity Project
Team 1995). As TOPbase does not provide mean radii and mean
square radii, we have calculated them within the hydrogenic ap-
proximation by using the effective quantum numbers n∗i obtained
from the values of the energy levels.

3.1. Impact electronic contribution

The impact electronic total width We contains three contribu-
tions, i.e.: the elastic part and the two inelastic parts relative to
the initial i and final f states. The inelastic contributions have
been calculated taking into account the new collision functions
(Ben Chaouacha et al. 2004, 2005).

Three main steps are executed to compute the impact elec-
tronic total width We. First, the collision functions relative to the
transition probability A(z) and the cross section a(z) are calcu-
lated for the three interaction potentials. Then, the A(z) func-
tion is used to calculate the sum

∑
j�i Pi j(ρ, v). In the same way,

the a(z) function is used to calculate the sum
∑

j�i σi j(v).
The perturbation theory used for the derivation of the

S -matrix leads to a divergence in the integration over the impact
parameter: a lower cut-off is thus required. For high densities or
for very small energy differences, an upper cut-off is also used,
in order to take into account the shielding. The symmetrization
procedures and the choice of the lower cut-off to enforce the uni-
tarity of the S -matrix have been widely discussed in Feautrier
(1968) and Sahal-Bréchot (1969a,b).

By applying the same procedure to both the initial
i(niliLiS iJi) and the final f(nflfLfS f Jf ) states, the total cross sec-
tion σt(v) will be calculated using Eq. (19).
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The integral in Eq. (18) is calculated numerically using
the trapezoid method with an exponential step (Feautrier 1968;
Sahal-Bréchot 1969a,b).

3.2. Quasistatic ionic contribution

The quasistatic ionic contribution Wquas can be estimated us-
ing the approach developed by Griem et al. (1962) and Griem
(1974), due to its simple applicability to different kinds of per-
turbing ions.

For most of the isolated lines, it is convenient to use the im-
pact electron width as the unit of frequency detuning from the
line shifted by electron impacts, i.e., to introduce as a reduced
variable the frequency shift x (Griem et al. 1962; Griem 1974)

x =
ω − ω0 − d

We
, (53)

where ω0 and ω are the angular frequencies of the unperturbed
and the perturbed lines, We is the impact electronic total width
in angular frequency, and d is the impact electronic shift also in
angular frequency unit. The reduced profile of allowed compo-
nents is expressed as (Griem et al. 1962; Griem 1974)

jA,r(x) =
1
π

∫ ∞

0

Wr(β)dβ
1 + (x − A4/3β2)2

· (54)

The quasistatic quadratic ion broadening parameter A, denoted
by α in Griem et al. (1962) and Griem (1964), is a measure of
the relative importance of ion broadening. It represents the qua-
sistatic ionic correction without the Debye cut-off, while r is the
quasistatic ionic correction due to the Debye cut-off; its expres-
sion can be written as (see e.g. Ben Nessib et al. 1996)

A =

⎛⎜⎜⎜⎜⎝ eF2
0

�We

∣∣∣αi − α f

∣∣∣⎞⎟⎟⎟⎟⎠3/4

, (55)

where the atomic polarizability αi of the level i (resp. f ) is
given by

αi = 4a3
0

∑
j�i

fi j

(
IH

∆Ei j

)2

, (56)

where a0 is the Bohr radius and IH the ionization energy of hy-
drogen. It can be seen from this definition that its magnitude is
determined by the magnitude of the oscillator strengths fi j and
the energy difference∆Ei j between the levels j and i. Since We is
proportional to Ne, the parameter A is only proportional to N1/4

e .
Contrary to the A-value of Griem who used a simplified

Coulomb approximation for the atomic structure (Griem et al.
1962; Griem 1974), the quasistatic ion broadening parameter A
is computed with the TOPbase sophisticated atomic structure as
in Ben Nessib et al. (1996).

The quasistatic approximation will be valid provided the fre-
quencies characterizing the ion field, namely vion/Rc, which is
of the order of the inverse of the duration of an interaction [vion
being a typical ion velocity, Rc is the mean ion-ion separation],
are considerably smaller than We, which essentially determines
the width of the profile (Griem 1962). If the parameter

σ = WeRc/vion = We(4πNe/3)−1/3/vion (57)

becomes of order 1 or smaller, the time dependence of the ion
field can no longer be neglected (Griem 1974).

Equation (54) is only applicable if the quasistatic approxi-
mation holds for ion broadening, which is justified for σ > 1. In
addition, it cannot be expected to be accurate for r ≈ 1 or larger,
because the Debye theory is no longer valid and the cluster inte-
gral expansion should be carried further. This restriction on r is
not serious because, for densities corresponding to larger values
of this parameter, spectral lines are usually too broad to be ob-
servable. However, the opposite extreme, r � 1, rarely occurs in
plasma spectroscopy, and a discussion of calculations for such
situations may therefore be omitted (Griem 1962).

3.3. Total width

∆x being the Full Width at Half Maximum (FWHM) in reduced
units, obtained from the computed and tabulated jA,r(x), the total
width Wtot of the line in frequency units is

Wtot = We∆x. (58)

Moreover, an approximate formula for the total width WG
tot of the

complete profile can be obtained (Griem 1962, 1974)

WG
tot ≈ [1 + 1.75A(1 − 0.75r)]We. (59)

The formula of Eq. (59) is adapted only for an ideal plasma stud-
ied with the Coulomb Debye model. It is reasonably accurate
in view of the uncertainties introduced by the various other ap-
proximations, as long as A ≤ 0.5 and r ≤ 0.8 (Griem 1974). For
higher values of A, Eq. (58) must be used.

4. Results and discussion

To validate our theoretical approach, the different contributions
to the width are calculated for the HeI 6678 Å (21P◦−31D) and
5876 Å (23P◦−33D) lines, by considering the same conditions of
densities Ne and temperatures T as those of the experiments of
Gauthier et al. (1981) and Bücher et al. (1995).

The impact approximation criterion is well satisfied for elec-
tronic collisions. In a first step, the impact electronic total width
was calculated in the case of the Coulomb-Debye potential, i.e.
WCD

e , with an upper cutoff at RD. By calculating the relative con-
tribution of the strong collisions to the impact total width, the va-
lidity conditions of the perturbation theory can also be checked.

Table 2 shows that the electronic strong collision contribu-
tion WCD

s,e does not exceed 30% of the impact electronic total
width WCD

e . Consequently, the perturbation theory approxima-
tion is well satisfied for collisions with electrons for these lines.
About 90% to 95% of the inelastic electronic part is related to
the upper level (Table 2).

Figure 1 compares the impact electronic total width WCD
e , the

elastic contribution WCD
e,el and the inelastic contribution WCD

e,inel.
It can be noted that for the two lines the inelastic collisions
give the largest contribution. The two contributions WCD

e,inel and
WCD

e,el present almost the same behavior and increase with the
electronic density Ne. The elastic term WCD

e,el is relatively low
and does not exceed 15% of the impact electronic total width
WCD

e . The inelastic contributions due to weak collisions are dom-
inant (70%), because the excited states of the HeI are very close
together (Sahal-Bréchot 1969a,b).

In a second step, we have calculated the inelastic electronic
contribution in the case of the Cut-off and Ion Sphere potentials,
with an upper cut-off at Rc. Figure 2 compares the evolution of
the inelastic electronic contributions WCD

e,inel, WC
e,inel and W IS

e,inel for
the considered lines. The two inelastic widths WCD

e,inel and WC
e,inel
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Table 2. Different contributions to the width calculated for the con-
sidered HeI transitions. Wexp: experimental width – WCD

e : impact elec-
tronic total width – WCD

s,e : width due to the strong electronic collisions
– WCD

e,el : impact elastic electronic contribution – WCD,L
e,inel : impact inelas-

tic electronic contribution of the lower level – WCD,U
e,inel : impact inelastic

electronic contribution of the upper level.

Transition T Ne Wexp WCD
e WCD

s,e WCD
e,el

WCD,L
e,inel

WCD,U
e,inel

(104 K) (1017 cm−3) (Å) (Å) (Å) (Å) (%)

(21P◦−31D) 1.35 2.0 8.6 11.4 2.8 1.0 5.6
6678 Å 1.78 3.3 12.9 17.2 4.2 1.7 6.5

1.86 4.9 15.5 24.2 6.3 2.5 7.1
1.93 6.2 19.9 29.4 7.8 3.1 7.5
2.01 6.9 20.7 32.2 8.6 3.4 7.7
2.13 8.4 25.0 37.7 10.3 4.2 8.1
2.09 8.9 25.9 39.7 11.0 4.4 8.2
2.28 10.0 28.5 43.6 12.1 4.9 8.6
2.32 10.7 30.2 46.2 12.9 5.3 8.8
2.40 11.8 31.9 50.0 14.1 5.8 9.0
2.44 13.2 35.4 54.7 15.6 6.5 9.3
2.59 13.7 36.3 56.6 16.0 6.8 9.5
2.55 14.9 40.6 60.5 17.5 7.3 9.7

(23P◦−33D) 4.46 4.90 17.5 13.8 4.0 1.9 9.0
5876 Å 5.20 10.2 36.7 28.0 8.1 3.9 10.2

5.21 12.0 43.2 32.6 9.6 4.6 10.4
5.60 18.4 66.0 48.9 14.6 7.1 11.2
5.35 24.9 89.2 65.1 19.5 9.4 12.2

increase with the plasma density Ne, and their shape is almost
the same. For the 6678 Å line, the Ion Sphere contribution W IS

e,inel

decreases when Ne exceeds 1016 cm−3. The three contributions
converge at weak plasma densities (Ne ≈ 1015 cm−3) since the
effects of the corrective terms become negligible, i.e., the plasma
may be considered effectively as ideal.

In the case of a non-ideal plasma (Ne > 1015 cm−3), the two
correlated inelastic contributions WC

e,inel and W IS
e,inel are smaller

than the Coulomb-Debye one, following the general tendency
of the corresponding collision functions A(z) and a(z) (Ben
Chaouacha et al. 2004, 2005). The contribution relative to the
Ion Sphere model W IS

e,inel is the lowest; in parallel, the difference
between the two correlated terms WC

e,inel and W IS
e,inel tends to in-

crease as the electronic density Ne increases. However, if the
density Ne exceeds the value (Ne ≥ 1018 cm−3), this tendency is
expected to no longer be systematic: the semi-classical approach
and the Ion Sphere model are expected to be not well adapted to
describe a plasma in such extreme conditions.

We have calculated the elastic contribution only with the
Coulomb-Debye model (WCD

e,el ). The validity of this assumption
is justified by the fact that the elastic cross sections are mainly
due to strong collisions: Table 3 shows that the ratio of the im-

pact elastic electronic contribution to the electronic density
WCD

e,el

Ne
is quite constant, since the difference does not exceed 1% for
the two lines. Therefore, the upper cut-off at RD has a negli-
gible effect for the elastic contribution, even at high electronic
densities. In addition, still concerning elastic collisions, the con-
tribution of the quadratic r−4

p −potential which is short-range is
dominant compared to the quadrupolar one. Hence, the very
long-range collisions are not important, and the results for the
elastic contribution should not be very different in the case of

Fig. 1. Different contributions to the impact electronic total width WCD
e

calculated for the considered HeI transitions. Straight line: impact elec-
tronic total width WCD

e ; Dashed line: inelastic electronic contribution
WCD

e,inel; Dotted line: elastic electronic contribution WCD
e,el . [a): 6678 Å

(21P◦−31D), b): 5876 Å (23P◦−33D)].

the Coulomb-Debye, Cut-off and Ion Sphere models. However,
this might be improved in a further paper.

Table 4 lists the values of the Debye shielding parame-
ter r and the three quasistatic quadratic ion broadening param-
eters ACD, AC and AIS for the studied lines. They are obtained
from Eq. (55) by using the associated impact electronic total
widths WCD

e , WC
e and W IS

e . For the 6678 Å line, r ≈ 0.6 and
that ACD is slightly higher than the upper limit of validity (0.5).
Hence, for the Coulomb Debye model, the total width Wtot has
been estimated using the approximated formula of Eq. (59). For
both the Cut-off and the Ion Sphere models, the formulae given
by Eq. (58) and Eq. (54) have been used, since AC and AIS are
much greater than unity. For the 5876 Å line, r ≈ 0.4 and only
AIS is slightly higher than the upper limit of validity (0.5).

By considering the values of r, ACD, AC and AIS tabulated
in Table 4, the complete reduced Stark profiles jA,r(x) of iso-
lated lines have been evaluated numerically. In a first step, we
checked our code by verifying that our numerical procedure re-
produces the same data tabulated in Griem (1974). Then, the
jA,r(x) profiles were analyzed to determine their Full Width at
Half Maximum (FWHM) ∆x.

The three total widths WCD
tot , WC

tot and W IS
tot of the considered

lines obtained from the expression of Eq. (58), by considering
micro-field distributions Wr(β) derived with the different numer-
ical methods presented above are compared in Figs. 3 and 4
to the experimental widths Wexp of Gauthier et al. (1981) and
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Fig. 2. Impact inelastic electronic widths WCD
e,inel, WC

e,inel, and WIS
e,inel cal-

culated for the considered HeI transitions, by considering a small non-
ideality factor (γ = 0.03). Straight line: WCD

e,inel; Dashed line: WC
e,inel;

Dotted line: WIS
e,inel. [a): 6678 Å (21P◦−31D), b): 5876 Å (23P◦−33D)].

Table 3. Ratio of the impact elastic electronic contribution to the elec-

tronic density
WCD

e,el

Ne
(10−18 Å cm3) calculated for the considered HeI

transitions.

Transition Ne (1017 cm−3) 0.1 1.0 10.0 16.0
T (104 K)

(21P◦−31D) 1.0 5.57 5.56 5.42 5.35
6678 Å 1.5 5.15 5.14 5.09 5.06

2.0 5.00 5.00 4.97 4.96
2.5 4.95 4.94 4.93 4.92

(23P◦−33D) 1.0 6.25 6.25 6.22 6.19
5876 Å 1.5 5.41 5.41 5.40 5.39

2.0 4.88 4.88 4.87 4.86
2.5 4.57 4.57 4.56 4.56

Bücher et al. (1995). Unfortunately, these experiments corre-
spond to relatively weak values of the non-ideality factor (γ <
0.3). It is generally difficult to provide experimental data at the
high electronic densities Ne required by the Ion Sphere model.

Figure 3 shows that for the 6678 Å line the different to-
tal widths WCD

tot , WC
tot and W IS

tot increase with the plasma den-
sity Ne and are more important with a micro-field distribution
Wr(β) derived by the AFF method (Potekhin et al. 2002). The
Coulomb Debye model overestimates the experimental data for
a micro-field distribution Wr(β) derived either by Baranger &
Mozer’s method (Baranger & Mozer 1959; Mozer & Baranger
1960) or by Hooper’s method (Hooper 1966, 1968a,b), WCD

tot

exceeds 310% of Wexp, and this difference is close to 350%
for the APEX method. This confirms the importance of tak-
ing into account the correlations in a non-ideal plasma. The
Cut-off model also disagrees with the experimental data: WC

tot
is greater than the experimental width Wexp and a difference
close to 300% is typically obtained at high electron densities
Ne for the APEX method. Therefore, this correlated model can-
not reproduce all the physical considerations. The Ion Sphere
model presents a difference with the experiment, but this differ-
ence tends to be the closest one for the electron density range
(4× 1017 cm−3 < Ne < 9× 1017 cm−3) and with a microfield dis-
tribution Wr(β) derived by Hooper’s method. However, W IS

tot does
not exceed 63% of Wexp at low electron densities Ne, while a dif-
ference close to 54% is obtained at high electron densities Ne.

For the 5876 Å line, the correlated total widths WC
tot and W IS

tot
are lower than Wexp (Fig. 4). A difference close to 4% is obtained
with the Coulomb Debye model and with a microfield distribu-
tion Wr(β) derived by Hooper’s method. Hence, this discussion
shows that our theoretical approach would require new refine-
ments in order to be in perfect agreement with the experiment.

Table 5 shows that the Coulomb-Debye total width WCD
tot

calculated from the associated Full Width at Half Maximum
(FWHM) ∆xCD using Eq. (58) is in good agreement with the
approximated total width WG

tot obtained from Eq. (59), by con-
sidering the quasistatic quadratic ion broadening parameters ACD

and the Debye shielding parameter r tabulated in Table 4: their
difference does not exceed 3%. However, the total width WG,∗

tot
obtained from the expression of Eq. (59) without taking into ac-
count the quasistatic ionic correction due to the Debye cut-off
(r = 0) is greater than WG

tot (up to 136%, for the 6678 Å line)
(Table 5). Thus, r cannot be neglected if the electronic density Ne
is relatively high.

To generalize such result to the two correlated models, ap-
proximate formulae for the total width Wtot,app similar to the ex-
pression of Eq. (59) are derived, by introducing two constants a
and b so that

Wtot,app ≈ We(ar + bA + 1). (60)

The parameters a and b can be readily obtained by a Least
Square method using the following equations

Y = aX + b, (61)

X = r, (62)

Y =

(
Wtot

We
− 1

)
A

, (63)

where Wtot is previously obtained using Eq. (58). The resulting
formulae, in turn, are

WCD
tot,app ≈ WCD

e (aCDr + bCDACD + 1), (64)

WC
tot,app ≈ WC

e (aCr + bCAC + 1), (65)

W IS
tot,app ≈ W IS

e (aISr + bISAIS + 1), (66)

where the values of the associated parameters (aCD , bCD), (aC,
bC) and (aIS, bIS) are tabulated in Table 6. As shown in Table 5,
the three total widths WCD

tot,app, WC
tot,app and W IS

tot,app are comparable
to those calculated using Eq. (58).
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Table 4. Quasistatic quadratic ion broadening parameters ACD, AC and AIS calculated for the considered HeI transitions. r =
Rc

RD
: Debye shielding

parameter – WCD
e , WC

e and WIS
e : impact electronic total widths.

Transition T Ne r WCD
e WC

e WIS
e ACD AC AIS

(104 K) (1017 cm−3) (Å) (Å) (Å)

(21P◦−31D) 1.35 2.0 0.591 11.4 5.1 1.46 0.46 0.84 2.15
6678 Å 1.78 3.3 0.559 17.2 7.8 2.37 0.56 1.01 2.45

1.86 4.9 0.586 24.2 10.6 3.47 0.64 1.20 2.77
1.93 6.2 0.597 29.4 12.7 4.34 0.70 1.32 2.94
2.01 6.9 0.596 32.2 13.9 4.84 0.73 1.37 3.03
2.13 8.4 0.598 37.7 16.3 5.77 0.79 1.47 3.21
2.09 8.9 0.610 39.7 17.1 6.09 0.81 1.52 3.29
2.28 10.0 0.595 43.6 19.0 6.84 0.84 1.57 3.38
2.32 10.7 0.597 46.2 20.2 7.28 0.87 1.61 3.46
2.40 11.8 0.597 50.0 21.9 7.97 0.90 1.67 3.57
2.44 13.2 0.603 54.7 24.0 8.86 0.94 1.74 3.67
2.59 13.7 0.589 56.6 25.1 9.25 0.95 1.75 3.70
2.55 14.9 0.601 60.5 26.7 9.98 0.98 1.82 3.80

(23P◦−33D) 4.46 4.9 0.378 13.8 9.2 5.42 0.19 0.26 0.39
5876 Å 5.20 10.2 0.396 28.0 17.3 7.10 0.24 0.34 0.66

5.21 12.0 0.406 32.6 19.7 7.71 0.25 0.36 0.73
5.60 18.4 0.420 48.9 28.2 10.3 0.28 0.42 0.89
6.35 24.9 0.415 65.1 36.8 13.5 0.30 0.47 0.99

5. Summary of the results and conclusion

Ben Chaouacha et al. (2004, 2005) derived new semi-classical
collision functions for both the transition probability and cross
section by using the classical path approximation in the standard
formalism of Stark impact broadening of spectral lines. These
functions have been used in the present paper to compute the in-
elastic contribution We,inel to the electronic total width We in the
case of a non-ideal plasma, by considering three different inter-
action potentials (Coulomb-Debye, Cut-off, and Ion Sphere). An
upper cut-off at RD for the Coulomb-Debye model (ideal case)
and at Rc for the Cut-off and the Ion Sphere models has been
used. To validate our theoretical approach, the numerical results
have been calculated for the HeI 6678 Å (21P◦−31D) and 5876 Å
(23P◦−33D) transitions, by considering the same conditions of
densities Ne and temperatures T as those of the experiments of
Gauthier et al. (1981) and Bücher et al. (1995).

The lines corresponding to these transitions are well isolated
and the plasma is weakly non-ideal for all temperatures and elec-
tronic densities of interest. For electronic collisions, the semi-
classical perturbation theory is sufficient and the impact approx-
imation is well satisfied.

The contribution of elastic electronic collisions We,el cal-
culated by considering the Coulomb Debye model is weak for
these lines. Since the very long-range collisions are not impor-
tant for this contribution, we consider that the corresponding re-
sults should not be very different in the case of the Cut-off and
the Ion Sphere potentials.

The inelastic contribution We,inel depends both on the choice
of the non-ideality γ-value and the interaction potential model.
The three impact inelastic electronic widths WCD

e,inel, WC
e,inel and

W IS
e,inel become of the same order of magnitude at weak plasma

densities (Ne ≈ 1015 cm−3). The two correlated widths are lower
than the ideal one, which is in agreement with the general be-
havior of the associated collision functions.

The ion effects on such a line are as important as the electron
ones. The impact approximation fails for ionic collisions, due
to the relatively high densities prevailing in these experimental
conditions. The interactions with the ions may be treated within

the quasistatic approximation. In that case, atom-ion interaction
is quadratic. Therefore, the quasistatic ionic contribution Wquas

is dominated by the polarization (or quadratic) r−4
p -interaction.

To consider both the electron and the ion effects, the total
width Wtot is obtained from the Full Width at Half Maximum
(FWHM) ∆x deduced from the complete reduced Stark profile
jA,r(x) of isolated lines. The Debye shielding parameter r and
the quasistatic quadratic ion broadening parameter A are rele-
vant to numerically evaluate such profiles. For comparison, the
calculations of the associated microfield distributions Wr(β) are
performed using three different numerical methods.

The computed total widths WCD
tot , WC

tot and W IS
tot relative to the

considered lines are compared to the corresponding experimen-
tal widths Wexp (Gauthier et al. 1981; Bücher et al. 1995). For
the 5876 Å line, the Coulomb Debye width WCD

tot is comparable
to Wexp. For the 6678 Å line, the Ion Sphere model gives the best
results with a microfield distribution Wr(β) derived by Hooper’s
method (1966, 1968a,b): such a numerical method is sufficient
for use in our case. A difference close to 50% is expected at both
low and high electron densities Ne. Such a discrepancy may be
due to different reasons, which are discussed in the following.

It is impossible to have a perfect agreement between the cal-
culated widths and the experimental data only by improving the
calculation of the collision functions: our model only improves
the inelastic electronic contribution We,inel to the impact elec-
tronic total width We; it takes into account the quasistatic ionic
contribution.

Since a real plasma is intrinsically dynamic and complex, it
may be studied by considering the collective effects rather than
the binary ones: such effects cannot be described by a simple
corrective term in the interaction potential expression.

The calculation of the excitation cross section needs the in-
troduction of a minimum cut-off radius which may eliminate cer-
tain significant terms in the numerical integration procedure.

A semi-classical treatment for electron collisions neglects
the emitter-perturber exchange, which is mainly due to the
strong collisions. Hence, when strong collisions are abundant,
quantum effects must be considered.
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Fig. 3. Total widths WCD
tot , WC

tot and WIS
tot obtained from the expression of

Eq. (58) for the HeI 6678 Å (21P◦−31D) transition, where the associated
micro-field distribution Wr(β) is determined with: a) the Baranger &
Mozer’s method (Baranger & Mozer 1959; Mozer & Baranger 1960), b)
the Hooper’s method (Hooper 1966, 1968a,b), and c) the AFF method
(Potekhin et al. 2002). Wexp is the experimental width relative to the
same transition (Gauthier et al. 1981).

The different results may be improved by considering a hy-
perbolic trajectory. Such a trajectory would be more reliable for
describing screening effects on the perturber motion colliding
with a neutral atom, especially for very low collision energies
in the neighborhood of the threshold (Jung 1994). However, for
large impact parameters, the straight line trajectory can be used
even when the emitter is an ion (Jung 2000). As we are interested
only in neutral atom emitters for large impact parameters at rela-
tively low energies (temperatures of the order of a few thousand

Fig. 4. Same as Fig. 3 for the HeI 5876 Å (23P◦−33D) line studied in the
same conditions of densities Ne and temperatures T of the experiment
of Bücher et al. (1995).

or few ten thousands degrees), we have neglected the plasma
screening effects on the semi-classical straight line trajectory.
The dynamic plasma screening effects on the atomic excitation
process are found to be significant only for relatively high energy
projectiles (Jung & Yoon 2000b). The excitation cross section in-
cluding screening effects is shown to decrease as the non-ideality
factor γ increases (Song & Jung 2003; Jung 2000).

This study has qualitatively shown the importance of the
electronic correlations for a non-ideal plasma. However, many
refinements should be more deeply studied and introduced grad-
ually with care, before trying to generalize our theoretical ap-
proach to other plasmas studies.
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Table 5. Total width ratios calculated for the considered HeI transitions, where the micro-field distribution Wr(β) is determined with: (a) the
Baranger & Mozer’s method (Baranger & Mozer 1959; Mozer & Baranger 1960); (b) the Hooper’s method (Hooper 1966, 1968a,b); and (c)
the AFF method (Potekhin et al. 2002). WG

tot: total width obtained from the expression of Eq. (59) – WG,∗
tot : total width obtained by considering

r = 0 – WCD
tot , WC

tot and WIS
tot: total widths obtained from the expression of Eq. (58) – WCD

tot,app, WC
tot,app and WIS

tot,app: total widths approximated by the
expressions of Eqs. (64)–(66).

WG
tot

WCD
tot

WG,∗
tot

WCD
tot

WCD
tot,app

WCD
tot

WCD
tot,app

WCD
tot

WCD
tot,app

WCD
tot

WC
tot,app

WC
tot

WC
tot,app

WC
tot

WC
tot,app

WC
tot

WIS
tot,app

WIS
tot

WIS
tot,app

WIS
tot

WIS
tot,app

WIS
tot

(%) (%) (%) (a) (%) (b) (%) (c) (%) (a) (%) (b) (%) (c) (%) (a) (%) (b) (%) (c)

(21P◦−31D)
6678 Å

98.80 123.16 100.43 101.41 112.33 101.45 103.21 116.35 104.85 105.78 113.39
98.89 124.65 100.17 99.87 98.93 99.92 99.74 98.75 99.59 99.58 99.03
97.92 127.62 99.83 100.44 102.87 100.58 100.82 103.04 101.18 101.30 102.49
97.80 129.81 100.03 100.57 103.62 100.71 101.11 103.94 101.59 101.79 103.32
97.72 130.47 99.99 100.34 102.16 100.51 100.73 102.24 101.09 101.15 102.12
97.58 131.86 100.00 100.20 100.58 100.21 100.33 100.52 100.37 100.40 100.61
97.66 133.38 100.39 100.52 103.80 100.76 101.08 104.17 101.39 101.69 103.21
97.42 132.73 99.86 99.64 97.36 99.67 99.30 97.07 99.12 98.96 97.86
97.30 133.25 99.82 99.61 97.13 99.60 99.15 96.88 98.96 98.76 97.60
97.34 134.01 99.90 99.44 95.83 99.32 98.78 95.63 98.45 98.19 96.55
97.26 135.27 100.04 99.44 96.55 99.37 98.97 96.46 98.63 98.48 97.22
96.95 133.89 99.38 98.59 91.18 98.36 97.35 90.77 96.75 96.23 92.96
97.09 135.83 99.89 99.06 94.44 98.87 98.31 94.33 97.79 97.58 95.58

(23P◦−33D)
5876 Å

101.36 109.14 100.07 100.01 100.06 99.92 99.95 100.12 100.17 100.20 101.45
101.21 110.78 99.92 99.89 99.74 100.07 100.02 99.59 99.66 99.53 97.15
101.13 111.32 99.92 100.24 100.70 100.30 100.29 101.05 100.13 100.31 100.69
101.30 112.96 100.17 100.08 100.90 100.07 100.24 101.52 100.76 100.85 103.60
101.20 113.47 99.92 99.75 98.46 99.61 99.44 97.53 99.19 99.00 96.80

Table 6. Parameters (aCD , bCD), (aC, bC) and (aIS, bIS) of the expressions of Eqs. (64)–(66), calculated for the considered HeI transitions, where
the micro-field distribution Wr(β) is determined with: (a) the Baranger & Mozer’s method (1959; 1960), (b) the Hooper’s method (Hooper 1966;
1968a,b), and (c) the AFF method (2002). For the sake of comparison, we give also in (d) the values of aCD and bCD defined in the expression of
Eq. (59) of Griem (1962, 1974).

Transition Models aCD bCD aC bC aIS bIS

(21P◦−31D) (a) –0.8275 1.5153 –1.0433 1.6831 –0.5560 1.5275
6678 Å (b) –0.0885 1.1303 0.3223 0.9744 0.4179 1.1065

(c) 7.7626 –3.4044 8.5954 –3.3916 6.8722 –1.6409
(d) –1.3125 1.75 – – – –

(23P◦−33D) (a) –0.6395 1.4135 –0.1114 1.2334 1.6013 0.6352
5876 Å (b) 0.2977 1.0317 0.5720 0.9681 2.7525 0.2069

(c) 5.8749 –1.9181 8.8274 –2.8408 16.6070 –5.4567
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