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ABSTRACT
We apply for the first time the time-dependent convection (TDC) treatment of Gabriel and
Grigahcène et al. to the mode identification and seismic study of δ Sct stars. We consider
the influence of this treatment on the photometric amplitude ratios and phase differences,
and compare our TDC results to frozen convection (FC) results. We also compare the results
obtained with different values of the mixing-length (ML) parameter α. Finally, we identify the
modes and perform a seismic study of the stars V784 Cassiopeae (Cas), 1 Monocerotis (Mon)
and 28 Andromedae (And), and show that our TDC models agree better with observations than
FC models.

Key words: convection – stars: interiors – stars: oscillations – δ Scuti.

1 I N T RO D U C T I O N

δ Sct stars are variable A-F type stars located at the intersection
region between the classical instability strip and the main sequence.
Their pulsation periods ranges from 0.5 to 6 h and correspond to
low order p and g, radial and non-radial modes. Many of these stars
are multi-periodic, which makes them very good targets for astero-
seismology. However, the mode identification (the first step of any
seismic study) is particularly difficult for δ Sct stars. First, their fre-
quency pattern is very complex because of the avoided crossings and
the effect of rotation (often fast for these stars), so that mode identi-
fication based on their frequencies alone is impossible (contrary to
solar-type oscillations). Secondly, photometric mode-identification
techniques are very sensitive to the modelling of convection. Thirdly,
the coupling of the modes due to rotation complicates both spec-
troscopic and photometric mode identifications, at least for fast ro-
tators. In this paper, we consider the problem of convection, and
we show that the use of time-dependent convection (TDC) mod-
els give theoretical amplitude ratios and phase lags in much better
agreement with observations, which improves the reliability of pho-
tometric mode-identification methods for δ Sct stars.

Photometric observations of the amplitudes and phases in differ-
ent colour passbands enable us to identify the degree � of the modes.
Two important theoretical ingredients in these methods are the am-
plitude ( fT ) and phase (ψ T ) of local effective temperature variation
for a normalized radial displacement. Garrido, Garcia-Lobo & Ro-
driguez (1990) and Garrido (2000) applied the method of Watson
(1988) to δ Sct stars, considering fT and ψ T as free parameters. Still
for δ Sct stars, Balona & Evers (1999) and Daszyńska-Daszkiewicz,
Dziembowski & Pamyatnykh (2003) determined fT and ψ T using

�E-mail: MA.Dupret@obspm.fr

the non-adiabatic code of Dziembowski (1977) in which the dif-
fusion approximation is assumed. Dupret et al. (2003a) and Moya,
Garrido & Dupret (2004) included the improved perturbed atmo-
sphere modelling of Dupret et al. (2002) in their computations. All
these authors showed that for δ Sct stars, the non-adiabatic theo-
retical predictions are very sensitive to the value adopted for the
mixing-length (ML) parameter α. The use of the convection theory
of Canuto, Goldman & Mazzitelli (1996) has also been consid-
ered: Barban et al. (2003) computed new limb-darkening coeffi-
cients based on the atmosphere models by Heiter et al. (2002), and
Dupret et al. (2004b) considered the inclusion of these new atmo-
sphere models in their non-adiabatic computations. In all the above
studies, a frozen convection (FC) approximation has been adopted.
Dupret et al. (2004a, 2005) showed that, with the TDC treatment
detailed in Grigahcène et al. (2005), it is possible to explain the
location of the theoretical red edge of the δ Sct instability strip for
radial and non-radial modes. For the first time, we present in this
paper the application of TDC models to the study of the photometric
amplitude ratios and phase differences in δ Sct stars.

2 I N T E R NA L S T RU C T U R E M O D E L S

The equilibrium stellar models have been computed by the evo-
lutionary code CLÉS (Code Liégeois d’Évolution Stellaire). It uses
the standard MLT for convection calculations, the OPAL opacities
(Iglesias & Rogers 1996) completed at low temperatures with the
opacities of Alexander & Ferguson (1994), the CEFF equation
of state (Christensen-Dalsgaard & Däppen 1992) and the atmo-
sphere models of Kurucz (1998) as boundary conditions. When
not specified, the models of this study are computed with the global
parameters X = 0.7, Z = 0.02 and convective core overshooting
αov = 0.2.
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3 I N F L U E N C E O F T D C O N N O N - A D I A BAT I C
O B S E RVA B L E S

In a linear one-layer approximation, the theoretical monochromatic
magnitude variation of a non-radial mode is given by

δmλ = − 2.5

ln 10
εPm

� (cos i)b�λ[−(� − 1)(� + 2) cos(σ t)

+ fT cos(σ t + ψT ) (αT λ + βT λ) − fg cos(σ t) (αgλ + βgλ)].

(1)

Some coefficients of equation (1) depend on the equilibrium atmo-
sphere model: b�λ = ∫ 1

0
hλ(µ)P� d µ (where hλ(µ) is the normal-

ized monochromatic limb-darkening law), αT λ = ∂lnF λ/∂lnT eff|g ,
αgλ = ∂lnF λ/∂lng|Teff , β T λ = ∂ln b�λ/∂lnT eff|g , β gλ = ∂ln b�λ/

∂lng|Teff . Other coefficients: fT and ψ T (defined in Section 1) can
only be obtained by non-adiabatic computations. fg is the relative
amplitude of effective gravity variation for a normalized radial dis-
placement. Linear pulsation models do not give the absolute ampli-
tudes. Theoretical amplitude ratios and phase differences between
different photometric passbands can be determined by integrating
equation (1) over the passbands and taking the complex ratios. This
equation depends directly on the spherical degree � of the modes.
Therefore, confrontation between the theoretical and observed am-
plitude ratios and phase differences enables us to identify �. More-
over, as fT and ψ T depend on the non-adiabatic pulsation models,
comparison with observations enables us to constrain these models,
a procedure we call non-adiabatic asteroseismology.

δ Sct stars at the blue side of the instability strip have two very
thin superficial convective zones coinciding with the partial ioniza-
tion zones of He II and H. Towards the red edge of the instability
strip, these two thin convective zones merge into one single convec-
tive envelope (CE) whose size increases quickly as T eff decreases.
In non-adiabatic models, the coupling between the dynamical and
thermal pulsation equations is taken into account. In particular, the
perturbation of the radiative and convective flux must be determined
in the CE. Most of the time, the perturbation of convection is ne-
glected, which is the FC approximation.1 However, this approxi-
mation is not justified for δ Sct stars because the lifetime of the
convective elements is shorter than the pulsation periods in a signif-
icant part of their CE. The main goal of this paper is to present for
the first time the theoretical photometric amplitude ratios and phase
differences obtained with TDC models and to compare them with
FC models.

For the results obtained with TDC treatment presented in this
section, only the perturbation of convective flux is taken into ac-
count. Similar results are obtained when the perturbations of turbu-
lent pressure and dissipation rate of turbulent kinetic energy are also
taken into account. We begin by giving in Fig. 1 the evolution from
ZAMS to TAMS of fT and ψ T as function of T eff, for the funda-
mental radial mode and models with M = 1.8 M�, Z = 0.02 and
different values of α. We compare the results obtained with TDC
and FC models. Main differences occur for ψ T . At the blue side
of the instability strip (T eff � 8000 K), the different models give
similar results. But as T eff decreases, the size of the CE increases
so that different convection models give very different ψ T . Typical
observed values of ψ T for δ Sct stars are between 90◦ and 140◦,
which agree with our TDC theoretical predictions. In contrast, the

1 Different FC approximations exist (Pesnell 1990). The case considered in
this paper is to ignore the Lagrangian variations of convective luminosity,
turbulent pressure and dissipation rate of turbulent kinetic energy.
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Figure 1. Evolution of the normalized amplitude of the effective temper-
ature variation fT (top panel) and the phase lag ψ T (bottom panel) as a
function of T eff, for the fundamental radial mode, obtained with TDC and
FC non-adiabatic models with M = 1.8 M� and different α. The vertical
line gives the location of the observational red edge of the δ Sct instability
strip.
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Figure 2. Phase lag ψ T as a function of the constant of pulsation Q, ob-
tained with TDC and FC models with M = 1.8 M�, T eff = 7120 K and
different α.

low values of ψ T encountered for the cold FC models with large α

are unrealistic. Models with masses and metallicities different from
the ones of Fig. 1 give similar results for a given T eff and α.

For a given model, fT and ψ T are also dependent on the pulsation
frequency. In Fig. 2, we give the values of ψ T as function of the con-
stant of pulsation Q = P

√
(R�/R)3(M/M�) (P is the period in

days, for the fundamental radial mode Q � 0.033 d, τdyn/τdyn,� =√
(R/R�)3(M�/M) = 3.104282 for this model). We compare

the results obtained with TDC and FC non-adiabatic models and
modes with 0 � � � 3 and m = 0. Equilibrium models have
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Figure 3. Phase difference between the total luminosity variation and the
radial displacement (in degrees) as a function of log T , for the fundamental
radial mode, obtained with TDC models (left) and FC models (right) with
M = 1.8 M�, T eff = 7120 K and different α.

M = 1.8 M�, T eff = 7120 K, Z = 0.02 and different values of
α. All the modes given in Fig. 2 are predicted to be unstable. Again,
we see a significant difference between the TDC and FC phase lags.
This difference increases with α, simply because the size of the CE,
and thus the sensitivity to the convection treatment, increases with
α. The phase lag depends heavily on the period in the TDC case.
ψ T � 100◦ near the fundamental radial period, then it increases as
the period decreases, up to values around the adiabatic 180◦ when
the stable region (Q � 0.0125 for the α = 1.8 model) is reached.

In order to understand the origin of the difference between the
TDC and FC phase lags, we give in Fig. 3 the phase difference
between the total luminosity variation and the radial displacement
(φ(δL) − φ(δr )) (in degrees) as a function of log T , for the funda-
mental radial mode and the same models as in Fig. 2. The left panel
gives TDC results and the right panel gives FC results. In the deep
regions (log T > 5), the pulsation is quasi-adiabatic with a phase lag
of 180◦. Then, the first phase lag quasi-independent of the convec-
tion treatment occurs in the partial ionization zone of He II (4.9 �
log T � 4.6). Finally, a phase lag appears in the partial ionization
zone of H (4.2 � log T � 4). The latter is very large for cold FC
models with large α, which leads to phase lags close to 0◦ at the
surface, while on the contrary, it is much smaller for TDC models.
We also see that the TDC phase lags are less sensitive to α than
the FC ones. The occurrence of the phase lags can be interpreted as
follows. In δ Sct models, φ(δr ) is quasi-constant (except around the
nodes) and most of the phase lag comes from variations of φ(δL).
Using the equation of energy conservation and φ(δL) = �(ln (δL)),
we have for a radial mode:

φ(δL) =
∫

dφ(δL)

dm
dm =

∫
�

{
dδL/dm

δL

}
dm

= −
∫

�
{

σ T δs

δL

}
dm ∼= −

∫
�

{
δs/cv

δL/L

}
cvT σ

L
dm.

(2)

From this equation, we see that significant phase lag can occur if
the thermal relaxation time is significant compared to the pulsation
period (case of the He II partial ionization zone) and/or the pulsation
is highly non-adiabatic (case of the H partial ionization zone). The
sensitivity of the FC results to α can be understood as follows (see
also Moya et al. 2004). In the FC approximation, �{δsL/(cvδL)} is

large in the convective zone coinciding with the H partial ionization
zone (HCZ), therefore large phase lags occur in this zone, according
to equation (2). When α increases, the mass of the HCZ increases
quickly. As there is an integration over the mass in equation (2), the
phase lag appearing in this zone increases with α. The large values
of |δs/cv| occurring in the HCZ and FC case are not allowed by TDC
models because they would lead to large superadiabatic gradients
and thus too large variations of the convective flux. Therefore, the
phase lags in the HCZ are smaller in the TDC case than in the
FC case. As α increases, convection becomes more efficient and
TDC models force |δs/cv| to be even smaller in this zone; this
counterbalances the increase of the HCZ mass with α, so that the
TDC phase lags are less sensitive to α than the FC ones. The phase
lag occurring in the partial ionization zone of He II is not sensitive
to α because the fraction of energy transported by convection is
negligible in this zone. The return of the phase lags to 180◦ in TDC
models towards the red edge of the instability strip (see Fig. 1) is
more difficult to interpret. It is associated with positive values of
d φ(δL)/d m in the intermediate region between the He II and H
partial ionization zones (4.6 � log T � 4.3), which can be seen in
the left panel of Fig. 3 (solid line, α = 1.8).

According to equation (1) and using the values of fT and ψ T

computed by our non-adiabatic pulsation code, we can determine
the amplitude ratios and phase differences of magnitude variation in
different photometric passbands. Classical diagrams used for photo-
metric mode identification with the Strömgren photometry (Garrido
et al. 1990) represent in abscissa the phase difference φ(b − y) −
φ(y) and in ordinate the amplitude ratio A(b − y)/A(y). Such a
diagram is represented in Fig. 4. The curves give the values of these
quantities along the evolution sequence of stellar models with M
= 1.8 M�, Z = 0.02, α = 1.5 and effective temperatures from
8200 K (•) down to 7100 K (◦). Solid lines are for TDC models and
dotted lines for FC models. Results are given for modes of degrees
� = 0, 1 and 2; for each �, we selected the mode with frequency
closest to the one of the fundamental radial mode. As expected,
there is no significant difference between TDC and FC results for
hot models. On the contrary, for cold models at the red side of the
instability strip, the differences are significant in view of typical
observational error bars (a fraction to a few degrees for the phases
and a few per cent for the amplitudes).
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Figure 4. The evolution of the phase difference [φ(b − y) − φ(y)] and the
amplitude ratio [A(b − y)/A(y)] for the Strömgren photometry, � = 0, 1, 2
modes, TDC and FC treatments and equilibrium models with T eff between
8200 K (•) and 7100 K (◦).
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4 A P P L I C AT I O N S

We now consider the applications to different specific δ Sct stars.
The main goal of this paper is to confront the predictions of our
non-adiabatic models to the observed amplitude ratios and phase
differences. Moreover, we have shown in Section 3 that the main
difference between FC and TDC theoretical results is in the phase
lag ψ T for models at the red side of the instability strip. Therefore,
we chose to study the δ Sct stars for which the most precise multi-
colour photometric amplitudes and phases are available, for which
(if possible) simultaneous spectroscopic and photometric observa-
tions were performed (giving the phase difference between the light
and velocity curves) and located at the red side of the instability strip.
As the modelling of the rotation–pulsation interaction and the influ-
ence of rotation on the equilibrium models remains subject to uncer-
tainties and is not taken into account in our study, we selected stars
with small or moderate v sin i . We do not study stars with too many
frequencies, for which the estimate of the amplitudes and phases
could be biased by unresolved modes. Also, we do not consider
monoperiodic high-amplitude δ Sct stars for which the light curve
is strongly non-linear, because our pulsation modelling is linear.

The methodology of our non-adiabatic seismic study is the fol-
lowing. First, we identify the degree � of the modes by confronting
the theoretical and observed amplitude ratios and phase differences
for some models. Secondly, we compute a large grid of models with
different M , T eff, α and Z inside the global parameters observa-
tional error box. If one of the modes is identified as radial, we only
consider models fitting exactly the frequency of this mode (consid-
ering it either as the fundamental or as the first overtone). Then, we
perform non-adiabatic computations with TDC and FC treatments
for all these models and determine the theoretical amplitude ratios
and phase differences between different photometric passbands. For
the stars with simultaneous spectroscopic and photometric observa-
tions, we also determine the theoretical phase lag between the ve-
locity and the light curves. For the confrontation with multi-colour
photometric observations, we use the following discrimant:

χ 2 = 1

2N

N+1∑
i=1
i �=i0

[(
At

i/At
i0

− Ao
i /Ao

i0

)2

σ 2
ai

+
(
φt

i − φo
i

)2

σ 2
φi

]
, (3)

where N + 1 is the number of filters, At
i and Ao

i are the theoretical
and observed amplitudes in the filter i , i 0 is the reference filter, φt

i

and φo
i are the theoretical and observed phase differences between

the filters i and i0, and σai and σφi are the standard errors for the
observed amplitude ratios and phase differences. Comparing the
discriminants obtained for different models enables us to determine
which convection models agree best with observations. The seismic
study presented in this paper is concentrated on the fitting of the
amplitude ratios and phase differences more than on the fitting of
the frequencies; frequency fitting including the effect of rotation
will be considered in future works.

In the applications, we adopt the following conventions for the
different non-adiabatic treatments of the convection–pulsation inter-
action: TDC1 stands for time-dependent convection models includ-
ing only the perturbation of convective flux; TDC2 stands for time-
dependent convection models including the perturbation of convec-
tive flux, turbulent pressure and dissipation rate of turbulent kinetic
energy into heat and FC stands for Frozen Convection models. The
way the different terms of our TDC treatment are determined is
detailed in Grigahcène et al. (2005).

For the determination of the monochromatic flux derivatives and
limb-darkening coefficients required in equation (1), we consider the

results obtained with two different families of atmosphere models.
On the one hand, we use the atmosphere models of Kurucz (1993)
and the limb-darkening coefficients of Claret (2000), in which the
ML treatment of convection (α = 1.25) is adopted, we refer to them
as MLT atmosphere models. On the other hand, we use the new
atmosphere models of Heiter et al. (2002) and the limb-darkening
coefficients of Barban et al. (2003), in which the convection treat-
ment of Canuto et al. (1996) is adopted, we refer to them as FST
atmosphere models.

4.1 V784 Cassiopeae

The variability of V784 Cassiopeae (Cas) (HD 13122) was dis-
covered by the Hipparcos satellite. This star was observed in the
Johnson and Strömgren vby photometry and in medium-resolution
spectroscopy between 1999 and 2001 by Kiss et al. (2002). They
detected four frequencies: f 1 = 9.1565 c/d, f 2 = 9.4649 c/d, f 3 =
15.4036 c/d and f 4 = 15.9013 c/d.

4.1.1 Global parameters and equilibrium models

There is no Hβ measure for V784 Cas and the dereddening could
not be estimated. Therefore, the photometric determinations of the
effective temperature and gravity must be considered with caution.
For the metallicity, Gray, Napier & Winklet (2001) noted that it is
a mild Am star, the lines of Sr II λ4077 and λ4216 are enhanced.
There is no abundance determination in the literature. The observed
global parameters obtained with different calibrations are given in
Table 1.

In Table 2, we give the global characteristics of some of the equi-
librium models we considered for V784 Cas. As will be confirmed

Table 1. Observed global parameters of V784 Cas.

T eff log (L/L�) log g [M/H] v sin i
(K) (km s−1)

6980a 1.3(0.06)e 3.86a 0.38d 55(10)e

6990b 3.73b 0.53b 66(10)f

7100(100)c 3.8(0.1)c

Strömgren indices-based calibrations are taken from aSmalley & Kupka
(1997), bStütz & Nendwich (2002), cKurucz (1998) and dSmalley (1993).
eLuminosity is deduced from the Hipparcos parallax (Kiss et al. 2002).
ev sin i determinations are taken from eKiss et al. (2002) and f De Medeiros
& Mayor (1999). Error bars are given in parentheses.

Table 2. Global parameters of some of the theoretical models adopted for
V784 Cas. Models 1–8 fit f 1 as the fundamental radial mode and models
9–12 fit f 1 as the first overtone.

Model M/M� T eff (K) log (L/L�) log g Z α

1 1.80 6966 1.1931 3.8250 0.02 1.8
2 1.80 6976 1.1927 3.8280 0.02 1.5
3 1.80 6984 1.1924 3.8304 0.02 1.0
4 1.80 6959 1.1930 3.8234 0.02 0.5
5 2.20 6998 1.2521 3.8610 0.05 1.8
6 2.20 7014 1.2512 3.8659 0.05 1.5
7 2.25 7155 1.2921 3.8695 0.05 1.8
8 2.25 7148 1.2925 3.8673 0.05 1.5

9 1.95 6898 1.3473 3.6886 0.02 1.8
10 1.95 6915 1.3474 3.6928 0.02 1.5
11 1.95 6920 1.3473 3.6941 0.02 1.0
12 1.95 6910 1.3474 3.6914 0.02 0.5
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Figure 5. Amplitude ratios (top panels) and phase differences (bottom panels) for different models of V784 Cas. The lines are the theoretical predictions for
different �, and the error bars represent the observations for f 1 and f 2 (six left panels) and for f 3 and f 4 (two right panels).

in this study, the main frequency f 1 = 9.1565 c/d is clearly iden-
tified as a radial mode. However, because of the global parameter
uncertainties, it is not clear if it is the fundamental mode or the first
overtone. For each evolutionary sequence considered in our study,
we selected the model fitting f 1 exactly as the fundamental radial
mode and the colder model fitting f 1 exactly as the first radial over-
tone, which gives two families of models. In Table 2, models 1–8
fit f 1 as the p1 radial mode and models 9–12 fit f 1 as the p2 mode.
All the models of Table 2 are with X = 0.7 and core overshooting
αov = 0.2. We considered models with different values of the ML
parameter α: 0.5, 1, 1.5 and 1.8 with Z = 0.02 and with a high
metallicity (Z = 0.05) suggested by the photometric calibrations.

4.1.2 Mode identification

Depending on the models and non-adiabatic treatments (TDC or
FC), different theoretical amplitude ratios and phase differences are
obtained. All these models identify without any doubt f 1 as a radial
mode and f 2 as an � = 1 mode. This mode identification does not
depend on the initial choice of the model and is therefore reliable.
As an illustration of this mode identification, we give in Fig. 5 (four
left panels) the confrontation between the theoretical and observed
amplitude ratios (top panels) and phase differences (bottom panels),
as obtained with our TDC1 treatment, for two different models fitting
f 1 as the p1 mode (left) or the p2 mode (right). For all the models of
Fig. 5, we used FST atmospheres. For f 3 and f 4, the observational
error bars are larger. We did not find a model fitting at the same time
the amplitude ratios and phase differences for the four modes of
V784 Cas. In the two right panels of Fig. 5, we give the comparison
between the theoretical amplitude ratios and the phase differences
for the TDC1 model 8 and the observations for f 3 and f 4. We see
that f 3 is identified most likely as a radial mode, while f 4 could
be an � = 2 or an � = 3 mode. In Table 3, we give a summary
of the mode identification. Given the uncertainties on the global
parameters of V784 Cas, it is not possible to know whether f 1 is the
fundamental or the first overtone. Confrontation with the observed
amplitudes and phases does not help to discriminate between these

Table 3. Mode identification for the four frequencies of V784 Cas.

f 1 f 2 f 3 f 4

� � = 0 � = 1 � = 0 � = 2 or 3
p1 fit p1 g1 p3 p1 or f
p2 fit p2 p1 p5 p3 or p1

two possibilities, as shown by the four left panels of Fig. 5. The row
‘p1 fit’ (‘p2 fit’) of Table 3 gives the radial orders of the different
modes if f 1 is considered as the fundamental radial mode (the first
overtone).

4.1.3 Results obtained with different convection models

We now compare the results obtained with different convection mod-
els. In Table 4, we give the discriminants (square roots of equation 3)
obtained for the four frequencies of V784 Cas. In columns 2–5, we
give the index of the model in Table 2, the mass, the mixing-length
parameter and the metallicity. In column 6, we give the radial or-
der of the mode fitting f 1. In column 7, we give the treatment of
convection in the atmosphere. In column 8, we give the adopted
treatment of convection–pulsation interaction in the interior. χ 1,0

is the discriminant for f 1, considering it as a radial mode; χ 2,1 is
the discriminant for f 2, considering it as an � = 1 mode; χ 3,0 is
the discriminant for f 3, considering it as a radial mode; χ 4,2 is the
discriminant for f 4, considering it as an � = 2 mode and χ 4,3 is the
discriminant for f 4, considering it as an � = 3 mode.

As the error bars for the f 1 frequency are by far the lowest, the
models with smallest values of χ 1,0 can be considered as the mod-
els giving the best agreement with observations. Rows 1–4 of Table
4 give the best models obtained using FST atmospheres. All these
best models were obtained with TDC treatment. Rows 5–8 give the
results obtained for the same models but with MLT atmospheres.
For V784 Cas, the results obtained with the two types of atmosphere
models are not very different. We note that solar metallicity is used
in all the FST atmospheres, while the MLT atmosphere of model 5
(row 7) is with [M/H] = 0.5, which agrees better with observations.

C© 2005 RAS, MNRAS 361, 476–486

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/361/2/476/1057329 by guest on 21 O
ctober 2022



TDC seismic study of δ Sct stars 481

Table 4. Discriminants obtained for different models and for the four frequencies of V784 Cas. Explanation is given in Section 4.1.3

Model M/M� α Z nf1 conv. χ 1,0 χ 2,1 χ 3,0 χ 4,2 χ 4,3

1 10 1.95 1.5 0.02 p2 FST TDC2 3.245 1.949 0.581 1.725 1.577
2 10 1.95 1.5 0.02 p2 FST TDC1 3.315 1.758 0.586 1.633 1.531
3 5 2.20 1.8 0.05 p1 FST TDC1 3.414 1.435 0.475 1.661 1.530
4 1 1.80 1.8 0.02 p1 FST TDC1 3.574 1.649 0.524 1.734 1.648

5 10 1.95 1.5 0.02 p2 MLT TDC2 4.172 1.463 0.513 1.695 1.603
6 10 1.95 1.5 0.02 p2 MLT TDC1 2.819 1.363 0.509 1.624 1.573
7 5 2.20 1.8 0.05 p1 MLT TDC1 3.029 1.084 0.595 1.583 1.534
8 1 1.80 1.8 0.02 p1 MLT TDC1 5.275 1.405 0.572 1.715 1.663

9 2 1.80 1.5 0.02 p1 FST TDC1 4.482 1.424 0.430 1.674 1.404
10 3 1.80 1.0 0.02 p1 FST TDC1 5.053 1.070 0.314 1.242 0.809
11 4 1.80 0.5 0.02 p1 FST TDC1 5.110 1.088 0.367 1.271 0.997

12 2 1.80 1.5 0.02 p1 FST TDC2 5.158 1.578 0.448 1.741 1.417
13 3 1.80 1.0 0.02 p1 FST TDC2 5.071 1.057 0.267 1.229 0.758
14 4 1.80 0.5 0.02 p1 FST TDC2 5.124 1.079 0.350 1.223 0.910

15 6 2.20 1.5 0.05 p1 MLT TDC1 3.820 0.696 0.513 1.108 0.904
16 7 2.25 1.8 0.05 p1 MLT TDC1 4.293 0.815 0.465 1.068 0.821
17 8 2.25 1.5 0.05 p1 MLT TDC1 4.957 0.801 0.443 0.729 0.431

18 9 1.95 1.8 0.02 p2 FST TDC1 5.064 1.623 0.545 1.658 1.747
19 11 1.95 1.0 0.02 p2 FST TDC1 5.340 1.203 0.634 1.432 1.210
20 12 1.95 0.5 0.02 p2 FST TDC1 5.605 1.135 0.592 1.473 1.413

21 2 1.80 1.5 0.02 p1 FST FC 8.376 0.427 0.579 3.871 11.051
22 3 1.80 1.0 0.02 p1 FST FC 6.810 0.716 0.491 2.091 5.120
23 4 1.80 0.5 0.02 p1 FST FC 5.586 0.981 0.326 0.605 0.583
24 10 1.95 1.5 0.02 p2 FST FC 7.695 0.255 0.586 2.060 16.488
25 11 1.95 1.0 0.02 p2 FST FC 6.838 0.552 0.759 1.422 6.123
26 12 1.95 0.5 0.02 p2 FST FC 5.905 0.979 0.789 0.777 0.494

Rows 4–9 to 11 give the 1.8 M� TDC1 results obtained with differ-
ent values of the mixing length parameter α. As shown in Section 3,
the TDC results are not very sensitive to α, the best ones correspond
to α = 1.8 (solar calibrated value). Rows 12–14 give the results for
the same models but with the TDC2 treatment. Comparison with
rows 9–11 shows that the inclusion of the turbulent pressure and
dissipation rate of turbulent kinetic energy perturbations does not
significantly change the results. Rows 7 and 15–17 give the results
obtained with Z = 0.05 (as suggested by the photometric calibra-
tion). We see that the results are less sensitive to the metallicity than
to α and T eff. Rows 2 and 18–20 give the results obtained fitting f 1

as the p2 radial mode (instead of p1). The confrontation with the ob-
served amplitudes and phases does not allow to determine whether
f 1 is the p1 or the p2 radial mode. Rows 21–26 give the results
obtained with FC treatment. For f 1, we see that the discriminants
are much larger with FC treatment than with TDC treatment. This
shows that TDC results agree better with observations than FC ones
(see also Fig. 5). As shown in Section 3, TDC and FC results are
the closest for small α. For the � = 1 mode (f 2), the agreement with
observations is better for FC models, but the observational error bars
are much larger for this mode and TDC results remain in relatively
good agreement with observations. We note that V784 Cas was ob-
served simultaneously in photometry and spectroscopy (Kiss et al.
2002). However, there are not enough radial velocity measurements
to determine the amplitudes and phases of each individual mode. A
simple look at fig. 7 of Kiss et al. (2002) shows that the light and
velocity curves are approximately in opposite phase, in agreement
with our TDC results. Finally, we remark that no constraints can
be deduced from the mode excitation. For all the models we have
considered, all the modes are predicted to be unstable in the range
of observed frequencies.

4.1.4 f1/f3 frequency ratio

The frequencies f 1 and f 3 of V784 Cas are identified as radial modes.
We compared the theoretical ratios of radial modes with different
n to the observed ratio f 1/ f 3 = 0.594439, for many models with
metallicities 0.02 �Z � 0.05, hydrogen mass fraction 0.65 �X �
0.75 and core overshooting parameter 0 � αov � 0.25. The models
fitting f 1 as the fundamental radial mode and f 3 as the second over-
tone give 0.6166 � f p1/ f p3 � 0.620. The lowest frequency ratios
are obtained for models with high X and Z. The models fitting f 1 as
the first overtone and f 3 as the fourth overtone give 0.569 � f p2/ f p5

� 0.5706. We see that the theoretical frequency ratios are poorly
sensitive to the global parameters of the model and none of the the-
oretical results agree with the observed frequency ratio (0.5944).
Suarez (2002) and Suarez et al. (in preparation) show that the fre-
quency ratios of radial modes predicted by models taking the effect
of rotation into account are different from the case without rotation.
Helium diffusion was discussed as another possible explanation for
unusual (high) first overtone to fundamental period ratios (Cox,
McNamara & Ryan 1984; Guzik & Cox 1991). In future works we
will analyse whether rotation and/or diffusion is able to explain the
observed frequency ratios of V784 Cas.

4.2 1 Monocerotis

1 Monocerotis (Mon) (HD 40535) is a δ Sct star with three clearly
observed frequencies: f 1 = 7.346146 c/d, f 2 = 7.475268 c/d and
f 3 = 7.217139 c/d (Balona & Stobie 1980). Balona et al. (2001) ob-
served this star simultaneously in the Strömgren uvby and Cousins
I photometry and in high-dispersion spectroscopy, which is of par-
ticular interest for our study. They identified f 1 as a radial mode and
f 2 as most likely (�2, m 2) = (1, −1).
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Table 5. Observed global parameters of 1 Mon.

T eff log (L/L�) log g [M/H] v sin i
(K) (km s−1)

7240a 1.45(0.07)g 3.77a 0.2d 18.8(1.5)h

7113b 3.47b 0.19b

7080c

7100(100)e

� 6885 f

Strömgren indices-based calibrations are taken from aSmalley & Kupka
(1997), bStütz & Nendwich (2002), cMoon & Dworetsky (1985) and
dSmalley (1993). eProfile fitting based on the Hβ line and f the Hα line
is taken from Solano & Fernley (1997). gThe luminosity is deduced from
the Hipparcos parallax (Balona et al. 2001). hv sin i determination is taken
from Solano & Fernley (1997).

Table 6. Global parameters of some of the theoretical models considered
for 1 Mon. Models 1–7 fit f 1 as the fundamental radial mode and models
8–10 fit f 1 as the first overtone.

M/M� T eff (K) log (L/L�) log g α

1 1.95 6981 1.3466 3.7101 1.5
2 1.95 6988 1.3465 3.7120 1.0
3 1.95 7002 1.3463 3.7156 0.5
4 2.05 7281 1.4377 3.7137 1.8
5 2.05 7293 1.4374 3.7169 1.5
6 2.05 7288 1.4375 3.7157 1.0
7 2.05 7282 1.4376 3.7142 0.5
8 2.10 6888 1.4884 3.5771 1.5
9 2.10 6875 1.4886 3.5736 1.0

10 2.10 6860 1.4888 3.5698 0.5

4.2.1 Global parameters and equilibrium models

The observed global parameters of 1 Mon obtained with different
calibrations are given in Table 5. There is no abundance determi-
nation for this star. In Table 6, we give the global characteristics of
some of the equilibrium models we considered for 1 Mon. As we
will confirm in this study, the main frequency f 1 = 7.346146 c/d is
clearly identified as a radial mode. However, because of the global
parameter uncertainties, it is not clear if it is the fundamental mode
or the first overtone. For each evolutionary sequence considered in
our study, we selected the model fitting exactly f 1 as the fundamen-
tal radial mode and the colder model fitting exactly f 1 as the first
radial overtone, which gives two families of models: in Table 6,
models 1–7 fit f 1 as the p1 radial mode and models 8–10 fit f 1 as
the p2 mode. All the models of Table 6 have X = 0.7, Z = 0.02 and
core overshooting αov = 0.2. We considered models with different
values of the ML parameter α: 0.5, 1, 1.5 and 1.8.

4.2.2 Mode identification

For 1 Mon, observations in the Strömgren uvby and Cousins I (in-
frared) passbands are available along with simultaneous observa-
tions in high-dispersion spectroscopy. This enables to identify the
modes with a higher degree of confidence. From the observations
of Balona et al. (2001), only the two frequencies f 1 = 7.346146
c/d and f 2 = 7.475268 c/d have sufficiently precise amplitudes and
phases for mode identification, and we consider only these two fre-
quencies in our study. Depending on the models and non-adiabatic
treatments (TDC or FC), different theoretical amplitude ratios and

phase differences are obtained. In our study of 1 Mon, we have used
the atmosphere models of Kurucz (1993) for the determination of
the quantities αT λ, αgλ, . . . of equation (1). All our models (TDC
and FC) identify f 1 as a radial mode and f 2 as an � = 1 mode.
As an illustration of this mode identification, we give in Fig. 6 the
confrontation between the theoretical and observed photometric am-
plitude ratios (top panels), photometric phase differences (middle
panels) and phase differences between magnitude variation and ra-
dial displacement (bottom panels), for different models of 1 Mon.
The six left panels give the results obtained with TDC treatment in-
cluding the perturbation of convective flux and the six right panels
give the results obtained with FC treatment. Index of the models is
given at the top of the panels, according to Table 6. As said before,
it is not clear if f 1 is the fundamental mode or the first overtone,
we consider thus the two cases. We see that the confrontation with
the observed phases gives a slightly better agreement for model 10
(p2 fit) than for model 5 (p1 fit), but in view of the error bars, we
do not consider this as enough to discriminate between these two
possibilities. We note that our models are not able to give a good
agreement with the observed phase in the u filter. Photometric mode
identification based on TDC models is better than with FC; how-
ever in the case of 1 Mon it appears that both TDC and FC give
the same in pure photometry (see top and middle panels of Fig. 6).
Balona et al. (2001) also did a photometric mode identification of
f 1 and f 2, using the non-adiabatic code of Dziembowski (1977),
which does not include TDC. They also performed a spectroscopic
mode identification (based on the line profile variations). Both mode
identifications of Balona et al. (2001) are compatible with ours.

4.2.3 Results obtained with different convection models

We now compare the results obtained with different convection mod-
els. As 1 Mon has been observed simultaneously in multi-colour
photometry and in spectroscopy, we can define different discrimi-
nants for the confrontation between theory and observations. First,
we use the photometric discriminant defined by the square root
of equation (3). For this discriminant, we use the y filter as refer-
ence (as in Fig. 6) because the amplitudes and phases are subject
to more theoretical uncertainties at smaller wavelengths. Secondly,
we use another discriminant for the confrontation between the theo-
retical and observed phase differences between the magnitude vari-
ations and the radial velocity curve. This discriminant is defined as
follows:

χ 2
V = 1

N + 1

N+1∑
i=1

[(
φt

i,V − φo
i,V

)2

σ 2
φi,V

]
, (4)

where N + 1 is the number of filters, φt
i,V and φo

i,V are the
theoretical and observed phase differences between the magnitude
variation in filter i and the radial velocity variation and σ φi,V are
the standard errors for the observed phase differences. χ V gives
the best discrimination between the different convection models,
because φt

i,V is closely related to the phase lag ψ T , which is very
sensitive to the convection treatment (see Fig. 1).

In Table 7, we give the values obtained for these discriminants for
different models. In column 2, we give the index of the model whose
global parameters are given in Table 6. In column 3, we give the
adopted treatment of convection–pulsation interaction. Then, we
give the different discriminants. χ V 1,0 is the magnitude–velocity
discriminant (equation 4) for f 1, considering it as a radial mode;
χ V 2,1 is the magnitude–velocity discriminant for f 2, considering it
as an � = 1 mode; χ 1,0 is the photometric discriminant (equation 3)
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Figure 6. Photometric amplitude ratios Au,v,b,y,I /Ay (top panels), photometric phase differences φu,v,b,y,I −φ y (middle panels) and phase differences between
magnitude variation and radial displacement φu,v,b,y,I −φVr +90◦ (bottom panels), for different models of 1 Mon. The lines are the theoretical predictions for
different � and the error bars represent the observations for f 1 and f 2.

Table 7. Discriminants obtained for different models and for the two main
frequencies of 1 Mon. Explanation is given in Section 4.2.3.

Model Conv. χ V 1,0 χ V 2,1 χ 1,0 χ 2,1

1 10 TDC1 1.229 0.681 1.712 1.166
2 10 TDC2 1.707 1.156 1.726 1.160
3 3 TDC1 1.799 2.111 1.987 0.702
4 5 TDC1 0.798 1.586 3.834 1.581

5 8 TDC1 6.661 1.731 3.997 2.047
6 9 TDC1 4.456 2.439 2.034 1.264
7 8 TDC2 9.333 2.225 5.213 2.417
8 9 TDC2 7.670 3.920 2.352 1.388

9 1 TDC1 12.640 6.683 2.724 0.956
10 2 TDC1 6.389 4.779 1.937 0.687
11 4 TDC1 2.627 3.137 3.925 1.666
12 6 TDC1 3.256 0.657 3.774 1.518
13 7 TDC1 4.920 1.494 3.744 1.482

14 8 FC 44.176 32.657 4.601 2.262
15 9 FC 32.779 23.554 3.162 1.349
16 10 FC 11.934 8.499 1.767 0.989
17 1 FC 43.643 31.936 4.579 2.177
18 2 FC 29.507 21.072 3.091 1.322
19 3 FC 9.061 7.075 2.167 0.834
20 5 FC 19.395 14.632 4.507 2.249
21 6 FC 5.893 5.766 4.011 1.759
22 7 FC 3.539 0.731 3.777 1.516

for f 1, considering it as a radial mode; and χ 2,1 is the photometric
discriminant for f 2, considering it as an � = 1 mode. Rows 1–4 of
Table 7 give the models that agree best with observations. All these
models were obtained with TDC treatment. Some are with small α

(models 10 and 3, α = 0.5), others with larger α (model 5, α = 1.5).
Model 10 fits f 1 as the first radial overtone while models 3 and 5 fit
f 1 as the fundamental radial mode. Therefore, present observations
do not allow to discriminate between these possibilities. Rows 1, 5
and 6 give the 2.1 M�, p2 fit results obtained with different values of
the mixing length parameter α, taking the perturbation of convective
flux into account (TDC1). Rows 2, 7 and 8 give the results for the
same models, but taking also the perturbation of turbulent pressure
and dissipation rate of turbulent kinetic energy into account (TDC2).
Rows 3, 9 and 10 give the 1.95 M�, p1 fit results obtained with
different α and TDC1 treatment. For the 1.95 and 2.1 M� models,
the best agreement is found with α = 0.5. Rows 4, 11, 12 and 13
give the 2.05 M�, p1 fit results obtained with different α and TDC1
treatment. We see that for this mass, the best agreement is obtained
with α = 1.5. Rows 14–22 give the results obtained for the same
models but with FC treatment. In the case of 1 Mon, considering
only the photometric amplitudes and phases does not allow to reject
the small α FC results compared to the TDC results. But for the
magnitude–velocity phase lags, the TDC results agree much better
with observations than the FC ones, as shown by the discriminants
χ V 1,0 and χ V 2,1 and the bottom panels of Fig. 6. In agreement with
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the general discussion in Section 3, TDC and FC results are the
closest for small α.

4.2.4 Other possible constraints

No constraint can be deduced from the mode excitation. For all
the models we have considered, all the modes are predicted to be
unstable in the range of observed frequencies.

For the comparison between the theoretical and observed fre-
quencies, the present observations are not sufficient to give more
constraints on the models. In our study, we have already used the
information given by f 1: all our selected models fit f 1 exactly, either
as the fundamental radial mode or as the first overtone. Concerning
f 2, it is identified as an � = 1 mode and the spectroscopic mode iden-
tification of Balona et al. (2001) indicates that its azimuthal order
is m = −1. As the other components of the triplet are not observed
and the inclination angle is not known with sufficient precision, we
can not yet use this frequency to constrain the model.

4.3 28 Andromedae

28 Andromedae (And) (HD 2628) is a δ Sct star known to show
extreme amplitude changes. It has a main pulsation frequency f 1

= 14.4292 c/d. Rodriguez et al. (1993) obtained precise Strömgren
photometric amplitudes and phases, and 5 years later, Rodriguez et
al. (1998) found the amplitude to be 19 times less. Rodriguez et al.
(1998) also revealed the existence of a secondary frequency f 2 =
17.23 c/d.

4.3.1 Global parameters and equilibrium models

The observed global parameters of 28 And obtained from photom-
etry and spectroscopy are given in Table 8. In Table 9, we give the
global characteristics of some of the theoretical models we consid-
ered for 28 And. As we will show in this study, the main frequency
f 1 = 14.4292 c/d is a non-radial mode. As its azimuthal order m is
unknown, trying to fit this frequency would be useless. We therefore
computed several equilibrium models in the observational error box,
without frequency based constraint, as given in Table 9. All these
models have X = 0.7, Z = 0.02 and core overshooting αov = 0.2.
We considered models with different values of the ML parameter
α: 0.5, 1, 1.5 and 1.8.

4.3.2 Mode identification

In this section and in Section 4.3.3, we consider the multi-colour
photometric amplitudes and phases given by Rodriguez et al. (1993)
for the confrontation with observations. We computed the theoretical
amplitude ratios and phase differences for all the models given in

Table 8. Observed global parameters of 28 And.

T eff (K) log g [M/H] v sin i (km s−1)

7240a 3.72a −0.13c 16.1(1.5)g

7249b 3.67b −0.13b

7300d 3.85d −0.16(0.24) f

7350e 3.65e

Strömgren indices-based calibrations are taken from: aSmalley & Kupka
(1997), bStütz & Nendwich (2002) and cSmalley (1993). dHγ profile fitting
using MLT and eCanuto & Mazzitelli convection models are taken from
Adelman et al. (2000). f Detailed abundances determination was performed
by Adelman et al. (2000). gv sin i determination is taken from Solano &
Fernley (1997).

Table 9. Global parameters of the 28 And theoretical models.

Model M/M� T eff (K) log (L/L�) log g α

1 2.1 7308 1.4835 3.6850 1.8
2 2.1 7287 1.4838 3.6797 1.5
3 2.1 7282 1.4839 3.6782 1.0
4 2.1 7274 1.4840 3.6764 0.5
5 2.0 7371 1.3881 3.7739 1.5
6 2.0 7251 1.3907 3.7428 1.5
7 2.0 7234 1.3910 3.7385 1.0
8 2.0 7219 1.3913 3.7347 0.5

Table 9 and it clearly appears that the main mode of 28 And is non-
radial, which is somehow unusual for mono-periodic δ Sct stars.
Confrontation with observations shows that it is probably an � =
2 mode, which could be p1 or p2 depending on the model. As an
illustration of this mode identification, we give in the four left panels
of Fig. 7, the TDC amplitude ratios and phase differences obtained
for two models with α = 1.5 and α = 1. The α = 1.5 model is in very
good agreement with observations. The right panels of Fig. 7 show
that the FC amplitudes and phases do not agree with observations.
For all the models of Fig. 7, we used FST atmospheres.

4.3.3 Results obtained with different convection models

In Table 10, we give the discriminants (square roots of equation 3)
obtained for different �. In column 2, we give the index of the
model whose global parameters are given in Table 9. In column 3,
we give the convection treatment in the atmosphere model. In col-
umn 4, we give the adopted treatment of convection–pulsation inter-
action. Then, we give the discriminants, first for � = 2 which gives
the best agreement with observations, and then for other � (0, 1
and 3). Rows 1–4 of Table 10 give the best models obtained using
FST atmospheres. All these best models were obtained with TDC
treatment. Rows 5–8 give the results obtained for the same mod-
els but with MLT atmospheres. Rows 9–14 give the TDC1 results
obtained for 2.0 and 2.1 M� models with different values of the
mixing length parameter α. As shown in Section 3, the TDC results
are not very sensitive to α, for 28 And the best agreement with obser-
vations is found with α = 1.5. Rows 15–18 give the results obtained
with FC treatment. Comparing the TDC and FC results shows that
TDC results agree more closely with observations than FC ones.
TDC and FC results are the closest for small α. Finally, we remark
that no constraints can be deduced from the mode excitation. For
all the models we have considered, all the modes are predicted to
be unstable in the range of observed frequencies.

4.3.4 Amplitudes and phase changes between the 1991
and 1996 seasons

The amplitudes of 28 And diminished by a factor of 19 between 1991
and 1996, without any significant frequency change (Rodriguez et
al. 1993, 1998). We compared the photometric amplitude ratios and
phase differences of the two seasons and give them in Fig. 8. In the
same figure, we also give the theoretical results for our best model
(model 2, TDC1 treatment of convection). There is a significant
difference in the observed amplitude ratios and phase differences
between the two seasons; these changes cannot be explained by our
models – we cannot be completely sure that we are seeing the same
mode, but there is no clear indication that we are seeing a different
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Figure 7. Amplitude ratios (top panels) and phase differences (bottom panels) for different models of 28 And (the four left panels are for TDC models and
the two right panels are for FC models). The lines are the theoretical predictions for different �, and the error bars represent the observations (1991 season).

Table 10. Discriminants for different � and models of 28 And. Explanation
is given in Section 4.3.3.

Model conv. χ �=2 χ �=0 χ �=1 χ �=3

1 2 FST TDC1 0.870 3.951 3.003 11.745
2 1 FST TDC1 1.096 5.701 3.268 10.213
3 3 FST TDC2 1.209 3.786 2.991 12.492
4 2 FST TDC2 1.222 5.039 3.610 10.516

5 2 MLT TDC1 1.344 4.211 3.297 8.177
6 1 MLT TDC1 1.958 6.175 3.721 7.536
7 3 MLT TDC2 1.209 4.028 3.175 8.510
8 2 MLT TDC2 2.106 5.391 3.998 7.789

9 3 FST TDC1 1.963 3.634 2.691 13.358
10 4 FST TDC1 2.470 3.931 2.624 13.993
11 5 FST TDC1 4.311 6.314 5.063 13.419
12 6 FST TDC1 2.907 5.450 2.947 11.055
13 7 FST TDC1 3.134 4.430 2.493 13.293
14 8 FST TDC1 2.978 4.081 2.576 14.028

15 1 FST FC 27.562 15.082 18.600 38.469
16 2 FST FC 18.883 15.615 14.825 28.448
17 3 FST FC 6.540 7.083 7.312 16.541
18 4 FST FC 2.111 3.554 2.906 13.938

one. Amplitude changes are often interpreted as the effect of non-
linear coupling with another mode with close frequency. It would be
interesting to examine in future work if such coupling can explain
the case of 28 And.

5 C O N C L U S I O N S

Mode identification is a key step in any asteroseismic study. In this
paper, we have presented the details of the significant improvement
obtained by using TDC non-adiabatic models for the photomet-
ric mode identification in δ Sct stars. The treatment of convection
plays a major role in the theoretical determination of the photomet-
ric amplitude ratios and phase differences. Therefore, comparison
with observations enables us to constrain the convection treatment
adopted in the equilibrium models as well as the treatment of the non-
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Figure 8. Amplitude ratios (left panel) and phase differences (right panel),
as observed in 1991 (	) and in 1996 (×). The lines are the theoretical pre-
dictions for different � and for model 2 (TDC).

adiabatic interaction between convection and pulsation, a method
we call non-adiabatic asteroseismology. We applied this method to
the three stars V784 Cas, 1 Mon and 28 And.

For V784 Cas, we identified the four modes as �1 = 0, �2 = 1, �3

= 0 and �4 = 2 or 3. The best agreement between the theoretical and
observed photometric amplitude ratios and phase differences was
obtained for TDC models with α � 1.8 (solar calibrated value). FC
results do not agree with observations. Theoretical results with high
metallicity agree slightly better with observations than those with
solar metallicity. It is not yet possible to determine whether the main
frequency is the fundamental radial mode or the first overtone. Also,
it is not yet possible to obtain an agreement between the theoretical
and observed frequency ratios f 1/ f 3.

For 1 Mon, we identified the two main modes as �1 = 0 and �2 = 1,
confirming the results of Balona et al. (2001). Main differences be-
tween TDC and FC results appear in the phase lag between the pho-
tometric magnitude variations and the velocity curve; the best agree-
ment between theory and observation was obtained for TDC models
with different α. The light-velocity phase lags given by FC models
do not agree with observations. In agreement with Balona et al.
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(2001), we confirm that multi-colour photometry with longer
wavelength coverage (here by including Cousins I passband ob-
servations), as well as simultaneous photometric and spectroscopic
observations significantly improve the mode identification. It is not
yet possible to determine if the main frequency of 1 Mon is the
fundamental radial mode or the first overtone.

For 28 And, we identified the main mode as an � = 2 mode. Very
good agreement between the theoretical and observed photometric
amplitude ratios and phase differences was obtained for TDC mod-
els with α � 1.5. FC results disagree with observations. The huge
amplitude change between 1991 and 1996 cannot be explained by
the present theory.

For these three stars, the largest differences between different
convection treatments appear in the phase differences, and TDC
results agree better with observations than FC results. Also, the
phase differences give more discrimination than the amplitude ratios
for the mode identification. It is thus very important to use TDC
models for the photometric mode identification and seismic study
of δ Sct stars, at least for cold ones with T eff � 7500 K. However,
our TDC models do not succeed yet in matching at the same time
all frequencies, amplitudes and phase differences. Different reasons
could explain this. The coupling of the modes due to rotation could
affect the amplitude ratios and phase differences and is not included
in our models. The effects of rotation and diffusion are not taken
into account in our equilibrium models. We are also aware that some
uncertainties are still associated with our TDC treatment and that
it could be improved, for example, by considering non-local and
anisotropic aspects of turbulence and theories more sophisticated
than MLT. We will consider this in our future works. In this paper, we
presented the mode identification and seismic study of three specific
stars. A complete study of many other δ Sct stars will be presented
in future works. Also, we will present a more detailed comparison
between the results obtained with MLT and FST atmospheres in our
future works.

AC K N OW L E D G M E N T S

MAD acknowledges financial support from CNES. AG and RG ac-
knowledge financial support from the program ESP2001-4528-PE.
JDR acknowledges support from the Fund for Scientific Research-
Flanders.

R E F E R E N C E S

Adelman S. J., Caliskan H., Kocer D., Cay I. H., Gokmen T. H., 2000,
MNRAS, 316, 514

Alexander D. R., Ferguson J. W., 1994, ApJ, 437, 879
Balona L. A., Evers E. A., 1999, MNRAS, 302, 349
Balona L. A., Stobie R. S., 1980, MNRAS, 190, 931
Balona L. A. et al., 2001, MNRAS, 321, 239
Barban C., Goupil M. J., Van’t Veer-Menneret C., Garrido R., Kupka F.,

Heiter U., 2003, A&A, 405, 1095

Canuto V. M., Goldman I., Mazzitelli I., 1996, ApJ, 473, 550
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Dupret M.-A., Grigahceǹe A., Garrido R., Montalban J., Gabriel M., Scu-

flaire R., 2004b, in Kurtz D. W., Pollard K., eds, ASP Conf. Ser. Vol.
310, Variable Stars in the Local Group. Astron. Soc. Pac., San Francisco,
p. 470

Dupret M.-A., Grigahcène A., Garrido R., Gabriel M., Scuflaire R., 2005,
A&A, 435, 927

Dziembowski W., 1977, Acta Astron., 27, 95
Gabriel M., 1996, Bull. Astron. Soc. India, 24, 233
Garrido R., 2000, in Montgommery M., Breger M., eds, The 6th Vienna

Workshop on δ Scuti and Related Stars, PASP Conf. Ser., 210, 67
Garrido R., Garcia-Lobo E., Rodriguez E., 1990, A&A, 234, 262
Gray R. O., Napier M. G., Winklet L. I., 2001, AJ, 121, 2148
Grigahcène A., Dupret M.-A., Gabriel M., Garrido R., Scuflaire R., 2005,

A&A, 434, 1055
Guzik J. A., Cox A. N., 1991, Delta Scuti Newsletter, Issue 3
Heiter U. et al., 2002, A&A, 392, 619
Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
Kiss L. L., Derekas A., Alfaro E. J., Biro I. B., Csak B., Garrido R., Szatmary

K., Thomson J. R., 2002, A&A, 394, 97
Kurucz R. L., 1993, ATLAS9 Stellar Atmosphere Programs and 2 km s−1

Grids, Kurucz CDROM No 13
Kurucz R. L., 1998, http://kurucz.harvard.edu/grids.html
Moon T. T., Dworetsky M. M., 1985, MNRAS, 217, 305
Moya A., Garrido R., Dupret M.-A., 2004, A&A, 414, 1081
Pesnell W. D., 1990, ApJ, 363, 227
Rodriguez E., Rolland A., Lopez de Coca P., Garrido R., Mendoza E. E.,

1993, A&A, 273, 473
Rodriguez E., Rolland A., Lopez-Gonzalez M. J., Costa V., 1998, A&A,

338, 905
Smalley B., 1993, A&A, 274, 391
Smalley B., Kupka F., 1997, A&A, 328, 349
Solano E., Fernley J., 1997, A&AS, 122, 131
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