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Non-Abelian current oscillations in harmonic string loops: Existence of throbbing vortons
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It is shown that a string carrying a field of harmonic type can have circular vorton states of a new

throbbing kind, for which the worldsheet geometry is stationary but the internal structure undergoes

periodic oscillation.
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I. INTRODUCTION

The purpose of the present work is to demonstrate the
use of the formalism developed in a preceding article [1]
for the treatment of fields in curved target spaces, by
applying it to simple but nontrivial examples of the im-
portant special case of harmonic and other simply harmo-
nious fields [2,3] on a string worldsheet.

The present investigation will be restricted to geometric
configurations of the simplest nontrivial type, namely,
circularly symmetric string loops in a flat background
spacetime, for which the metric will be conveniently ex-
pressible in cylindrical coordinates as

ds2 ¼ �dt2 þ %2d�2 þ d%2 þ dz2; (1)

so that the string worldsheet will be specifiable by an
expression for the radius % as a function of the time t at
a fixed value of the longitudinal coordinate z that can be
taken without loss of generality to be the origin z ¼ 0.

A systematic investigation of the dynamics of such a
worldsheet has already been carried out [4] for conducting
string models of the simple type for which the current
has only a single degree of freedom, in the sense that the
target space of the scalar field on the string is just one
dimensional—and therefore trivially flat—the outcome
being that if its energy is not too high the string will
oscillate about a ‘‘vorton’’ type equilibrium state. Such a
vorton state will be generically stable with respect to
perturbations of the purely axisymmetic kind to which
the present analysis will be restricted, but it has been
shown [5] that they will be commonly, though not generi-
cally, unstable with respect to nonaxisymmetric modes. It
is to be expected that qualitatively similar behavior will
occur for scalar field models with more degrees of freedom
[6,7], so long as all the currents are generated by commut-
ing symmetries of a flat target space.

The novelty in the present work will be to consider a
situation of a qualitatively different kind that can arise
when the relevant target space is not flat. Of course a
curved target space might have no symmetries at all, in
which case the currents in question would not even be
conserved. The present work will however be concerned
with the opposite extreme, in which the target space is
highly symmetric, so that there will be many conserved

current combinations, but with generators that do not
commute. Attention will be focussed here on the simplest
nontrivial possibility of this kind, namely, the case in
which the target space is just an ordinary 2-sphere, with
metric dŝ2 ¼ ĝABdX

AdXB that will be expressible in terms

of the usual coordinates X1 ¼ �̂ and X2 ¼ ’̂ by

dŝ2 ¼ d�̂2 þ sin2�̂d’̂2: (2)

II. EXTRINSIC MOTION OF CIRCULAR
STRING WORLDSHEET

It will be convenient to describe the evolution of the
worldsheet, within the background characterized by (1), in
terms of unit timelike radial and spacelike transverse tan-
gent vectors u� and ~u�, and of a unit spacelike radial
normal vector ��, that are given in terms of the coordinates
x0 ¼ t, x1 ¼ �, x2 ¼ %, x3 ¼ z by

u� ¼�ð��
0 þ _%�

�
2 Þ; ~u� ¼ 1

%
�
�
1 ; �� ¼�ð _%��

0 þ�
�
2 Þ;
(3)

where a dot denotes differentiation with respect to the time
coordinate t and the Lorentz factor for the radial velocity _%

is defined as usual by � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2

p
.

The ensuing derivative formulas

u�r�u
� ¼ �3 €%��; ~u�r�~u

� ¼ � 1

%
�
�
2 ;

~u�r�u
� ¼ �

_%

%
~u�; u�r�~u

� ¼ 0;

can be used to evaluate the second fundamental tensor as
given [8] by the prescription

K��
� ¼ 	�


 �r�	

�; �r� ¼ 	�

�r�; (4)

in which the first fundamental tensor of the worldsheet is
specified as

	�
� ¼ �u�u

� þ ~u�~u
�: (5)

The second fundamental tensor of the time-dependent
circular worldsheet is thereby found to be
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K��
� ¼ ���

�
�2 €%u�u� � 1

%
~u�~u�

�
: (6)

In the simple case for which the only external force is
that of viscous drag by a static external background
medium [9], which in this case will give a force density
of the form

f� ¼ f��; (7)

with velocity-dependent coefficient f, the corresponding
equation of motion of the worldsheet will be given [8] in
terms of the second fundamental tensor by an expression of
the generic form

�T ��K��
� ¼ f�; (8)

in which �T�� is the relevant surface stress energy tensor,
which will of course depend on the internal structure of
the string. It can be seen that in this simple circular case,
the ensuing differential equation for the radius % will
take the form

�3 �T��u�u� €%� �

%
�T��~u�~u� ¼ f: (9)

III. ENERGYAND ANGULAR MOMENTUM

The invariance of the background (1) under the action of
the time translation Killing vector k� and the rotation
Killing vector %� defined by

k� ¼ ��
0 ¼ �ðu� � _%��Þ; %� ¼ ��

1 ¼ %~u�; (10)

(so that k�k
� ¼ 1 and %�%

� ¼ %2) allows us to construct
corresponding energy and angular momentum flux vectors

P � ¼ �k� �T�
�; J � ¼ %� �T�

�; (11)

which, subject to the variational field equations, will, as
discussed in the preceding work [1], automatically satisfy
the surface divergence conditions of the form

�r �P � ¼ �k�f�;
�r�J � ¼ %�f�: (12)

For an external force density of the postulated form (7),
one thus obtains the work rate formula

�r �P � ¼ � _%f; (13)

and the angular momentum conservation condition

�r �J � ¼ 0: (14)

It will be useful for what follows to rewrite these
conditions in terms of internal worldsheet coordinates 
i,
with respect to which they will be expressible as

�r iP i ¼ � _%f; P i ¼ ��uj �Tj
i; (15)

and

�r iJ i ¼ 0; J i ¼ %~uj �Tj
i; (16)

while the corresponding expression for the extrinsic equa-
tion of motion (9) will be

�3 �Tijuiuj €%� �

%
�Tij~ui~uj ¼ f: (17)

More particularly, with respect to the internal coordinate
system that is induced on the worldsheet by taking 
0 ¼ t,

1 ¼ �, the corresponding expression for the intrinsic
metric of the worldsheet will take the form

d�s2 ¼ � 1

�2
dt2 þ %2d�2; (18)

and the corresponding expressions for the orthonormal
frame vectors will be

ui ¼ ��i
0; ~ui ¼ 1

%
�i
1: (19)

It can be seen that, with respect to these particular coor-
dinates, the energy and angular momentum flux vectors
will be given by

P i ¼ ��2 �T0
i; J i ¼ �T1

i; (20)

while the extrinsic equation of motion (17) will be expres-
sible more explicitly as

�5 �T00 €%� �

%3
�T11 ¼ f: (21)

The total work rate formula (15) will take the form

ð%� �T0
iÞ;i ¼ �% _%f; (22)

and the condition of the angular momentum conservation
will take the form �

%

�
�T1

i

�
;i
¼ 0: (23)

It is to be remarked that (21) can be used to eliminate the
force magnitude f from (22) to give an intrinsic energy
creation law of the form

ð% �T0
iÞ;i ¼ _% �T1

1: (24)

IV. GENERIC HARMONIOUS CASE

The formulas of the two preceding sections are appli-
cable to classical string models of any kind. We now
restrict attention to the harmonious case, as characterized
[1] by a Lagrangian �L that depends only on the target
space metric ĝAB and the symmetric target space tensor
defined—in the absence of gauge coupling, as will be
assumed here—just by

ŵ AB ¼ �gijXA
;iX

B
;j: (25)

This means that it its generic variation will have the form

� �L ¼ @ �L

@ŵAB
�ŵAB þ @ �L

@ĝAB
�ĝAB; (26)
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in which, as a Noether identity, we must have

@ �L

@ŵBC
ŵAC ¼ @ �L

@ĝAC
ĝBC; (27)

so that the coefficients will be specifiable by the expres-
sions

@ �L

@ŵAB
¼ � 1

2
�AB;

@ �L

@ĝAB
¼ � 1

2
�C

AŵBC ¼ � 1

2
�C

BŵAC;
(28)

in terms of the same symmetric target space tensor �AB.
This tensor can be used to express the generic variation of
the Lagrangian in the concise form

� �L ¼ �1
2�A

B�ŵB
A; (29)

and to express the ensuing surface stress energy tensor as

�T ij ¼ �ABX
A
;iX

B
;j þ �L �gij: (30)

With respect to the coordinates of (11), using a prime
for differentiation with respect to �, and a dot (as before)
for differentiation with respect to t, we shall obtain

ŵ AB ¼ 1

%2
XA0

XB0 � �2 _XA _XB; (31)

and the stress energy components in (20) will thus be
given by

�T 00 ¼ �AB
_XA _XB � 1

�2
�L; �T11 ¼ �ABX

A0
XB0 þ %2 �L:

(32)

Our investigation will be concerned with solutions that
are axisymmetric in the strict sense [1], meaning that the

gradient fields _XA and XA0
are independent of �, but not in

the strong sense which would require that even the undif-
ferentiated fields XA should be independent of �. This

means that XA0
is allowed to be nonzero, but that we require

_XA0 ¼ XA00 ¼ 0. Under these conditions the total work rate
formula (22) will take the form

ð%�3�AB
_XA _XB � %�LÞ_¼ % _%f; (33)

and the angular momentum conservation law (21) will take
the form

ð%��ABX
A0 _XBÞ_¼ 0; (34)

while the intrinsic energy creation law (24) will be expres-
sible in the form

ð%2�2�AB
_XA _XBÞ_þ 1

2�A
Bð%2ŵB

AÞ_¼ 0: (35)

If the target space is only two dimensional, and, in
particular, if it is a 2-sphere as in the example dealt with
in detail below, the complete system of dynamical evolu-
tion equations will be provided just by the pair of internal

equations (34) and (35) in conjunction with the extrinsic
evolution equation obtained by substitution from (32) in
(21). Further input from the set of current pseudoconser-
vation laws constituting the complete system of internal
field equations [1,2] will however be needed if the target
space dimension is three or more.

V. QUADRATICALLYAND SIMPLY
HARMONIOUS MODELS

Within the extensive category of harmonious models to
which the foregoing formulas are applicable, a noteworthy
subcategory is that of models that are quadratically har-
monious, in the sense of being governed by a Lagrangian

whose dependence on ŵB
A is just quadratic, so that it will

be expressible in terms of fixed parameters m, �?, �?, ?

in the form

�L ¼ �m� 1
2�?ŵ� 1

4�?ŵ
2 þ 1

4?ŵA
BŵB

A; (36)

with the usual notation ŵ ¼ ŵA
A, which gives

�AB ¼ ð�? þ �?ŵÞgAB � ?ŵAB: (37)

An important special case is that for which �? ¼ ?, so
that the quadratic part is interpretable as a current cross
product: this gives what is known as a baby Skyrme model
[10,11] when the target space is a 2-sphere, and it gives a
fully fledged Skyrme model [12,13] when the target space
is a 3-sphere.
The quadratic special case for which ? ¼ 0 belongs to

another noteworthy subcategory, namely, that of simply
harmonious models [2], which are characterized by a

Lagrangian �L that depends only on the scalar ŵ, as given
by the formula

ŵ ¼ �gijĝABX
A
;iX

B
;j; (38)

so long as gauge coupling is absent, as is supposed here,
so that with respect to the coordinates of (11) it will take
the form

ŵ ¼ 1

%2
ĝABX

A0
XB0 � �2ĝAB _XA _XB; (39)

In this simply harmonious case we shall have

�AB ¼ �gAB; (40)

with the coefficient � given by

� ¼ �2
d �L

dw
: (41)

In terms of this quantity, the intrinsic energy creation
law (35) will be expressible in the form

ð%2�2�2ĝAB _XA _XBÞ_þ �2ðĝABXA0
XB0 Þ_¼ 0: (42)
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VI. MINIMALLY NON-ABELIAN—SPHERICAL
TARGET—CASE

Let us now concentrate on the minimally non-Abelian
case, meaning that with the simplest nonflat target space
geometry, namely, that of a 2-sphere as given by (2). In
such a case there are only two internal degrees of freedom,

namely, those of the independent field variables �̂ and ’̂;
their evolution will be fully determined just by the two
preceding conditions (34) and (35) if the loop radius % is
given in advance, as, for example, in the artificial case in
which f is adjusted to hold the radius at a fixed value with
_% ¼ 0. These two intrinsic evolution equations will also be
sufficient, in conjunction with the total work rate Eq. (33)
if the external force magnitude f is given in advance, and
thus, in particular, in the case of most obvious natural
interest, namely, that in which it is taken to vanish,

f ¼ 0: (43)

The possibility of configurations that, with respect to the
rotation Killing vector %�, are symmetric not in the strong

sense, which would require XA0 ¼ 0, but in the less re-
strictive weak, albeit strict sense [1], as postulated here,
depends on the existence of a corresponding symmetry in
the target space, with generator VA such that

XA0 ¼ VA: (44)

In the spherical case under consideration here, such a
vector field could be chosen in many ways as a combina-
tion of the set of not just one but three independent target
space Killing vector fields, for which the standard basis
a�

A is given [1] for � ¼ 1; 2; 3 (corresponding to what are,
respectively, interpretable as rotations about the West,

East, and North poles) for X1 ¼ �̂, X2 ¼ ’̂ by

aA1 ¼ � sin’̂�A
1 � cot�̂ cos’̂�A

2 ;

aA2 ¼ cos’̂�A
1 � cot�̂ sin’̂�A

2 ;

aA3 ¼ �A
2 :

(45)

(On planet Earth, in the roughly Jerusalem centered system
favored by cartographers since the time of Dante, the West
pole is in the South Atlantic where the Greenwich meridian
intersects the equator in the vicinity of the Gulf of Guinea,
and the East pole is in the Indian Ocean, again on the
equator but 90� further East in the vicinity of the Bay of
Bengal, while the North pole is of course in the middle of
the Arctic Ocean. The places referred to in the Old
Testament, including Jerusalem and particularly Noah’s
legendary landing place, Mount Ararat, are near the cen-
troid of these three poles, opposite to what Dante called the
antepode, which is about as far as possible from any major
land mass, in the middle of the South Pacific.)

There will be no loss of generality in choosing the
coordinate system in such a way as to align VA with the

last of these, that is to say with the generator of rotations
about the North pole, which means that we shall have

VA ¼ n�A
2 ; (46)

with a proportionality constant n that is evidently inter-
pretable as a winding number, so that it must be an integer
(which would have to be zero in the special case of strong
symmetry). This simply means that the space gradients
involved in the dynamical equations above will be given
just by

�̂ 0 ¼ 0; ’̂0 ¼ n: (47)

As explained in the preceding work [1], the existence
of the target space Killing vector fields (45) allows the
two independent internal field equations to be expressed
as conservation laws for the three currents given, for
� ¼ 1; 2; 3, by

J�i ¼ �a�
AĝABX

A
;i; (48)

of which only two are independent. It is to be recalled that
� is specified by the equation of state as a function of the
quantity w, which will be given in this case by

w ¼ n2

%2
sin2�̂� �2ð _̂�2 þ sin2�̂ _̂’2Þ: (49)

It can be seen that the equation of conservation for the third
of these currents, namely,

J3i ¼ �sin2�̂ð _̂’�0
i þ n�1

i Þ; (50)

will take the form

ð%��sin2�̂ _̂’Þ_¼ 0; (51)

which contains just the same information as Eq. (34) for
conservation of angular momentum, except in the special
case of strong symmetry, n ¼ 0, for which the angular
momentum simply vanishes. It can also be seen that the
only independent information obtainable from the conser-
vation of the other two currents J1i and J2i is that of the
internal energy creation Eq. (42), which will take the form

ð%2�2�2ð _̂�2 þ sin2�̂ _̂’2ÞÞ_þ �2n2ðsin2�̂Þ_¼ 0: (52)

To obtain the complete system of equations of motion for

the three independent variables �̂, ’̂, and %, the internal
dynamical equations (51) and (52) need to be supple-
mented by the information about the extrinsic motion
that is contained in (33) which, in the force free case
characterized by (43), will take the form of the total energy
conservation condition

ð%�3�ð _̂�2 þ sin2�̂ _̂’2Þ � %�LÞ_¼ 0: (53)
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VII. HARMONIC SEPARABILITY
FOR SPHERICAL TARGET CASE

It is evident that the preceding set of three dynamical
equations will immediately provide two constant first
integrals of the motion, namely, a current conservation
constant

%��sin2�̂ _̂’ ¼ C; (54)

obtained from (51) and a total energy conservation
constant

%�3�ð _̂�2 þ sin2�̂ _̂’2Þ � %�L ¼ E; (55)

obtained from (53). However, the third dynamical
equation (52) will not be so conveniently integrable in
the generic harmonious case, for which the coefficient �
is a variable function of the quantity w given by (49).

In order to proceed, we now restrict attention to the
special case of a model that is not just harmonious but
actually harmonic, so that the coefficient � is just a
constant. The harmonic case is characterized in terms of
a pair of constantsm and �? by a Lagrangian of the merely
linear form

L ¼ �m2 � 1
2�?w; (56)

which simply gives

� ¼ �?: (57)

The presence of the (Kibble type) mass term is irrelevant
for the purely harmonic equations (51) and (52) that govern
the internal fields on the world sheet if the latter is pre-
scribed in advance, but for the actual calculation, via (53),
of the evolution of the worldsheet the specification of m is
indispensible, as it fixes the value of the string tension in
the zero current limit.

In this special harmonic case, the first constant of the
motion (54) can be used to eliminate the variable _̂’, which
will be given simply by

_̂’ ¼ c

%�sin2�̂
; c ¼ C

�?

; (58)

and it is apparent that the second internal dynamical equa-
tion (52) will also provide a constant first integral, which
can be specified as the necessarily positive quantity a2

given by the formula

%2wy ¼ a2; (59)

using the notation wy for the quantity obtained by chang-
ing the sign of the second term of the definition (49) of w,
namely,

w y ¼ n2

%2
sin2�̂þ �2ð _̂�2 þ sin2�̂ _̂’2Þ: (60)

In the special harmonic case (56) this notation can be used
to rewrite (32) as

�T00 ¼ 1

�2

�
m2 þ 1

2
�?w

y
�
;

�T11 ¼ %2

�
�m2 þ 1

2
�?w

y
�
;

(61)

and to rewrite the formula (55) for the energy constant in
the form

%�ðm2 þ 1
2�?w

yÞ ¼ E: (62)

This leads to the discovery of a remarkably convenient
separability property, whereby the external dynamical vari-

able % can be decoupled from the internal field variables �̂
and ’̂ by the elimination ofwy between (59) and (34). The
ensuing separated equation, for the radial variable % by
itself, can be seen to take the form

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _%2

q
¼ m2%þ �?

2

a2

%
: (63)

VIII. THROBBING VORTON STATES

It can be seen that the radial evolution equation (63) will
give rise to an evolution that will be qualitatively similar to
what has been found [4] for circular strings with just a
single independent current variable, which is that the loop
will oscillate periodically between finite minimum and
maximum values of its radius %.
More particularly, when the energy constant E is taken

to have the minimum value compatible with a given value
of the other constant, a2, a vorton type equilibrium state,
with fixed radius

% ¼ b; _% ¼ 0; (64)

will be obtained. By minimizing the left -hand side of (63),
it can be seen that such a vorton will be characterized by

b 2 ¼ �?a
2=2m2; E ¼ ffiffiffiffiffiffiffiffiffi

2�?

p
ma: (65)

Unlike the stationary, meaning strictly time-independent
(though not static, meaning strongly time-independent)
vorton states of the kind that are familiar in cases when
there is only a single current—or even when there are
several currents if their generators commute—a vorton
state of the non-Abelian kind considered here has the
remarkable feature describable (using a term borrowed
from the medical context of blood circulation) as throb-
bing. What this means is that, although the stress tensor
and worldsheet geometry of the string loop are time inde-
pendent, its internal fields undergo nonstationary oscilla-

tions. By substituting from (58) and (59) in (61), the field �̂
can be seen to have a nontrivial time evolution given by

b 2 _̂�
2 ¼ a2 � c2=sin2�̂� n2sin2�̂: (66)

It can be seen that, whenever a2 > c2 þ n2, the colatitudi-

nal field �̂ will oscillate symmetrically between a

minimum, where 2n2sin2�̂ ¼ a2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 4n2c2

p
, in the
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northern hemisphere, 0 � � < �=2, and a maximum

with the same value of sin2�̂ in the southern hemisphere,
�=2 � � < �. If c2 > n2, such oscillating non-Abelian
configurations can be viewed as perturbations of a strictly
stationary single current configuration with longitude
variable ’̂ ¼ n�� ct=b, for fixed equatorial colatitude,

cos�̂ ¼ 0. For small amplitudes, the perturbations will

have cos�̂ / cosf!tg with !2 ¼ ðc2 � n2Þ=b2.
There can be no solution at all with a2 < 2jncj,

but solutions of a rather weird kind will be possible for
the intermediate range 2jncj< a2 < c2 þ n2, provided
the supplementary condition c2 < n2 is also satisfied. For

this parameter range, the field �̂ will be asymmetrically
confined to a single one of the target space hemispheres,

oscillating between values where 2n2sin2�̂ ¼ a2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 4n2c2

p
without ever crossing the equator where

�̂ ¼ �=2. Such oscillating non-Abelian configurations
can be considered as perturbations of a strictly stationary
single current configuration having longitude variable
of the chiral form ’̂ ¼ nð�� t=bÞ, with fixed colatitude

�̂ ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffijc=njp

. In the small amplitude limit, the pertur-
bations will have !2 ¼ 4ðn2 � jncjÞ=b2.

IX. HARMONIC SEPARABILITY
FOR AXISYMMETRIC TARGET

The main motive for the preceding work was to exhibit
the behavior of currents generated by target space symme-
tries that do not commute—and so cannot be made simul-
taneously manifest—by considering the simplest case for
which noncommuting symmetries are present, namely, that
for which the target space is spherical. However it has
turned out that whereas the one-parameter Abelian sub-
group corresponding to axisymmetry is essential, the ex-
istence of the other noncommuting symmetries has played
no qualitatively important role in the foregoing results, for
which the indispensible postulate was that the field equa-
tions in question should be not just harmonious but of the
strictly harmonic form (56), which is all that is needed to
obtain the constants a2 and C as given by (59) and (62) in
terms of the quantity

ŵ y ¼ 1

%2
ĝABX

A0
XB0 þ �2ĝAB _XA _XB: (67)

Elimination of this quantity then gives a separated radial
evolution equation for % of exactly the same form (63) as
for the special case of a target space that is spherical.

For complete separability of the system when the target
space is two dimensional, it is sufficient that its metric
should have the general axisymmetric form

dŝ2 ¼ q̂2d$̂2 þ $̂2d’̂2; (68)

with q̂ given as an arbitrary function of $̂. By setting

$̂ ¼ sin�̂ it can be seen that this metric will take the

spherical form (2) in the special case for which

q̂ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� $̂2

p
, and it will simply be flat if q̂ ¼ 1.

The choice of the function q̂ has no effect on the
condition (58), which will simply go over to the form

_̂’ ¼ c

%�$̂2
; (69)

and implementation, as before, of the strict but weak
axisymmetry postulate, to the effect that $̂0 ¼ 0 but
’̂0 ¼ n, for some nonvanishing integral value of n, will
reduce (67) to the form

w y ¼ n2

%2
$̂2 þ �2q̂2 _̂$2 þ c2

%2$̂2
: (70)

It follows that for all such cases there will be geometrically
stationary throbbing vorton states characterized via (59)
by the same equations, (64) and (65), as before, and thus
with internal structure governed by a dynamical equation
of the form

b 2q̂2 _̂$2 ¼ a2 � c2

$̂2
� n2$̂2; (71)

which is soluble by quadrature to give

t ¼
Z bq̂ $̂ d$̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2$̂2 � c2 � n2$̂4
p : (72)

The simplest example is of course the one provided by
the case q̂ ¼ 1, namely, the model having just a single
complex scalar field, with amplitude $̂ and phase ’̂, for
which the target space is flat,

dŝ2 ¼ d�̂1 2 þ d�̂22; �̂1 ¼ $̂ cos’̂; �̂2 ¼ $̂ sin’̂:

(73)

This is the case for which the internal field model is purely
linear, so that it will admit multiple conducting vorton
states of the ordinary strictly stationary kind, in which
the conserved currents are generated by the Abelian alge-
bra of the target space translation group. This Abelian
algebra is, however, just a subalgebra of the complete
symmetry group: although the target space is flat, its
symmetry group is non-Abelian because it also includes
rotations, which of course do not commute with trans-
lations. The presence of the conserved currents generated
by such noncommuting rotations is what allows this famil-
iar simple model to provide vortons not just of the usual
strictly stationary kind, but also of the throbbing kind
considered here. For the linear field model characterized
by (73) the corresponding quadrature (72) with q̂ ¼ 1 can
be evaluated explicitly: the internal field amplitude $̂ will
throb in a manner given by the formula

$̂ 2 ¼ a2þ"2 cosf!tg
2n2

; "2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4� 4c2n2

p
; !¼ 2n

b
:

(74)
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The concomitant formula for the throbbing of the internal
phase variable ’̂ can be seen from (69) to take the form

’̂ ¼ n�þ arctan

�
2nc

a2 þ "2
tan

�
!t

2

��
: (75)

It follows that the Cartesian field components (73) will be
given by the complex combination

2nð�̂1 þ i�̂2Þexpf�in�g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ 2nc

p
expfinbtgþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� 2nc

p
expf�inbtg: (76)

When "2 � a2 (near the limits 2nc ! �a2), such a
throbbing solution can be regarded as a perturbation
of an ordinary stationary vorton configuration of the
special chiral type, as given by ’̂ ¼ nð�� btÞ, with

$̂ ¼ ffiffiffiffiffiffiffiffiffiffiffijc=njp
.

ACKNOWLEDGMENTS

The author wishes to thank Marc Lilley, Jerome
Martin, Xavier Martin, and Patrick Peter for stimulating
conversations.

[1] B. Carter, Phys. Rev. D 81, 043504 (2010).
[2] B. Carter, Phys. Rev. D 82, 103531 (2010).
[3] M. Lilley, F. di Marco, J. Martin, and P. Peter, Phys. Rev.

D 82, 023510 (2010).
[4] B. Carter, P. Peter, and A. Gangui, Phys. Rev. D 55, 4647

(1997).
[5] B. Carter and X.Martin, Ann. Phys. (N.Y.) 227, 151 (1993).
[6] B. Carter, Nucl. Phys. B412, 345 (1994).
[7] M. Lilley, X. Martin, and P. Peter, Phys. Rev. D 79,

103514 (2009).

[8] B. Carter, Int. J. Theor. Phys. 40, 2099 (2001).
[9] B. Carter, M. Sakellariadou, and X. Martin, Phys. Rev. D

50, 682 (1994).
[10] B.M.A. G. Piette and W. J. Zakrewski, Chaos Solitons

Fractals 5, 2495 (1995).
[11] I. Hen and M. Karliner, Phys. Rev. E 77, 036612

(2008).
[12] T.H. R. Skyrme, Proc. R. Soc. A 260, 127 (1961).
[13] R. A. Battye, N. S. Manton, and P.M. Sutcliffe, Proc. R.

Soc. A 463, 261 (2007).

NON-ABELIAN CURRENT OSCILLATIONS IN HARMONIC . . . PHYSICAL REVIEW D 83, 125027 (2011)

125027-7

http://dx.doi.org/10.1103/PhysRevD.81.043504
http://dx.doi.org/10.1103/PhysRevD.82.103531
http://dx.doi.org/10.1103/PhysRevD.82.023510
http://dx.doi.org/10.1103/PhysRevD.82.023510
http://dx.doi.org/10.1103/PhysRevD.55.4647
http://dx.doi.org/10.1103/PhysRevD.55.4647
http://dx.doi.org/10.1006/aphy.1993.1078
http://dx.doi.org/10.1016/0550-3213(94)90506-1
http://dx.doi.org/10.1103/PhysRevD.79.103514
http://dx.doi.org/10.1103/PhysRevD.79.103514
http://dx.doi.org/10.1023/A:1012934901706
http://dx.doi.org/10.1103/PhysRevD.50.682
http://dx.doi.org/10.1103/PhysRevD.50.682
http://dx.doi.org/10.1016/0960-0779(94)E0111-2
http://dx.doi.org/10.1016/0960-0779(94)E0111-2
http://dx.doi.org/10.1103/PhysRevE.77.036612
http://dx.doi.org/10.1103/PhysRevE.77.036612
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1098/rspa.2006.1767
http://dx.doi.org/10.1098/rspa.2006.1767

