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A recent experiment by Antonini et al. �Phys. Rev. A 71, 050101 �2005�� set new limits on Lorentz violating
parameters in the framework of the photon sector of the standard model extension, �̃e−

ZZ, and the Robertson–
Mansouri–Sexl framework, �−�−1/2. The experiment had significant systematic effects caused by the rota-
tion of the apparatus which was only partly analyzed and taken into account. We show that this is insufficient
to put a bound on �̃e−

ZZ, and that the bound on �−�−1/2 represents a fivefold, not tenfold, improvement as
claimed.
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Nonrotating experiments that test Lorentz invariance are
not sensitive to the standard model extension �SME� param-
eter �̃e−

ZZ �1–6�. To determine this parameter one requires ac-
tive rotation with a nonzero signal expected to occur at twice
the rotation frequency, 2�R �7–9�. Thus, it is important to
control and minimize systematic signals at this harmonic. If
systematics dominate over statistical uncertainties, care must
be taken when analyzing the data as it is difficult to distin-
guish the systematic signal from an actual nonzero value of
�̃e−

ZZ. One way to do this is to characterize the systematic and
subtract it from the data, which can be a difficult process as
the amplitude may not necessarily be stationary over the pe-
riod of data collection. Nevertheless, if one is careful it is a
valid process and Antonini et al. �7� did effectively account
for part of the unknown systematics in their experiment by
subtracting the frequency modulation of the resonators in-
duced by tilt. However, they were still left with a statistically
significant amplitude at 2�R, which led to a positive signal
for Lorentz violation of �̃e−

ZZ= �−2.0±0.2�10−14�. They state
that this is likely due to a �nonaccounted� systematic effect
and thus claim an upper bound of ��̃e−

ZZ��2�10−14.
Since the suspected systematic is uncharacterized there is

no way to know if the measured amplitude is due to a sys-
tematic or a true nonzero value of �̃e−

ZZ. Furthermore, one
cannot rule out that the uncharacterized systematic is actu-
ally canceling �partly or completely, depending on its phase�
a larger nonzero value of �̃e−

ZZ, so one cannot set a valid upper
limit simply equal to the measured value. One way to set a
bound amongst the systematic is to include more than one
independent set of data �i.e., n	1 where n is the number of
data sets�. A bound can then be set by treating the amplitude
of �̃e−

ZZ as a statistic. This is possible because the phase of the

systematic depends on the initial experimental conditions
�i.e., phase with respect to the frame of reference of the test�,
and is likely to be random across the n data sets �8,9�. If we
take the mean of the n �̃e−

ZZ amplitudes, the systematic signal
will cancel if the phase is random, but the possible Lorentz
violating signal will not. Thus a limit can be set by taking the
mean and standard deviation of the amplitude over the n data
sets. Therefore, unless more than one data set is analyzed a
bound on the value of �̃e−

ZZ cannot be given in the presence of
an unknown systematic. Since Antonini et al. �7� only gave
statistics for one data set of 76 h duration �n=1�, it is not
possible to quote a bound on �̃e−

ZZ from the analysis of this
data.

In our recent rotating experiment we determined a value
of �̃e−

ZZ of 4.1�0.5��10−15 by fitting the amplitude over five
data sets �8,9�. However, we did not use this result to claim
an upper limit on the value of �̃e−

ZZ. Instead we followed the
approach suggested above and took the mean and standard
deviation of the amplitudes obtained from the individual data
sets. This allowed us to determine �̃e−

ZZ=2.1�5.7��10−14, the
uncertainty being dominated by the variation of the system-
atic over the data sets.

Antonini et al. also claim a tenfold improvement in the
Robertson—Mansouri—Sexl �RMS� �10,11� parameter �
−�−1/2 �7�, which is determined to be �+0.5±3±0.7�
�10−10, in comparison to the previous best result of
�−2.2±1.5��10−9 �2�. Comparing the uncertainties this is no
more than a factor of 5 improvement and has been overstated
by a factor of 2. Our recent concurrent work obtained a value
of �+0.9±2��10−10, which is a factor of 7.5 improvement
�8�.
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