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ABSTRACT

We consider for the first time the implications for the modified gravity MOND model of galaxies, of the presence of dark baryons,
in the form of cold molecular gas in galaxy discs. We show that MOND models of rotation curves are still valid and universal, but
the critical acceleration a0 separating the Newtonian and MONDian regimes has a lower value. We quantify this modification as a
function of the scale factor c between the total gas of the galaxy and the measured atomic gas. The main analysis concerns 43 resolved
rotation curves and allows us to find the best pair (a0 = 0.96 × 10−10 m s−2, c = 3), which is also compatible with the one obtained
from a second method minimizing the scatter in the baryonic Tully-Fisher relation.
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1. Introduction

The missing mass problem at galactic scales is revealed by ro-
tation curves of spiral galaxies, where stars and gas rotate with
speeds higher than expected (e.g. Sofue & Rubin 2001), in the
frame of Newtonian gravity. This missing mass has been called
dark matter and has now been developed into a standard cosmo-
logical modelΛCDM (e.g. Blumenthal et al. 1984). Dark matter
particles collapsed to form the first structures of the Universe,
and it is in those potential wells that the baryonic gas infalls
and cools to form galaxies. As a result, galaxies are embed-
ded in a spheroidal dark matter halo with a mass profile obey-
ing M(r) ∝ r in the outer parts, so that the Keplerian circular
velocity, vc =

√
GM(r)/r, tends to be constant in the majority

of observed rotation curves (e.g. Bosma 1981). In the central
parts however, the CDM numerical simulations predict a cuspy
dark matter profile, with a relative CDM amount much larger
than what is observed (Navarro et al. 1997; Navarro & Steinmetz
2000).

An alternative, without invoking any dark matter, is to con-
sider a modification of the Newtonian gravity law at low ac-
celerations, so that the luminous mass is sufficient to describe
the dynamics of the gravitational system. This was done empiri-
cally by Moti Milgrom who proposed the MOdified Newtonian
Dynamics (MOND) paradigm (Milgrom 1983). The MOND
regime is distinguished from the Newtonian regime when the
characteristic acceleration of the gravitational system falls be-
low a critical acceleration a0 ∼ 1.2 × 10−10 m s−2. In the deep
MOND regime, the modification aM of the Newtonian accelera-
tion, aN, can be written as aM =

√
a0aN. The asymptotic circular

velocity is thus a constant: v4 = GMa0. This is the Tully-Fisher
law, which finds there a justification.

In this paper, we consider for the first time how the prob-
lem of missing baryons could be made compatible with the
MOND phenomenology. In the cosmic baryon budget, it is now
well known that only about 6% of them shine as stars and gas

in galaxies (Fukugita et al. 1998). Locally, UV absorption in
front of background sources have shown that as much as 30%
of baryons could be associated with the Lymanα forest and an
uncertain fraction (5−10%) with the warm-hot medium (WHIM
at 105−106 K, Nicastro et al. 2005; Danforth et al. 2006). So
about half of the baryons are not yet accounted for. Most of them
should be in the cosmic filaments, in the intergalactic medium,
but it appears unavoidable that a significant fraction of them ex-
ist as cold gas in galaxies themselves, as suggested by Pfenniger
et al. (1994), and Pfenniger & Combes (1994). From the rotation
curves, it is possible to put an upper limit on the fraction of dark
baryons in galaxies: the dark baryons cannot overpredict the ro-
tation speeds. HI interferometric studies of nearby galaxies have
shown that the dark matter distribution necessary to fit the rota-
tion curves of galaxies follows the surface density of the atomic
gas (Bosma 1981). Hoekstra et al. (2001) estimate that a factor
of 7−10 between the dark baryons and atomic gas reproduces
the rotation curve of any galaxy, giant or dwarf, high or low sur-
face brightness, without adding any dark matter halo. This scale
factor means than there cannot be more than 10% of the total
baryons in the form of cold gas in galaxies. The observed HI ex-
tended rotation curves roughly require only to double the frac-
tion of baryons in galaxies at maximum. Out of the 50% of the
dark baryons still not accounted for, no more than 10% can be in
galaxies, but they can be less abundant.

Another way to trace the dark baryons in galaxy discs is the
Tully-Fisher relation. This observational law involves the lumi-
nosity versus rotational velocity, which is equivalent to the stel-
lar mass versus the velocity (with a constant mass-to-light ratio).
A divergence from this law was found for late-type galaxies. On
the Tully-Fisher diagram, the stellar mass of these galaxies is
too small for the velocity observed. The problem was solved by
taking into account the mass of the atomic gas instead of only
the stellar mass (McGaugh et al. 2000). The next step was to
suppose that all the gas is not seen (dark baryons). By this ap-
proach, Pfenniger & Revaz (2005) find that a factor of 3 between
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the total and atomic gas reduces the scatter of the baryonic Tully-
Fisher relation. More recently, Begum et al. (2008) carried out
the same analysis but focusing on a sample with low-mass galax-
ies, which are more constraining because they generally contain
more gas. They find a scale-factor of around 9.

From a dynamical point a view, Revaz et al. (2008) per-
formed some numerical simulations of galaxies in Newton grav-
ity with dark matter. They add a cold dark baryon component
and show that a factor of up to 5 between the total and atomic
gas is realistic to reproduce the global behavior of the galaxy: the
stability against local axisymmetric collapse is ensured through
a low dissipation, and patterns still spiral can develop due to the
self-gravity of the disc.

It is thus interesting to take into account the possible ex-
istence of dark baryons in the framework of MOND at galac-
tic scales. If some fraction of the assumed dark matter is real,
the actual critical acceleration a0 is overestimated. We want to
derive the new possible limiting acceleration, and interpolating
function μ. The contribution of dark baryons has been discussed
in modeling galaxy cluster cores by Milgrom (2007). At galac-
tic scales, Gentile et al. (2007) have studied the contribution of
neutrinos to rotation curves.

The paper is organized as follows: in Sect. 2, we introduce
the contribution of dark baryons at galactic scale, in Sect. 3 we
describe the galaxy sample. The modeling of galaxies is dis-
cussed in Sect. 4. In Sect. 5, the implications of the existence of
dark baryons with MOND are explored through rotation curve
fits and the Tully-Fisher law, then discussed in Sect. 6.

2. Overview

We consider that part of the missing mass problem in galax-
ies could be alleviated by the presence of some dark baryons.
They could be in the form of cold molecular gas H2 in the
outer flaring disc. This scenario has been studied in the frame-
work of Newtonian gravity (Pfenniger & Combes 1994; Combes
& Pfenniger 1997). In this model the amount of non-baryonic
DM condensed in galaxies is reduced, but still necessary.

At present, in the framework of modified gravity, since the
dark molecular gas increases the baryonic mass, the critical ac-
celeration of MOND will be reached at a lower level, and this is
not necessarily in agreement with a single acceleration a0 for all
galaxies. Is the presence of some dark baryons in galaxies still
compatible with MOND? As the required “phantom” dark mat-
ter is proportional to the HI gas (Hoekstra et al. 2001), it appears
quite possible to combine the presence of dark baryons with
MOND, by only reducing the value of the critical acceleration.
For example, we examine the dwarf LSB galaxy NGC 1560,
dominated by dark matter in the Newtonian frame. Its rotation
curve reaches a plateau at 7 kpc. In accordance with MOND,
this maximum velocity can be written:

v4c = GMa0.

The mass M, to a first approximation, corresponds to the mass of
the atomic gas (HI+He) Mat, since at this outer radius, the stellar
content is negligible. If we consider that this galaxy may contain
as much molecular gas as atomic gas, which means that the total
mass is Mgas = 2Mat, the actual value a0 must be divided by 2
to conserve the same asymptotic velocity. With this model, if the
total mass of gas is equal to the atomic gas mass times a scale
factor,

Mgas = cMat,

Fig. 1. Rotation curve fit of NGC 1560, in the MOND framework with
dark baryons in the form of cold molecular gas. If this molecular gas
is such that mass Mgas = cMat, the value of the actual estimation of the
critical acceleration a0 = 1.2 × 10−10 m s−2 must be reduced (divided
by a factor c, to a first approximation), to be in agreement with the
observations. The factor c is indicated in the bottom right corner, for
each curve fitted.

the critical acceleration a0 must be divided by c to keep the
same asymptotic velocity. It works correctely for the galaxy
NGC 1560, as shown in the Fig. 1. The most remarkable is the
shape of the rotation curve which is conserved by modifying
the values (c, a0), not just the maximum velocity. The wiggle
at 5 kpc is well reproduced until c = 5. Beyond this value, the
oscillation is more and more pronounced and no longer matches
the data.

It might be surprising that two very different models suc-
ceed in representing equally well the rotation curves of galax-
ies: the first is to assume the presence of 7−10 times more gas
than observed in HI, the second is to modify the gravity. For
dwarf irregular galaxies, where the stellar component is minor,
the visible matter is dominated by the HI gas and the total mass
is dominated by the dark matter. With these approximations, we
can write two equations: in the Newton model, the acceleration
at the outskirt of the disk is V2

rot/r ∼ 7GM(HI)/r2, since the to-
tal mass is very close to 7 times the gas mass for these dwarfs,
and in the MOND model, V2

rot/r ∼ (a0GM(HI)/r2)1/2, since they
are in the deep MOND regime in the outer parts. Combining
these two relations implies that the acceleration in these dwarfs
is always about 7 times less than a0, which is remarkable (cf.
also Fig. 3). As for the radial distribution, even for the dwarf
galaxies, the regime is still partially Newtonian in the center,
and the two models work equally well, because of a combination
of factors including the stellar component and the interpolation
MOND function (see Fig. 1).

In this paper, we study whether MOND is still consistent
with the presence of dark baryons such as the molecular gas H2.
Is there still a critical acceleration universal for all the galaxies?
What is the proportion of dark baryons that is consistent with
the observations, in the framework of MOND? We try to answer
these questions in two ways. First we analyze a first sample of
galaxies by fitting their rotation curves; this is the same approach
as Hoekstra et al. (2001). The second method consists of op-
timizing the scatter in the baryonic Tully-Fisher relation, as in
Pfenniger & Revaz (2005) and Begum et al. (2008), but inter-
preted in a modified gravity framework (see Sect. 4.2). We do
this using the first and the second sample.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811085&pdf_id=1
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Fig. 2. Left: morphological type in the sample made of 43 nearby galax-
ies. Right: distribution of the maximum velocity in the galaxy rotation
curves.

3. Galaxy sample

3.1. First sample

We compiled from the literature a galaxy sample of 43 nearby
objects (Table 1). For each of them, the resolved HI kinematical
data are available. They are unperturbed (without large asymme-
tries such as lopsidedness or tidal interactions) so that a reliable
rotation curve can be obtained. The galaxies have inclinations
on the plane of the sky that vary from 30◦ to 90◦. A stellar light
profile is also available in the literature, so that the contribution
of the visible mass can be computed with reasonable accuracy.

We have searched for late-type galaxies, where the fraction
of gas (and dark matter) is more important. In particular we
gathered a large number of dwarf irregulars, which are domi-
nated by dark matter. Therefore, they are a convenient labora-
tory to determine the radial dark matter distribution, indepen-
dently of the stellar mass-to-light ratio. Figure 2 (left) displays a
histogram of the morphological type in the sample; 70% of the
galaxies are late-type. Figure 2 (right) shows the distribution of
the maximum velocity of galaxies; the median of the sample is
Vmax = 128 km s−1.

3.2. Second sample

A second sample of galaxies was build from the GoldMine
database. It contains 576 galaxies selected with vc < 100 km s−1.
These galaxies are low-mass galaxies with a high gas fraction (as
in Begum et al. 2008). Unlike the first sample, they are not kine-
matically resolved thus the stellar mass cannot be determined
from a rotation curve fit. However the GoldMine database pro-
vides the stellar luminosity in the K-band and the color B − V
from which a mass to light ratio can be derived (Bell & de Jong
2001). It also gives the width of the HI line obtained by averag-
ing the value at 20% of the peak flux with the one at 50% of the
mean flux and the total mass in HI (see the GoldMine website).

4. Method

4.1. Rotation curve analysis

We analyzed the 43 galaxies (first sample) where a complete set
of data is available: the luminosity profile, the HI profile and
the HI kinematics. The atomic gas mass is corrected for the
primordial helium abundance (MHe = 0.3MHI). The mass-to-
light ratios are estimated from the rotation curve fits in MOND,
by taking into account the stellar and atomic disc only (fixing
a0 = 1.2 × 10−10 m s−2). Note that in MOND when the baryonic
profile is determined the mass-to-light ratio is the only parameter
of the fit, since the critical acceleration a0 and the interpolating

function μ are the same whatever the considered galaxy. These
mass-to-light ratios are given in Table 2, the stellar mass-to-light
ratios, in the B-band, vary between 1 and 6 from the late-type to
early-type galaxies.

The method consists of modeling all the rotation curves to
find which pair (a0, c) best fit each galaxy by minimizing the χ2.
Then we look at the histogram of a0 and c to see if there is a
value common to all the sample.

If MOND is still correct we expect to obtain a common value
of a0 for all the galaxies. On the other hand, the scale-factor c
has no reason to be universal. Its value depends on the history of
each galaxy because of interactions, mergers, and the star forma-
tion rate. But the mean value should be consistent with previous
works (Hoekstra et al. 2001; Pfenniger & Revaz 2005; Begum
et al. 2008)

4.1.1. Galaxy modeling

The stellar disc is modelled by an exponential surface density:

Σ�(r) = Σ0� exp(−r/r�),

and the bulge is represented by an Hernquist profile, of charac-
teristic scale rb:

ρ(r) =
8ρ(rb)

(r/rb)(r/rb + 1)3
·

The parameters Σ0�, r�, and rb are deduced from the luminosity
profile (B-band) fits.

The HI gas surface density is taken directly from observa-
tions without any particular modeling. In this way, it is particu-
larly constraining to fit the wiggles of rotation curves associated
with gas overdensity.

4.1.2. Rotation curve modeling

The rotation curves of each component are computed using the
Bessel functions. For a given surface density Σ, the Newtonian
circular velocity can be written (Binney & Tremaine 1994):

v2c(r) = −r
∫ ∞

0
S (k)J1(kr)kdk,

with

S (k) = −2πG
∫ ∞

0
J0(kr)Σ(r)rdr.

J1 and J2 are Bessel functions of order 0 and 1. For an exponen-
tial disc, it can be simplified to:

v2c(r) = 4πGΣ0�r�y
2 [

I0(y)K0(y) − I1(y)K1(y)
]
,

where y = r/2r�. I and K are the modified Bessel functions.
The MOND rotation curves are deduced from the Newtonian

acceleration, using the MOND formula:

aN = aMμ(aM/a0)

and inversely,

aM = aNν(aN/a0).

When not explicitly noted otherwise, we use the standard
μ-function, μ(x) = x/

√
1 + x2, with x = aM/a0.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811085&pdf_id=2
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Table 1. (1) Carignan & Beaulieu (1989); (2) Broeils (1992a); (3) Sanders (1996); (4) Lake et al. (1990); (5) Martimbeau et al. (1994); (6) Newton
(1980); (7) Corbelli (2003); (8) Broeils (1992b); (9) Wevers (1984); (10) Begeman (1987); (11) Kent (1987); (12) Sicking (1997); (13) Chemin
et al. (2006); (14) Carignan & Puche (1990b); (15) Carignan (1985); (16) Puche et al. (1991a); (17) Meurer et al. (1994); (18) Kent (1986);
(19) Puche et al. (1990); (20) Begeman (1989); (21) Puche et al. (1991a); (22) Broeils & Knapen (1991); (23) Kent (1984); (24) Cote et al.(1991);
(25) Sancisi & van Albada (1987); (26) Carignan et al. (1990); (27) Carignan & Puche (1990a); (28) de Blok et al. (1985); (29) Carignan et al.
(1988); (30) Roelfsema & Allen (1985); (31) Leroy et al. (2005).

Name D LB MHI Type Vmax Inclination r� rmax/r� References
(Mpc) (L�) (M�) (km s−1) (degree) (kpc)

DDO154 4.0 3.4E07 1.8E08 I 43 32 0.5 15 (1)
DDO168 4.0 2.2E08 1.8E08 I 52 80 0.5 8 (2)(3)
DDO170 15.8 3.1E07 1.7E09 I 66 80 0.6 19 (4)
IC 2574 2.5 5.4E08 2.1E08 SABm 67 80 1.1 6 (5) (31)
M 33 0.8 2.8E09 1.8E09 Sc 134 55 1.7 9 (6)(7)
NGC 1003 11.8 5.7E09 2.5E09 Sc 112 81 2.6 11 (2)(31)
NGC 1560 3.0 6.6E08 7.0E08 Scd 78 83 0.9 8 (8)
NGC 2366 2.6 3.4E08 3.4E08 IB 45 90 0.8 7 (9)
NGC 2403 3.6 5.9E09 3.6E09 SABc 140 60 2.9 6 (10)(11)(12)
NGC 24 6.8 1.1E09 3.8E08 Sc 109 70 1.1 9 (13)
NGC 247 2.8 2.2E09 8.0E08 SABc 107 75 1.9 5 (14) (15)
NGC 253 2.6 1.2E10 6.6E08 SABc 224 78 2.1 4 (16)
NGC 2841 20.0 4.9E10 2.1E10 Sb 292 68 3.3 26 (10)(11)
NGC 2903 10.4 2.5E10 5.8E09 SABb 181 56 2.9 13 (10)(11)
NGC 2915 5.6 4.7E08 7.7E08 SBa 93 63 0.4 42 (17)
NGC 2998 70.7 3.9E10 2.8E10 SABc 200 61 5.0 10 (2) (18)
NGC 300 2.9 3.5E09 1.4E09 Scd 93 39 2.6 6 (19)
NGC 3109 1.9 9.8E08 3.8E08 SBm 67 80 1.0 9 (11)
NGC 3198 11.6 1.1E10 7.3E09 Sc 149 70 2.9 12 (11)(20)
NGC 3726 14.9 1.3E10 7.6E09 Sc 160 49 3.7 8 (9)
NGC 4203 15.1 3.9E09 7.5E08 E-SO 152 90 2.3 7 (9)
NGC 4242 7.3 1.3E09 4.5E08 Sd 98 51 1.5 7 (9)
NGC 4258 7.3 1.7E10 3.7E09 SABb 216 72 2.5 11 (9)
NGC 4395 2.7 6.4E08 4.7E08 Sm 85 90 1.5 4 (9)
NGC 45 5.9 1.2E09 1.3E09 SABd 100 60 2.0 8 (13)
NGC 4725 11.9 1.5E10 2.6E09 SABa 223 54 4.3 6 (9)
NGC 5033 18.4 2.5E10 1.5E10 Sc 196 66 5.5 8 (10)(18)
NGC 5055 10.3 2.3E10 9.8E09 Sbc 172 56 3.8 12 (9)
NGC 5371 40.0 5.6E10 9.9E09 Sbc 313 54 7.4 5 (9) (10)
NGC 55 1.6 4.6E09 6.8E08 SBm 86 85 1.4 7 (21)
NGC 5533 58.3 3.5E10 3.0E10 Sab 230 60 5.5 14 (2) (22) (23)
NGC 5585 7.6 1.9E09 1.2E09 SABc 89 53 1.7 6 (24)
NGC 5907 11.0 1.3E10 2.4E09 Sc 219 87 2.4 13 (25)
NGC 6503 4.8 2.0E09 1.0E09 Sc 122 74 1.1 15 (2) (9)
NGC 6674 51.8 3.4E10 2.7E10 Sb 240 62 5.5 13 (2)
NGC 6946 6.7 1.8E10 7.8E09 SABc 159 31 3.4 5 (26)
NGC 7331 12.8 2.8E10 7.3E09 Sbc 241 75 2.2 14 (2)(11)
NGC 7793 4.1 2.8E09 1.0E09 Scd 90 53 1.5 5 (27)
NGC 801 84.0 5.1E10 1.9E10 Sc 218 85 2.9 20 (2) (18)
NGC 925 6.5 4.1E09 2.5E09 Scd 114 61 2.2 7 (9)
UGC 128 56.4 1.0E09 6.2E09 Sd 128 32 5.0 7 (28)
UGC 2259 10.0 2.3E08 3.7E08 Sbd 90 53 1.1 7 (11) (31)
UGC 2885 84.0 5.6E10 5.9E10 Sc 298 62 11.5 6 (18)

4.2. Tully-Fisher relation

We analyzed the baryonic Tully-Fisher relation using the first
and second sample, which are independent of that of McGaugh
et al. (2000) and Begum et al. (2008). The method consists of
representing vn ∝ M with M = M� + cMat and determines
which c optimizes the scatter of the Tully-Fisher relation. The
only difference compared to the analysis of the previous authors
is that we interpret this Tully-Fisher relation in MOND so we fix
the slope to n = 4 to avoid too many parameters in the fit.

Contrary to the rotation curve analysis, this one is global.
This means that we can derive a mean scalefactor c between the
total gas and atomic gas mass for all the galaxies and not for
an individual galaxy. Thus the scatter will never be zero. Then

when the best value of c for the sample is obtained, the critical
acceleration is simply given by the vertical offset of the relation:
log(v4) = log(M) + log(Ga0).

For the first sample the velocity v plotted for the Tully-Fisher
relation is the last point of the rotation curve. The stellar and
gas mass is the one computed for the rotation curve analysis,
integrated until the last point of the rotation curve.

For the second sample, the velocity is obtained from half the
width of the HI line given in the GoldMine database. This veloc-
ity is corrected for the inclination (i) of the galaxy estimated by
the ratio of the short and long axis,

v = 0.5W/ sin(i).
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Fig. 3. In Newtonian gravity, the dynamical to visible mass ratio is plot-
ted versus the acceleration of the visible matter. At large acceleration,
there is no need for dark matter. The MOND phenomenology is dictated
by the rotation curves, which establish a strong correlation between the
mass discrepancy and the acceleration. The gray (color) scale codes the
type of the galaxies. Late-type galaxies are in dark gray (blue) while
early-type are in light gray (yellow). The solid line (blue) represents the
ν function associated with the standard μ function (see text).

The stellar mass is computed from the luminosity in the K-band.
The mass-to-light ratio is given by the color B − V (Bell & de
Jong 2001).

4.3. The visible molecular gas

In about a dozen galaxies of the sample, there is information on
the visible H2 gas, traced by the CO emission. It is observed
in the more massive galaxies or early-types, due to their higher
metallicity and consequently greater abundance of CO. In these
galaxies, where the visible molecular component is a signifi-
cant fraction of the gaseous mass, the radial distribution of the
CO emission is exponential, with about the same scale length
as the optical exponential disk (e.g. Young & Scoville 1991).
This radial distribution is completely different to the HI distri-
bution, which is more extended, with a surface density varying
nearly with the inverse of the radius. In our approach, we there-
fore include the visible H2 gas in the stellar component; in these
massive and early-type galaxies, it is never greater than 10% of
the stellar mass, and enters in the uncertainty on the stellar mass
to light ratio.

5. Results

5.1. The critical acceleration

In this section, we discuss the dependence of the missing mass
problem, as a function of scale, on the acceleration. Let us reason
here in the context of Newtonian gravity. The process of rotation
curve fitting determines the best mass-to-light ratio, thus the vis-
ible mass profile of the different components (stellar disc, bulge,
gas):

Mvis = M� + Mb + Mg

Table 2. c is the scale-factor between the total gas (atomic and molecu-
lar) and the atomic gas. (M�/L)B is the mass to light ratio in the B-band.

Name (M�/L)B c Name (M�/L)B c
ddo154 0.1 1.5 n4258 4.1 4.5
ddo168 0.1 1.5 n4395 3.0 2.5
ddo170 1.2 1.0 n45 3.5 2.0
i2574 0.1 2.5 n4725 7.7 3.0
m33 2.6 3.0 n5033 3.3 2.0
n1003 0.5 1.5 n5055 3.8 3.0
n1560 0.2 2.0 n5371 5.6 5.0
n2366 0.1 1.0 n55 0.1 3.5
n2403 2.1 1.5 n5533 6.1 1.0
n24 2.1 8.0 n5585 0.8 2.0
n247 1.2 4.0 n5907 5.5 10.
n253 3.0 3.5 n6503 3.0 6.0
n2841 5.1 8.5 n6674 7.5 2.5
n2903 2.7 3.0 n6946 2.0 3.0
n2915 5.8 1.0 n7331 3.3 8.0
n2998 3.2 1.0 n7793 1.5 1.5
n300 0.6 2.0 n801 2.4 5.0
n3109 0.1 2.0 n925 1.1 2.5
n3198 2.8 2.5 u128 6.0 1.5
n3726 1.7 2.5 u2259 8.6 3.5
n4203 0.9 10. u2885 6.4 3.0
n4242 0.9 3.5

and the dynamical mass is defined by

Mdyn = Mvis + MDM.

Let consider that the dark matter has a spherical symmetry:

v2c(r) − v2vis(r) =
GMDM(r)

r
·

When the ratio Mdyn/Mvis is plotted versus the acceleration (the
Newtonian acceleration of the visible component), a very strong
correlation is observed (Fig. 3). Whatever the galaxy considered,
the amount of dark matter required to fit the rotation curve is
the same for a given acceleration of the visible component. The
color scale indicates the morphological type of the galaxy. Late-
type galaxies are in dark gray (blue) while early-types tend to-
wards light gray (yellow). This does not depend much on the
estimation of the mass-to-light ratio Γ�, as shown by late-type
galaxies which are gas dominated. This relation has also been
found by McGaugh (2004), when estimating the mass-to-light
ratio in several ways (maximum disc, stellar populations, ...).
Whatever the method, a strong correlation between the mass dis-
crepancy and the Newtonian acceleration is observed.

This relation can be interpreted in two ways:

– either we consider the context of Newtonian gravity and
must find why baryons fall in dark matter haloes so that this
relation with the acceleration of the visible matter is veri-
fied. The ΛCDM model does not give a real clue to this
correlation. Van den Bosch & Dalcanton (2000) try to ob-
tain this relation using semi-analytical models of galaxy for-
mation, in the ΛCDM framework. They must then consider
star formation feedback effects through supernovae explo-
sions, to reproduce the lack of high surface brightness dwarf
galaxies. They however do not succeed in eliminating mas-
sive galaxies with low surface brightness. They also tuned
their galaxies to fit the observed Tully-Fisher relation in the
ΛCDM model, while galaxies automatically reproduce it in
the MOND model. It should be interesting to look at this in
self-consistent cosmological simulations with baryons;

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811085&pdf_id=3
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Fig. 4. Left: variation of the mean c with a0. The limit a0 → 0 corresponds to a Newtonian gravity without dark matter. The error bar (red) is
the result from Hoekstra et al. (2001). When a0 → 1.2 × 10−10 m s−2, the actual value of a0, no additional baryons are required (c → 1). Middle:
histogram of a0 obtained when fitting the rotation curve sample including a dark baryon component. The universal critical acceleration peaks at
a0 = 0.96 × 10−10 m s−2. Right: histogram of c when all the rotation curves are fitted fixing a0 = 0.96 × 10−10 m s−2.

– we consider the alternative model of MOND, which is a di-
rect application of the mass discrepancy-acceleration rela-
tion. In this frame, the visible mass is the only one, and the
gravitation law must be modified to remove the need for dark
matter, such that Mdyn/Mvis = 1.

The mass discrepancy-acceleration relation is:

Mdyn

Mvis
= f

⎛⎜⎜⎜⎜⎝aN
vis

a0

⎞⎟⎟⎟⎟⎠ ·
The mass can be expressed in terms of acceleration:

GMdyn

r2
=

GMvis

r2
f

⎛⎜⎜⎜⎜⎝aN
vis

a0

⎞⎟⎟⎟⎟⎠

aN
vis+DM = aN

vis f

⎛⎜⎜⎜⎜⎝aN
vis

a0

⎞⎟⎟⎟⎟⎠ ·
A test particle should feel a MONDian acceleration, aM equiv-
alent to the Newtonian acceleration with dark matter, aN

vis+DM
then,

aM = aN
vis f

⎛⎜⎜⎜⎜⎝aN
vis

a0

⎞⎟⎟⎟⎟⎠
which is equivalent to Milgrom’s formulation of MOND:

aM = aN
visν

⎛⎜⎜⎜⎜⎝aN
vis

a0

⎞⎟⎟⎟⎟⎠
or

aN
vis = aMμ

(
aM

a0

)
,

with

I(x) = xμ(x)

ν(y) = I−1(y)/y.

Thus, rotation curves of galaxies tell us how Newtonian gravity
should be modified to obtain a ratio Mdyn/Mvis of one, without
any dark matter halo. The μ-function of MOND and the critical
acceleration a0 can be observationally derived from a Newtonian

interpretation of the rotation curves. The solid line in Fig. 3 rep-
resents the function:

ν(x) =

√
0.5 + 0.5

√
1 + (2/x)2,

associated with the standard μ-function. It is in good agreement
with the data.

Let us note that for any model devised to fit rotation curves
(such as DM and MOND models), it is sufficient to verify the
global Tully-Fisher relation, together with the virial theorem, to
reveal the mass discrepancy-acceleration relation. The TF rela-
tion writes as Mvis ∝ V4, the virial equilibrium of galaxies as
V2 ∝ Mdyn/R; from the combination of these two relations, it
can be derived that Mdyn/Mvis ∝ R/V2 ∝ a0/a. Although these
are only global relations, they yield almost the correct slope, ob-
tained for all galaxies, including points internal to each galaxy.
The main difference here is that the TF relation is an integral part
of the MOND model, while it is fine tuned in the DM+Newton
model.

5.2. Rotation curve analysis

The minimization of the χ2 for the rotation curve fits gives the
variation of c with respect to a0 for each galaxy. Figure 4 (left)
displays the mean over the galaxy sample of the factor c ver-
sus the critical acceleration a0. When a0 tends to zero, which is
the Newtonian limit in the MOND formulation, the mean pro-
portion of total gas over the atomic one is c = 12 ± 4. In this
limit all the dark matter needed to fit the rotation curve is in the
form of a dark gas disc. This result is in agreement with the one
found by Hoekstra et al. (2001). They argue for c = 7 which is
the most common value in their frequency histogram but their
mean value is larger (c = 11, see the error bar in Fig. 4, left).
On the other hand for a0 = 1.2 × 10−10 m s−2, the actual value
of the critical acceleration of MOND, the mean c is equal to 1,
which means that there is no need for additional baryons to fit
the rotation curve. Thus the critical acceleration a0 increases as
the fraction of dark baryons decreases. This last plot gives the
general order of magnitude of the values a0 and c. Now to de-
termine if there is a preferred (universal) value of a0, if some
dark baryons are taken into account, we plot a histogram of a0
given by the fit. It is represented in the middle of Fig. 4. It can be
seen that the critical acceleration common to the sample peaks
at a0 = 0.96 ± 0.39 × 10−10 m s−2. Then, if we look at the his-
togram of c in Fig. 4, right, it shows that the majority of the
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Fig. 5. First sample. Left: root mean square of the linear least fit square of the Tully-Fisher relation as a function of c. The scatter of the Tully-Fisher
relation is a minimum for c = 1.5. Middle: the baryonic Tully-Fisher relation for c = 1.5 whatever the galaxy (the masses and velocity are given
in the system unit G = 1). Right: the baryonic Tully-Fisher relation where the values of c are determined by the rotation curve analysis; they are
different from one galaxy to the other.
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Fig. 6. Second sample. Left: rms of the lin-
ear least square fit of the Tully-Fisher re-
lation as a function of c. The minimum
is obtained for c = 2.6. Right: the bary-
onic Tully-Fisher relation including a dark-
baryon component, c = 2.6 whatever the
galaxy.

galaxy in the sample (75%) could contain some dark baryons in
the proportion 1.5 < c < 6, while a few percent of galaxies have
a scale-factor of 1, equivalent to a model without dark baryons.
The mean value of the scale-factor is c = 3.2 ± 2.4. Figure 7
displays the different components of the rotation curves fitted by
MOND with a fraction of dark baryons.

5.3. Tully-Fisher relation

First sample. Figure 5 (left) shows the evolution of the root
mean square of the Tully-Fisher relation fit with respect to the
fraction between total and atomic gas, c. The factor c which opti-
mizes the scatter of the relation is found near c = 1.5. This value
is lower than for the rotation curve method. But this method
takes into account only the global properties of the galaxies, so
it is a statistical study that necessitates a large number of can-
didates. In that case we have only 43 galaxies. This is why we
analyzed a second sample made of several hundred of galaxies.
However note that if we look at the maximum value of c for
which the root mean square (rms) of the fit is still better than
when there are no dark baryons, we find c < 2.5 (see the gray re-
gion in Fig. 5, left), which is more in accordance with the results
of the fisrt method.

The baryonic Tully-Fisher relation where c is fixed to 1.5,
whatever the galaxy, is plotted in Fig. 5 (middle). In this case, the
root mean square is 0.25. To compare this with the first method,
the same baryonic Tully-Fisher relation is plotted in Fig. 5 (right)
but the values of c are the ones derived from the individual rota-
tion curve analysis, thus different in each galaxy. This is why the

scatter is lower than in the previous plot; the root mean square
is 0.14.

Second sample. With a larger sample of galaxies (n = 576)
selected from the GoldMine database, we performed the same
study on the baryonic Tully-Fisher relation. This time, the fac-
tor that optimizes the scatter of the relation is c = 2.6 ± 2.5.
The uncertainty corresponds to the range of c where the rms is
better than if no additional dark baryons are considered (Fig. 6).
Moreover, the vertical offset of the relation gives the new value
of the critical acceleration of MOND if some dark baryons are
considered: a0 = 0.85 ± 0.35 × 10−10 m s−2. This analysis of
the Tully-Fisher relation is well in agreement with the results
derived from the rotation curve fits.

6. Discussion and conclusion

We revisit the mass discrepancy-acceleration relation, at the ori-
gin of the motivation for MOND. In the frame of this modified
gravity theory, this relation is a direct observation, which quan-
tifies the critical acceleration and determines the interpolation
function μ. In the frame of Newtonian gravity and dark matter
theory, we have to understand the meaning of this strong corre-
lation, which is related to both the Tully-Fisher and virial rela-
tion. Until now, only fine tuning, involving baryonic physics and
supernovae feedback, has been invoked as an interpretation.

We then consider for the first time how the presence of dark
baryons in galaxies could be made compatible with the MOND
phenomenology. Only a small fraction of all missing baryons
can be present in galaxies, to avoid overpredicting the observed
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χ2=0.49 χ2=6.76 χ2=8.2
χ2=0.31

χ2=0.86 χ2=1.86 χ2=0.39 χ2=10.1

χ2=6.7 χ2=1.9 χ2=0.27 χ2=0.84

χ2=41.1 χ2=6.2 χ2=2.1 χ2=3.52

χ2=0.19 χ2=0.68 χ2=1.64 χ2=3.95

Fig. 7. MOND rotation curve fits: the solid line (red) represents the stellar disc, the atomic gas corresponds to the dash line (blue), the dot line
(cyan) is the cold and dark molecular gas. The total modelled rotation curve is in dot-dashed (magenta) while the observed HI velocity corresponds
to the symbols and error-bars.

rotation curves. If dark baryons are present in cosmic filaments
in the form of cold gas, it is unavoidable to find a small fraction
of them in galaxies. We show how the presence of these dark
baryons in galaxy discs can reduce the critical acceleration a0 of
MOND. We quantify the best pair (a0, c) with c being the scale-
factor between the total gas and the atomic gas in a galaxy. The
main result is derived from the rotation curve analysis which

involves galaxies well resolved with their luminosity profiles
and HI profiles. More galaxies with high-quality data should be
included in the sample, especially the late-type galaxies which
are very constraining. We applied another method based on the
minimization of the scatter of the Tully-Fisher relation. We use
two different samples, one is the same as for the rotation curve
fits (with 43 galaxies); the other contains a larger number of
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Fig. 7. continued.



668 O. Tiret and F. Combes: MOND and the dark baryons

galaxies (576 candidates). Both methods with both samples con-
clude that the presence of dark baryons in the galaxy disc are
compatible with MOND. We find the scale factor between the
total gas and atomic gas to be c = 3+3

−2 (by compiling all the re-
sults). This factor is not expected to be universal because of in-
vidual galaxy histories. On the other hand, we show that the crit-
ical acceleration of MOND which differentiates the Newtonian
regime from the mondian regime should be slightly reduced
from the actual value usually used. In this work the critical accel-
eration of MOND, if some dark baryons are taken into account,
is estimated to be a0 = 0.96 ± 0.39 × 10−10 m s−2.

Our results on the Tully-Fisher relation are in agreement with
those of Pfenniger & Revaz (2005) and Begum et al. (2008),
where the error bars are large because of the difficulty in deter-
mining with very high precision the visible baryonic mass. They
find respectively c = 3+9

−2 and c = 9+19
−7 . But we interpret the

Tully-Fisher relation conforming to MOND, and we fix its slope
to 4. It assumes that the velocity used in the Tully-Fisher relation
corresponds to the constant circular velocity in the deep MOND
regime. It is possible that the velocity has not yet reached the
plateau of the MOND regime. This effect will tend to decrease
the value of the slope because these samples of galaxies contain
essentially late-types. Their rotation curves are still increasing in
the outer measured radius, and the velocity observed will always
be lower than or equal to the asymptotic velocity.

Let us add that a factor c larger than 7 appears less likely
from a dynamical point of view (Revaz et al. 2008). With such
a large factor, the total mass in gas (HI and dark) is about the
same order as that in the stellar disc, at a redshift z = 0. In this
case, galaxy discs should be too cold and unstable. Note also
that the proportion of dark baryons estimated in this work corre-
sponds to a quantity within ten times the typical scale length of
the galaxies, due to the extent of the rotation curves.
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