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ABSTRACT

Aims. A first-order asymptotic representation of higher-order non-radial g+-modes in spherically symmetric stars with a convective
core is constructed from the full fourth-order system of governing equations. Stars are considered that, besides their convective core,
also contain a radiative envelope, or both an intermediate radiative zone and a convective envelope. At the same time, the earlier
asymptotic theory of Willems et al. (1997, A&A, 318, 99) relative to stars consisting of a convective core and a radiative envelope is
made more transparent.
Methods. As in the asymptotic theory of Smeyers (2006, A&A, 451, 223) for low-degree, higher-order p-modes, two-variable ex-
pansion procedures and boundary-layer theory are applied to the fourth-order system of differential equations established by Pekeris
(1938, ApJ, 88, 189).
Results. Eigenfrequency equations are derived in terms of the radial order n of the g+-mode. The first n − 1 nodes of the radial
component of the Lagrangian displacement coincide with the n − 1 nodes of the divergence of the Lagrangian displacement, and are
situated in the radiative envelope or in the intermediate radiative zone according to the type of star considered. The radial displacement
displays an nth node near the surface. In stars containing an intermediate radiative zone and a convective envelope, the nth node is
situated in the envelope.
Conclusions. As well as for higher-order p-modes of spherically symmetric stars, the divergence of the Lagrangian displacement
plays a basic role in the development of the asymptotic theory.
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1. Introduction

The viewpoint that γ Doradus stars, which are intermediate mass
stars oscillating with several periods in the range of 0.5 to 3 days
and with amplitudes of a few hundredths of magnitude, are non-
radial gravity-mode pulsators of low degree and high radial or-
der, has revived the interest in the asymptotic theory of low-
degree, higher-order g+-modes in stars (Kaye et al. 1999; Aerts
et al. 2004; Moya et al. 2005; Dupret et al. 2005).

In the past, Tassoul (1980) developed an asymptotic rep-
resentation of higher-order g+-modes in the Cowling approxi-
mation, in which the Eulerian perturbation of the gravitational
potential is neglected. For stars composed of a convective core
and a radiative envelope, Willems et al. (1997) redeveloped the
asymptotic theory without neglecting that perturbation. These
authors started from the full fourth-order system of differen-
tial equations in the divergence and the radial component of
the Lagrangian displacement that stems from Pekeris (1938)
and was reintroduced by Tassoul (1990) in an asymptotic treat-
ment of higher-order p-modes. To the system of equations,
they applied perturbation methods that are adequate for singu-
lar perturbation problems: two-variable expansion procedures
at larger distances from the boundary and the turning points,
and boundary-layer theory near these points (Kevorkian & Cole
1968, 1996). However, the asymptotic theory of Willems et al.

is partly obscured by the choice of boundary-layer coordinates
which are identical to the fast variables used at larger distances.

Our aim is to develop an asymptotic representation of higher-
order g+-modes in stars with a convective core. We consider stars
that contain a radiative envelope as well as stars that contain a
convective envelope and an intermediate radiative zone. We also
start from Pekeris’ system of differential equations and apply
two-variable expansion procedures and boundary-layer theory,
but we define the boundary-layer coordinates in a regular way.
In our asymptotic treatment, we consider the convective core,
where the square of the Brunt-Väisälä frequency is generally
small in absolute value, to be in adiabatic equilibrium.

The outline of the paper is as follows. In Sect. 2, we recall the
basic equations. In Sect. 3, we construct the asymptotic represen-
tation of higher-order g+-modes for stars composed of a convec-
tive core and a radiative envelope, and in Sect. 4, that for stars
composed of a convective core, an intermediate radiative zone,
and a convective envelope. Section 5 is devoted to concluding
remarks.

2. Basic equations

Consider a non-rotating spherically symmetric star in hydro-
static equilibrium with mass M and radius R that is subject to
a linear, isentropic g+-oscillation depending on time by a factor
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exp(iσ t) and belonging to a spherical harmonic Ym
� (θ, φ). With

respect to a system of spherical coordinates r, θ, φ whose origin
coincides with the star’s mass centre, the Lagrangian displace-
ment and its divergence can be represented as

ξ(r, θ, φ) =

⎡⎢⎢⎢⎢⎢⎣ξ(r) 1r +
η(r)

r

(
1θ
∂

∂θ
+ 1φ

1
sin θ

∂

∂φ

)⎤⎥⎥⎥⎥⎥⎦Ym
� (θ, φ), (1)

α(r, θ, φ) = α(r) Ym
� (θ, φ) ≡[

1
r2

d
dr

(
r2 ξ(r)

)
− �(� + 1)

r2
η(r)

]
Ym
� (θ, φ). (2)

For the construction of the asymptotic representation of higher-
order g+-modes, we start from the following fourth-order sys-
tem of two differential equations for the radial functions α(r)
and ξ(r):

d2α

dr2
+ K2(r)

dα
dr
+

[
K1(r)
σ2
+ K3(r) +

σ2

c2(r)

]
α = −K4(r)

dξ
dr
, (3)

d2ξ

dr2
+

4
r

dξ
dr
− �(� + 1) − 2

r2
ξ =

dα
dr
−

[
c2(r)
g(r)

K1(r)
σ2
− 2

r

]
α. (4)

The coefficients K1(r), K2(r), K3(r), K4(r) are defined as

K1(r) = �(� + 1)
N2

r2
, (5)

K2(r) =
2
r
+

2
ρ c2

d
(
ρ c2

)
dr

− 1
ρ

dρ
dr
, (6)

K3(r) = −�(� + 1)
r2

+
2 g
c2

(
1
g

dg
dr
+

1
r

)

+
1
ρ c2

d
(
ρ c2

)
dr

(
2
r
− 1
ρ

dρ
dr

)
+

1
ρ c2

d2
(
ρ c2

)
dr2

, (7)

K4(r) = −2 g
c2

(
1
g

dg
dr
− 1

r

)
· (8)

The variables have their usual meaning: ρ(r) is the mass density,
g(r) the gravity, c(r) the isentropic sound velocity, and N2(r) the
square of the Brunt-Väisälä frequency.

The solutions must satisfy boundary conditions. At r = 0,
the radial component of the Lagrangian displacement must re-
main finite. At r = R, the Lagrangian perturbation of the pres-
sure must be zero. The condition implies that the divergence of
the Lagrangian displacement must be finite at that point, since
the equilibrium pressure vanishes there, and the Lagrangian per-
turbation of the pressure is related to the divergence of the dis-
placement as

δP = −Γ1 Pα, (9)

where P(r) is the equilibrium pressure, and Γ1(r) the general-
ized isentropic coefficient Γ1 ≡ (∂ ln P/∂ ln ρ)S . Finally, the con-
tinuity of the gravitational potential and its gradient at the star’s
perturbed surface requires that(

dΦ′

dr

)
R

+
� + 1

R
Φ′R = −(4 πG ρ ξ)R. (10)

Here Φ′(r) is the Eulerian perturbation of the gravitational
potential.

We make the differential equations and the boundary con-
dition dimensionless by expressing the time t, the radial co-
ordinate r, the pressure P(r), the mass density ρ(r), the grav-
ity g(r), the isentropic sound velocity c(r), the gravitational

potential Φ(r), and both the radial component ξ(r) and the trans-
verse component η(r)/r of the Lagrangian displacement respec-

tively in the units
[
R3/(GM)

]1/2
, R, GM2/

(
4πR4

)
, M/

(
4πR3

)
,

GM/R2, (GM/R)1/2, GM/R, R. We suppose that the angular fre-

quency σ expressed in the unit
(
GM/R3

)1/2
is a small quantity

and denote it as ε. With this definition, ε is a small dimension-
less quantity that corresponds to the ratio of 2π times the star’s
dynamic time scale to the oscillation period.

At the boundaries between a radiative region and a convec-
tive region, N2(r) vanishes in the term of Eq. (3) that contains
the large parameter, so that each of these boundaries introduces
a turning point into the equation. We suppose the mass density
to be continuous even at the turning points.

Several regions must be distinguished in the radial direc-
tion: regions at larger distances from the boundary and the turn-
ing points, and regions near a boundary or a turning point. In
the various regions, we start from a homogeneous second-order
differential equation for the lowest-order asymptotic approxi-
mation of α(r), which is derived from Eq. (3). Next, we de-
rive an inhomogeneous second-order differential equation for the
lowest-order asymptotic approximation of ξ(r), which involves
the lowest-order asymptotic approximation of α(r) in its inho-
mogeneous part.

3. Stars with a radiative envelope

For stars composed of a convective core and a radiative envelope,
a turning point appears in Eq. (3) at the boundary between the
two regions.

We start the construction of the asymptotic solutions from
the region in the radiative envelope that is situated at larger dis-
tances from the turning point and the star’s surface at r = R.
Secondly, we construct boundary-layer solutions near the turn-
ing point and match them to the asymptotic solutions valid at
larger distances. We also connect the boundary-layer solutions
to the solutions valid in the adiabatic core. Thirdly, we construct
boundary-layer solutions from the star’s surface at r = R. After
the matching of these solutions to the asymptotic solutions valid
at larger distances, the eigenfrequency equation can be derived.

By imposing the boundary condition relative to the Eulerian
perturbation of the gravitational potential at the star’s surface, we
fix the last undetermined constant in the asymptotic solutions.
We then construct the asymptotic solutions that are uniformly
valid from the lower boundary of the radiative envelope and from
the star’s surface respectively. Finally, we identify the radial or-
der of a g+-mode associated with a given eigenfrequency.

3.1. Asymptotic solutions in the radiative envelope at larger
distances from its boundaries

For the region in the radiative envelope that is situated at larger
distances from the boundary of the convective core at r = ra and
the star’s surface at r = R, we adopt asymptotic solutions similar
to those constructed by Smeyers et al. (1995) by means of an ex-
pansion procedure in terms of a fast and a slow variable. The
slow variable is still the radial coordinate r, but the fast variable
is defined as

τ(r) =
1
ε

∫ r

ra

K1/2
1

(
r′
)

dr′. (11)
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At a given degree �, the rate of increase of the fast variable as
a function of the radial coordinate depends on the variation of

the integrand
(
N2/r2

)1/2
in the radiative envelope.

The lowest-order asymptotic solutions for α(r) and ξ(r) are
given by a linear combination of trigonometric functions of the
fast variable whose amplitudes vary as functions of the slow vari-
able. The lowest-order asymptotic solution for ξ(r) also contains
a non-oscillatory part. The solutions can be written as

α(o)(r, ε) = K5(r)
(
A∗0 cos τ + B∗0 sin τ

)
,

ξ(o)(r; ε) =
c2(r)
g(r)

α(o)(r, ε) +G(o)
0 (r),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (12)

where

K5(r) = g(r)
[
N2(r) r6 c8(r) ρ2(r)

]−1/4
. (13)

The function G(o)
0 (r) is a general solution of the second-order

Clairaut equation

d2G(o)
0

dr2
+ 2

(
1
g

dg
dr
+

1
r

)
dG(o)

0

dr
− �(� + 1) − 2

r2
G(o)

0 = 0 (14)

and can be expressed as

G(o)
0 (r) = C∗0 y1(r) + D∗0 y2(r). (15)

The particular solutions y1(r) and y2(r) are chosen in such a way
that they behave respectively as r�−1 and as r−(�+2), as r → 0.
Furthermore, A∗0, B∗0, C∗0, D∗0 are general constants.

3.2. Boundary-layer solutions from the boundary between
the convective core and the radiative envelope

Near the boundary between the convective core and the radia-
tive envelope situated at the radial distance r = ra, we construct
boundary-layer solutions towards the star’s surface.

Because of Solutions (12), we pass on from the function ξ(r)
to the function w(r) by means of the transformation

ξ(r) =
c2(r)
g(r)

w(r), (16)

so that Eqs. (3) and (4) become

d2α

dr2
+ K2(r)

dα
dr
+

[
K1(r)
ε2
+ K3(r) +

ε2

c2(r)

]
α =

−K4(r)
d
dr

[
c2(r)
g(r)

w

]
, (17)

d2w

dr2
+

[
4
r
+ 2

d
dr

ln
c2(r)
g(r)

]
dw
dr
+

⎡⎢⎢⎢⎢⎢⎣−�(� + 1) − 2
r2

+
4
r

d
dr

ln
c2(r)
g(r)

+
g(r)
c2(r)

d2

dr2

c2(r)
g(r)

⎤⎥⎥⎥⎥⎥⎦w =
g(r)
c2(r)

dα
dr
−

[
K1(r)
ε2
− 2

r
g(r)
c2(r)

]
α. (18)

As r → ra, the functions appearing in the coefficients of the
equations behave as

ρ(r) =ρ (ra) [1 + O (sa)] ,

g(r) =g (ra) [1 + O (sa)] ,

c(r) =c (ra) [1 + O (sa)] ,

N2(r)=N2
a sa [1 + O (sa)] ,

K1(r)=
�(� + 1)

r2
a

N2
a sa [1 + O (sa)] ,

≡K1,a sa [1 + O (sa)] ,

K2(r)=K2,a [1 + O (sa)] ,

K3(r)=K3,a [1 + O (sa)] ,

K4(r)=K4,a [1 + O (sa)] ,

K5(r)=K5,a s−1/4
a [1 + O (sa)] ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

with sa = r − ra.
We adopt the boundary-layer coordinate

s∗a(r) =
sa(r)
δ(ε)
, (20)

where δ(ε) → 0 as ε → 0, transform the differential opera-
tors in Eqs. (17) and (18) into differential operators in terms
of the boundary-layer coordinate s∗a(r), introduce asymptotic ex-
pansions of the form

α(a)(r; ε) = µ(a)
0 (ε)α(a)

0

(
s∗a

)
+ µ(a)

1 (ε)α(a)
1

(
s∗a

)
+ . . . ,

w(a)(r; ε) = ν(a)
0 (ε)w(a)

0

(
s∗a

)
+ ν(a)

1 (ε)w(a)
1

(
s∗a

)
+ . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

and use Taylor Series (19).
Equation (17) can then be brought in the form

µ(a)
0 (ε)

⎧⎪⎪⎨⎪⎪⎩
1
δ2(ε)

d2α(a)
0

ds∗2a
+

K2,a

δ(ε)

dα(a)
0

ds∗a

+

[
δ(ε)
ε2

K1,a s∗a + K3,a +
ε2

c2
a

]
α(a)

0 + . . .

⎫⎪⎪⎬⎪⎪⎭
+µ(a)

1 (ε) {. . .} + . . . =

ν(a)
0 (ε)

⎛⎜⎜⎜⎜⎜⎝−K4,a

δ(ε)

c2
a

ga

dw(a)
0

ds∗a
+ . . .

⎞⎟⎟⎟⎟⎟⎠ + ν(a)
1 (ε) (. . .) + . . . (22)

We start from a first dominant boundary-layer equation that
is homogeneous. Therefore, we assume that ν(a)

0 (ε) is of a higher

order in ε than µ(a)
0 (ε)/δ(ε) and µ(a)

0 (ε) δ2(ε)/ε2. The equation
then takes the form

1
δ2(ε)

d2α(a)
0

ds∗2a
+
δ(ε)
ε2

K1,a s∗a α
(a)
0 = 0. (23)

The term involving the second derivative is of the same order
in ε as the term with the large parameter, when

δ(ε) = ε2/3. (24)
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A general solution of the boundary-layer equation in terms of
Bessel functions of the first kind is given by

α(a)
0

(
s∗a

)
=

√
s∗a

⎡⎢⎢⎢⎢⎢⎣A0,a J1/3

(
2
3

√
K1,a s∗3/2a

)

+B0,a J−1/3

(
2
3

√
K1,a s∗3/2a

)⎤⎥⎥⎥⎥⎥⎦, (25)

where A0,a and B0,a are general constants.
Next, Eq. (18) can be brought in the form

ν(a)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4/3

d2w(a)
0

ds∗2a
+

(
ε−2/3

)⎤⎥⎥⎥⎥⎥⎦ + ν(a)
1 (ε) (. . .) + . . . =

µ(a)
0 (ε)

[
−K1,a

ε4/3
s∗a α

(a)
0 + O

(
ε−2/3

)]
+ µ(a)

1 (ε)(. . .) + . . . (26)

Since we are dealing with a fourth-order system of differen-
tial equations for α(a)

0

(
s∗a

)
and w(a)

0

(
s∗a

)
, we derive a second domi-

nant boundary-layer equation that is inhomogeneous. Therefore,
we set

ν(a)
0 (ε) = µ(a)

0 (ε). (27)

This equality is compatible with the suppositions made above
in the context of the derivation of the first dominant boundary-
layer equation. The second dominant boundary-layer equation
then takes the form

d2w(a)
0

ds∗2a
= −K1,a s∗a α

(a)
0 . (28)

By subtracting the first dominant boundary-layer equation, one
obtains

d2

ds∗2a

(
w(a)

0 − α(a)
0

)
= 0, (29)

so that, after integration,

w(a)
0

(
s∗a

)
= α(a)

0

(
s∗a

)
+C0,a s∗a + D0,a, (30)

where C0,a s∗a and D0,a are particular solutions of the homoge-
neous equation, and C0,a and D0,a general constants.

When one returns to the equation involving the parameter ε

ν(a)
0 (ε)

d2w(a)
0

ds∗2a
= −µ(a)

0 (ε) K1,a s∗a α
(a)
0 , (31)

one sees that, with the particular solutions C0,a s∗a and D0,a, func-
tions ν(a)

0 (ε) may be associated that differ from the function

µ(a)
0 (ε). Therefore, in view of the matching to the asymptotic so-

lutions valid at larger radial distances from the turning point, we
write the boundary-layer solutions α(a)(r; ε) and ξ(a)(r; ε) in the
more general form

α(a)(r; ε) = µ(a)
0 (ε)

√
s∗a

⎡⎢⎢⎢⎢⎢⎣A0,a J1/3

(
2
3

√
K1,a s∗3/2a

)

+B0,a J−1/3

(
2
3

√
K1,a s∗3/2a

)⎤⎥⎥⎥⎥⎥⎦,
ξ(a)(r; ε) =

c2 (ra)
g (ra)

[
α(a)(r; ε)

+ν(a,2)
0 (ε) C0,a s∗a + ν

(a,3)
0 (ε) D0,a

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

The matching condition relative to the divergence of the
Lagrangian displacement is

lim
sa→∞
α(a)(r; ε) = lim

sa→0
α(o)(r, ε). (33)

As sa → 0, the fast variable τ(r) reduces to

τ(r) =
1
ε

2
3

√
K1,a s3/2

a , (34)

so that

lim
sa→0
α(o)(r, ε) =

K5,a

s1/4
a

⎡⎢⎢⎢⎢⎢⎣A∗0 cos

(
1
ε

2
3

√
K1,a s3/2

a

)

+B∗0 sin

(
1
ε

2
3

√
K1,a s3/2

a

)⎤⎥⎥⎥⎥⎥⎦. (35)

As sa → ∞, the use of the first asymptotic approximations
of Bessel functions with large arguments yields

lim
sa→∞
α(a)(r; ε) = µ(a)

0 (ε) ε1/6

√
3√
πK1/4

1,a

1

s1/4
a⎡⎢⎢⎢⎢⎢⎣A0,a sin

(
1
ε

2
3

√
K1,a s3/2

a +
π

12

)

+B0,a sin

(
1
ε

2
3

√
K1,a s3/2

a +
5 π
12

)⎤⎥⎥⎥⎥⎥⎦· (36)

The matching condition is satisfied when

µ(a)
0 (ε) = ε−1/6, (37)

and

A∗0 =
√

3√
πK1/4

1,a K5,a

(
A0,a sin

π

12
+ B0,a cos

π

12

)
,

B∗0 =
√

3√
πK1/4

1,a K5,a

(
A0,a cos

π

12
+ B0,a sin

π

12

)
·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(38)

Next, the matching condition relative to the radial compo-
nent of the Lagrangian displacement is

lim
sa→∞
ξ(a)(r; ε) = lim

sa→0
ξ(o)(r, ε). (39)

The condition is automatically satisfied for the oscillatory parts
of the functions ξ(a)(r; ε) and ξ(o)(r; ε). For the non-oscillatory
parts, it leads to the equalities

C0,a = 0,

ν(a,3)
0 (ε) = ε0, D0,a =

g (ra)
c2 (ra)

G(o)
0 (ra) .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (40)

3.3. Continuity with the solutions valid in the adiabatic core

In the convective core, which is considered to be in adiabatic
equilibrium, N2(r) = 0, so that K1(r) = 0. Consequently, the
system of the Eqs. (3) and (4) contains no term of order 1/ε2. At
order ε0, the system of equations takes the form

d2α

dr2
+ K2(r)

dα
dr
+ K3(r)α = −K4(r)

dξ
dr
,

d2ξ

dr2
+

4
r

dξ
dr
− �(� + 1) − 2

r2
ξ =

dα
dr
+

2
r
α.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(41)
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The variations of pressure and mass density to which an adi-
abatically moving mass element is subject in a region in adi-
abatic equilibrium, result exclusively from the stratification of
the equilibrium quantities in the radial direction. Therefore,
the Lagrangian perturbations of pressure and mass density are
given by

δP =
dP
dr
ξ, δρ =

dρ
dr
ξ. (42)

Since

α = −δρ
ρ
= − δP
ρ c2
, (43)

it follows, by the condition of hydrostatic equilibrium, that the
divergence and the radial component of the Lagrangian displace-
ment are related as

α =
g

c2
ξ. (44)

One verifies that this relation satisfies Eqs. (41), by taking into
account that

dρ
dr
= −ρ g

c2
,

dg
dr
= −2

r
g + 4 πG ρ.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(45)

The fourth-order system of differential Eqs. (41) admits of
a linear combination of two particular solutions satisfying the
requirement that the radial displacement must remain finite at
r = 0. Correspondingly, the admissible solutions for the diver-
gence and the radial component of the Lagrangian displacement
involve two general constants. We represent these solutions by
µ(c)(ε)α(c)

0 (r) and µ(c)(ε) ξ(c)
0 (r), where µ(c)(ε) is a yet undeter-

mined function.
At the boundary between the convective core and the ra-

diative envelope, both the Lagrangian displacement and the
Lagrangian perturbation of the pressure must be continuous. The
continuity of the Lagrangian perturbation of the pressure implies
the continuity of the divergence of the Lagrangian displacement.
Because of Eq. (2), the latter condition requires that, in addi-
tion to the components of the Lagrangian displacement, the first
derivative of the radial component must be continuous.

The continuity of the divergence of the Lagrangian displace-
ment, and that of the radial component and its first derivative
demand that

µ(c)(ε)α(c)
0 (ra) = α(a)

0 (ra) ≡ ε−1/6 31/3

Γ(2/3) K1/6
1,a

B0,a,

µ(c)(ε) ξ(c)
0 (ra) =

c2 (ra)
g (ra)

α(a)
0 (ra) +G(o)

0 (ra) ,

µ(c)(ε)

⎛⎜⎜⎜⎜⎜⎝dξ(c)
0

dr

⎞⎟⎟⎟⎟⎟⎠
r=ra

= ε−5/6
37/6 Γ(2/3) K1/6

1,a

2 π
c2 (ra)
g (ra)

A0,a

+ε−1/6 31/3

Γ(2/3) K1/6
1,a

[
d
dr

c2(r)
g(r)

]
r=ra

B0,a.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

From the first condition, it follows that

µ(c)(ε) = ε−1/6, (47)

and from the second condition, that

G(o)
0 (ra) = 0. (48)

The second condition then imposes that

ξ(c)
0 (ra) =

c2 (ra)
g (ra)

α(c)
0 (ra) (49)

in accordance with Relation (44).
The third condition requires that

A0,a = 0. (50)

By means of Condition (49) and the third Condition (46),
the two constants involved in the solutions that are valid in the
convective core can be fixed.

On the basis of the conditions of continuity at the bound-
ary between the convective core and the radiative envelope, one
arrives at the conclusion that the boundary-layer solutions con-
structed in the radiative envelope involve only the constant B0,a,
so that these solutions reduce to

α(a)(r; ε) = ε−1/6 B0,a

√
s∗a J−1/3

(
2
3

√
K1,a s∗3/2a

)
,

w(a)(r; ε) = α(a)(r; ε).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (51)

Correspondingly, Eqs. (38) reduce to

A∗0 = B0,a

√
3√

πK1/4
1,a K5,a

cos
π

12
,

B∗0 = B0,a

√
3√

πK1/4
1,a K5,a

sin
π

12
·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(52)

3.4. Boundary-layer solutions near the surface

Since the point r = R is a singular point of Eqs. (17) and (18),
we treat the small region near the star’s surface as a boundary
layer. For the construction of the solutions, it is convenient to
introduce the coordinate

z = R − r. (53)

As in Smeyers et al. (1995), we assume that, near the surface,
the mass density tends to zero as

ρ(r) = ρs zne [1 + O(z)], (54)

with ne > 0. When furthermore the mass contained inside
a sphere with radius r is considered to be equal to the star’s total
mass M, the gravity behaves as

g(r) = gs [1 + O(z)] (55)

with gs = G M/R2, and it results from the condition of hydro-
static equilibrium that

P(r) = gs
ρs

ne + 1
zne+1 [1 + O(z)]

≡ Ps zne+1 [1 + O(z)]. (56)

The isentropic sound velocity and the square of the
Brunt-Väisälä frequency can then be expressed as

c(r) =

(
gs
Γ1,s

ne + 1

)1/2

z1/2 [1 + O(z)],

≡ cs z1/2 [1 + O(z)],

N2(r) = −gs

(
gs

c2
s
− ne

)
z−1 [1 + O(z)]

≡ N2
s z−1 [1 + O(z)].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(57)
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Moreover, the coefficients K1(r), K2(r), K3(r), K4(r), K5(r)
behave as

K1(r)=
�(� + 1)

R2
N2

s z−1 [1 + O(z)]

≡K1,s z−1 [1 + O(z)],

K2(r)=− (ne + 2) z−1 [1 + O(z)],

K3(r)=K3,s z−1 [1 + O(z)],

K4(r)=K4,s z−1 [1 + O(z)],

K5(r)=K5,s z−(ne+3/2)/2 [1 + O(z)].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(58)

In Eq. (17), the second derivative of α with respect to z and the
singular terms are of the same order in ε as the term with the
large parameter, when a boundary-layer coordinate z∗(z) is in-
troduced by means of the equation(

dz∗

dz

)2

=
1
ε2

K1,s

z
. (59)

If z∗(0) = 0, the non-negative boundary-layer coordinate is
given by

z∗(z) =
1
ε

2 K1/2
1,s z1/2. (60)

Next, we transform the differential operators in the equations and
introduce asymptotic expansions of the form

α(s)(r; ε) = µ(s)
0 (ε)α(s)

0 (z∗) + µ(s)
1 (ε)α(s)

1 (z∗)

+ . . . ,

w(s)(r; ε) = ν(s)
0 (ε)w(s)

0 (z∗) + ν(s)
1 (ε)w(s)

1 (z∗)

+ . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(61)

Equation (17) can then be brought in the form

µ(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2α(s)
0

dz∗2
+

2 ne + 3
z∗

dα(s)
0

dz∗
+ α(s)

0

⎞⎟⎟⎟⎟⎟⎠
+O

(
ε−2

)⎤⎥⎥⎥⎥⎥⎦ + µ(s)
1 (ε) [. . .] + . . . =

ν(s)
0 (ε)

[
O

(
ε−2

)]
+ ν(s)

1 (ε)[. . .] + . . . (62)

If ν(s)
0 (ε) is of a higher order in ε than µ(s)

0 (ε) ε−2, the first domi-
nant boundary-layer equation is homogeneous and given by

d2α(s)
0

dz∗2
+

2 ne + 3
z∗

dα(s)
0

dz∗
+ α(s)

0 = 0. (63)

The equation admits of the solution that satisfies the requirement
that the divergence of the Lagrangian displacement must remain
finite at r = R

α(s)
0 (z∗) = A0,s z∗−(ne+1) Jne+1 (z∗) , (64)

where A0,s is a general constant.
Next, Eq. (18) can be brought in the form

ν(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2w(s)
0

dz∗2
+

3
z∗

dw(s)
0

dz∗

⎞⎟⎟⎟⎟⎟⎠ + O
(
ε−2

)⎤⎥⎥⎥⎥⎥⎦
+ν(s)

1 (ε) [. . .] + . . . =

µ(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣− 1
ε4

⎛⎜⎜⎜⎜⎜⎝2
gs

c2
s

1
z∗

dα(s)
0

dz∗
+ α(s)

0

⎞⎟⎟⎟⎟⎟⎠ + O
(
ε−2

)⎤⎥⎥⎥⎥⎥⎦
+µ(s)

1 (ε) [. . .] + . . . (65)

The second dominant boundary-layer equation is inhomoge-
neous when

ν(s)
0 (ε) = µ(s)

0 (ε), (66)

and takes the form

d2w(s)
0

dz∗2
+

3
z∗

dw(s)
0

dz∗
= −2

gs

c2
s

1
z∗

dα(s)
0

dz∗
− α(s)

0 . (67)

By subtracting the first dominant boundary-layer equation and
introducing the function

w∗0 (z∗) = w(s)
0 (z∗) − α(s)

0 (z∗) , (68)

one obtains the inhomogeneous differential equation

d2w∗0
dz∗2

+
3
z∗

dw∗0
dz∗
= 2

N2
s

gs

1
z∗

dα(s)
0

dz∗
· (69)

A general solution of it is given by

w∗0 (z∗) = C0,s z∗−2 + D0,s

−N2
s

gs

⎡⎢⎢⎢⎢⎢⎣z∗−2
∫ z∗

0
z′2

dα(s)
0 (z′)
dz′

dz′ − α(s)
0 (z∗)

⎤⎥⎥⎥⎥⎥⎦ , (70)

where C0,s and D0,s are general constants.
After partial integration and use of the recurrence relation

between Bessel functions

z′−ne Jne+1
(
z′
)
= − d

dz′
[
z′−ne Jne

(
z′
)]
, (71)

the solution becomes

w∗0 (z∗) = −2
N2

s

gs
A0,s z∗−(ne+2) Jne (z∗)

+C0,s z∗−2 + D0,s. (72)

By use of the second recurrence relation between Bessel
functions

Jne (z∗) =
dJne+1 (z∗)

dz∗
+

ne + 1
z∗

Jne+1 (z∗) , (73)

the solution can be rewritten as

w∗0 (z∗) = −α(s)
0 (z∗) 2

N2
s

gs

1
z∗2

[
d ln Jne+1 (z∗)

d ln z∗
+ (ne + 1)

]

+C0,s z∗−2 + D0,s. (74)

Finally, one gets

w(s)
0 (z∗) = α(s)

0 (z∗)
{

1 − 2
N2

s

gs

1
z∗2

[
d ln Jne+1 (z∗)

d ln z∗
+ (ne + 1)

]}

+C0,s z∗−2 + D0,s. (75)

By associating different functions ν(s)
0 (ε) with the particu-

lar solutions of the homogeneous part of Eq. (67), we write the
boundary-layer solutions in the more general form

α(s)(r; ε) = µ(s)
0 (ε) A0,s z∗−(ne+1) Jne+1 (z∗) ,

ξ(s)(r; ε) =
c2

s

gs
z

⎧⎪⎪⎨⎪⎪⎩α(s)(r; ε)
{

1 − 2
N2

s

gs

1
z∗2

[
d ln Jne+1 (z∗)

d ln z∗
+ (ne + 1)

]}

+ν(s,2)
0 (ε) C0,s z∗−2 + ν(s,3)

0 (ε) D0,s

⎫⎪⎪⎬⎪⎪⎭.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(76)
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The conditions for the matching of these boundary-layer so-
lutions to the asymptotic solutions valid at larger distances are
similar to Conditions (33) and (39).

Here it is convenient to introduce the fast variable τs(r) as

τs(r) ≡ τR − τ(r) =
1
ε

∫ z

0
K1/2

1

(
r′
)

dz′ (77)

with τR = τ(R). As z → 0, τs(r) = z∗, so that for the solu-
tion α(o)(r; ε), which is valid at larger distances from the singular
point and is given by the first Eq. (12), one has that

lim
z→0
α(o)(r; ε) = K5,s z−(ne+3/2)/2

×
[(

A∗0 cos τR + B∗0 sin τR

)
cos z∗

+
(
A∗0 sin τR − B∗0 cos τR

)
sin z∗

]
. (78)

On the other hand, for the boundary-layer solution α(s)(r; ε), one
observes that

lim
z→∞α

(s)(r; ε) = µ(s)
0 (ε) εne+3/2 A0,s

×
(

2
π

)1/2 (
2 K1/2

1,s

)−(ne+3/2)
z−(ne+3/2)/2

× sin

[
z∗ −

(
ne +

1
2

)
π

2

]
· (79)

The matching condition relative to the divergence of the
Lagrangian displacement is satisfied when

µ(s)
0 (ε) = ε−(ne+3/2) (80)

and

A∗0 = A0,s F

√
2
π

sin

[
τR −

(
ne +

1
2

)
π

2

]
,

B∗0 = −A0,s F

√
2
π

cos

[
τR −

(
ne +

1
2

)
π

2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(81)

with

F =
(
2 K1/2

1,s

)−(ne+3/2)
K−1

5,s . (82)

By the foregoing equalities, the oscillatory parts of the
functions ξ(s)(r; ε) and ξ(o)(r; ε) are also matched. The non-
oscillatory parts are matched when

D0,s = 0,

ν(s,2)
0 (ε) = ε−2, C0,s =

gs

c2
s

4 K1,s G0(R).

⎫⎪⎪⎬⎪⎪⎭ (83)

3.5. The eigenfrequency equation

The constants A∗0 and B∗0 appear in both Eqs. (52) and (81), which
result from the matchings of the boundary-layer solutions to the
solutions valid at larger distances. The elimination of these con-
stants leads to the system of two algebraic, linear, homogeneous
equations

B0,a

√
3√

πK1/4
1,a K5,a

cos
π

12

−A0,s F

√
2
π

sin

[
τR −

(
ne +

1
2

)
π

2

]
= 0,

B0,a

√
3√

πK1/4
1,a K5,a

sin
π

12

+A0,s F

√
2
π

cos

[
τR −

(
ne +

1
2

)
π

2

]
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(84)

The condition for the system of equations to admit of a non-
trivial solution for the constants B0,a and A0,s, is

cos

[
τR −

(
ne +

1
2

)
π

2
− π

12

]
= 0, (85)

so that the eigenfrequency equation is given by

τR −
(
ne +

1
2

)
π

2
− π

12
= (2 n − 1)

π

2
, n = 1, 2, 3, . . . (86)

or, more explicitly, by

τR ≡ [�(� + 1)]1/2

|σ|
∫ R

ra

(
N2(r)

r2

)1/2

dr

=

(
2 n + ne − 1

3

)
π

2
· (87)

We show below in Sect. 3.8 that the number n corresponds to the
radial order of the g+-mode as defined in the Cowling classifica-
tion of non-radial oscillations.

Eigenfrequency Eq. (86) corresponds to the eigenfrequency
equation derived by Willems et al. (1997). As already observed
by the latter authors, Eq. (A12) of Tassoul (1980) obtained in the
Cowling approximation agrees with the eigenfrequency equation
derived from the full fourth-order system of equations.

For any asymptotic eigenfrequency, a non-trivial solution for
the constants B0,a and A0,s exists. With this solution, the con-
stants A∗0 and B∗0 are fixed by means of Eqs. (52) or (81).

Thus far, all constants involved in the asymptotic solutions
have been determined, apart from the constant C0,s and the
two constants involved in the function G(o)

0 (r). In the next sec-
tion, we show that the constant C0,s is equal to zero. From
Eq. (48) and the third Eq. (83), it then follows that the func-
tion G(o)

0 (r) is identically zero.

3.6. The boundary condition at the surface

At r = R, Condition (10) relative to the Eulerian perturbation of
the gravitational potential Φ′(r) must be imposed. To this end,
we observe that, at any point, the Eulerian perturbation of the
gravitational potential and its first derivative are related to the
functions α(r) and ξ(r) as

Φ′ =
(
c2 α − g ξ

)
+ ε2 r2

�(� + 1)

[
1
r2

d
dr

(
r2 ξ

)
− α

]
,

dΦ′

dr
=

d
(
c2 α

)
dr

− N2

g
c2 α − g dξ

dr

+

(
2
g

r
− 4 πG ρ

)
ξ + ε2 ξ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(88)

From boundary-layer Solutions (76), one derives that the di-
vergence and the radial component of the Lagrangian displace-
ment at r = R are given by

αR = ε
−(ne+3/2) A0,s

2−(ne+1)

Γ (ne + 2)
,

ξR = −c2
s

gs

1
4 K1,s

×
[
ε−(ne−1/2) A0,s

2−(ne−1)

Γ (ne + 1)
N2

s

gs
−C0,s

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(89)



516 P. Smeyers and A. Moya: Higher-order g+-modes in stars with a convective core

and their first derivatives, by

(
dα
dr

)
R

= ε−(ne+7/2) A0,s
2−(ne+1)

Γ (ne + 3)
K1,s,(

dξ
dr

)
R

= −ε−(ne+3/2) A0,s
2−(ne+1)

Γ (ne + 2)

×c2
s

gs

(
N2

s

gs
+ 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(90)

In boundary Condition (10), terms involving the con-
stant A0,s as well as terms involving the constant C0,s appear.
The leading order in ε of the terms involving the constant A0,s is
− (ne + 3/2), while the terms involving the constant C0,s are of
the order ε0. The sum of the terms involving the constant A0,s that
are of the leading order turns out to be equal to zero, so that the
boundary condition is automatically satisfied by the boundary-
layer solution α(s)(r; ε) and the oscillatory part of the boundary-
layer solution ξ(s)(r; ε). For the boundary condition to be also
satisfied by the terms involving the constant C0,s, one must set

C0,s = 0. (91)

From the third Eq. (83), it then follows that

G(o)
0 (R) = 0. (92)

In combination with Eq. (48), it results that, in Solution (15) for
the function G(0)

0 (r),

C∗0 = 0 and D∗0 = 0, (93)

so that the function is identically zero at all points of the radiative
envelope. Hence, one arrives at the conclusion that the asymp-
totic solution for ξ(r), as well as the asymptotic solution for α(r),
is purely oscillatory in the whole radiative envelope.

The boundary-layer solutions α(s)(r; ε) and ξ(s)(r; ε) have op-
posite signs at r = R. This difference in sign results from the
fact that the radial component of the Lagrangian displacement
displays one node more than the divergence of the Lagrangian
displacement in the outermost layers of the radiative envelope,
while deeper in the envelope these two functions are related to
each other by the simple relation ξ(r) =

[
c2(r)/g(r)

]
α(r). We

refer to Sect. 3.8 for more details.

3.7. Uniformly valid asymptotic solutions

Since all constants involved in the various asymptotic solutions
have now been determined, uniformly valid asymptotic solutions
for the divergence and the radial component of the Lagrangian
displacement can be constructed in a final form. Uniformly valid
asymptotic solutions from the boundary between the convective
core and the radiative envelope and from the star’s surface are
given by the sum of the boundary-layer solution and the solution
valid at larger distances, minus the part common to both solu-
tions. We here present the uniformly valid asymptotic solutions
in terms of the constants B0,a and A0,s.

The asymptotic solutions that are uniformly valid from
the boundary between the convective core and the radiative

envelope to a distance sufficiently large from the star’s surface
take the form

α(a,u)(r; ε) = B0,a

⎡⎢⎢⎢⎢⎢⎣ε−1/2 √sa J−1/3

(
1
ε

2
3

√
K1,a s3/2

a

)

+

√
3√

πK1/4
1,a K5,a

K5(r) cos
(
τ − π

12

)

−
√

3√
πK1/4

1,a

1

s1/4
a

cos

(
1
ε

2
3

√
K1,a s3/2

a −
π

12

)⎤⎥⎥⎥⎥⎥⎦,
ξ(a,u)(r; ε) =

c2(r)
g(r)

α(a,u)(r; ε).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(94)

The uniformly valid asymptotic solution α(a,u)(r; ε) can be ex-
pressed in the compact form

α(a,u)(r; ε) = B0,a

√
3√

2 K1/4
1,a K5,a

K5(r) τ1/2 J−1/3(τ), (95)

which is similar to the form of the asymptotic solution given in
Willems et al. (1997).

Next, the asymptotic solutions for the divergence and the
radial component of the Lagrangian displacement that are uni-
formly valid from the star’s surface to a distance sufficiently
large from the boundary between the convective core and the
radiative envelope take the form

α(s,u)(r; ε) = A0,s

⎧⎪⎪⎨⎪⎪⎩ε−(ne+3/2) z∗−(ne+1) Jne+1 (z∗)

+F K5(r)

√
2
π

sin

[
τs −

(
ne +

1
2

)
π

2

]

−F K5,s z−(ne+3/2)/2

×
√

2
π

sin

[
1
ε

2 K1/2
1,s z1/2 −

(
ne +

1
2

)
π

2

]⎫⎪⎪⎬⎪⎪⎭,
ξ(s,u)(r; ε) = A0,s

⎧⎪⎪⎨⎪⎪⎩ε−(ne+3/2) c2
s

gs
z z∗−(ne+1) Jne+1 (z∗)

×
{

1 − 2
N2

s

gs

1
z∗2

[
d ln Jne+1 (z∗)

d ln z∗
+ (ne + 1)

]}

+F
c2(r)
g(r)

K5(r)

√
2
π

sin

[
τs −

(
ne +

1
2

)
π

2

]

−F
c2

s

gs
K5,s z−(ne−1/2)/2

×
√

2
π

sin

[
1
ε

2 K1/2
1,s z1/2 −

(
ne +

1
2

)
π

2

]⎫⎪⎪⎬⎪⎪⎭·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(96)

These uniformly valid asymptotic solutions can be expressed in
the compact forms

α(s,u)(r; ε) = A0,s F K5(r) τ1/2
s Jne+1 (τs) ,

ξ(s,u)(r; ε) =
c2(r)
g(r)

α(s,u)(r; ε)

×
{

1 − 2
N2

s

gs

1

τ2
s

[
d ln Jne+1 (τs)

d ln τs
+ (ne + 1)

]}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(97)

which are similar to the forms of the asymptotic solutions given
in Willems et al. (1997).

The orders in ε of the eigenfunctions α(r), ξ(r), and η(r),
respectively, in the adiabatic core, in the radiative envelope, and
at the surface are presented in Table 1.
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Table 1. The orders in ε of the divergence, the radial component, and
the transverse component of the Lagrangian displacement for different
regions in a star composed of a convective core in adiabatic equilibrium
and a radiative envelope.

Adiab. core Rad. envelope Surface

α(r) ε−1/6 ε0 ε−(ne+3/2)

ξ(r) ε−1/6 ε0 ε−(ne−1/2)

η(r) ε−1/6 ε−1 ε−(ne+3/2)

The order in ε of the Eulerian perturbation of the pressure,
P′(r), can be determined by means of the equation

P′(r) = ρ(r) g(r)

(
ξ(r) − c2(r)

g(r)
α(r)

)
. (98)

Since ξ(r) =
[
c2(r)/g(r)

]
α(r) in the adiabatic core and in the

radiative envelope, the lowest-order asymptotic approximation
of the Eulerian perturbation of the pressure is identically zero in
these regions. In the boundary layer near the surface, P′(r) is of
the order of ε−(ne−1/2).

Next, the order in ε of the Eulerian perturbation of the grav-
itational potential, Φ′(r), can be determined by means of the
equation

Φ′(r) = ε2 η(r) − P′(r)
ρ(r)
· (99)

Hence, in the adiabatic core, Φ′(r) is of the order of ε5/6, and in
the radiative envelope, of the order of ε. In the boundary layer
near the surface, Φ′(r) is given by a difference of two terms of
the same order, so that its lowest possible order is ε−(ne−1/2).

3.8. Identification of the radial order of a g+-mode

In accordance with Cowling’s classification of non-radial oscil-
lations of stars, the radial order of the g+-mode that is associ-
ated with a number n in eigenfrequency Eq. (87) corresponds to
the number of nodes the asymptotic solution for ξ(r) displays
between r = 0 and r = R. In the case of a star composed of
a convective core and a radiative envelope, all the nodes are sit-
uated in the radiative envelope. In order to count them, we start
from the asymptotic solution ξ(o)(r; ε), which is valid at distances
sufficiently large from the lower boundary of the radiative enve-
lope, and the star’s surface. We then examine to which extent the
nodes of the asymptotic solution ξ(o)(r; ε) can be connected with
those of the uniformly valid solutions ξ(a,u)(r; ε) and ξ(s,u)(r; ε).

First, by means of Eqs. (52), the asymptotic solution ξ(o)(r; ε)
can be transformed into

ξ(o)(r; ε) = B0,a

√
3√

πK1/4
1,a K5,a

c2(r)
g(r)

K5(r) cos
(
τ − π

12

)
, (100)

so that the positions of its nodes are given by

τ0 =

(
2 j − 5

6

)
π

2
, j = 1, 2, 3, . . . (101)

The node associated with j = 1 is located at τ0 = 1.83, while
the first node of the asymptotic solution ξ(a,u)(r; ε), which is uni-
formly valid from the turning point at r = ra, is determined by
the first zero of the Bessel function J−1/3(τ) and is situated at
τ = 1.87. Hence, the node of the asymptotic solution ξ(o)(r; ε)

Fig. 1. The functions H1 (τs) (thick line) and H2 (τs) (thin line) for
ne = 3.

that is associated with j = 1 can be related to the first node of
the uniformly valid solution ξ(a,u)(r; ε) counted from r = ra.

Next, by means of Eqs. (81), the asymptotic solution
ξ(o)(r; ε) can be transformed into

ξ(o)(r; ε) = A0,s F

√
2
π

c2(r)
g(r)

K5(r) sin

[
τs −

(
ne +

1
2

)
π

2

]
· (102)

We here consider the case ne = 3 as an example. The positions of
the nodes of the asymptotic solution ξ(o)(r; ε) are then given by

τ0
s =

(
2 k − 1

2

)
π

2
, k = 1, 2, 3, . . . (103)

In order to relate the nodes of the asymptotic solution ξ(o)(r; ε)
to those of the asymptotic solution ξ(s,u)(r; ε), which is uniformly
valid from r = R, we consider the parts of the solutions depend-
ing on the fast variable τs:

H1 (τs) = τ
1/2
s J4 (τs)

{
1 − 2

N2
s

gs

1

τ2
s

[
d ln J4 (τs)

d ln τs
+ 4

]}
,

for ξ(s,u)(r; ε), and

H2 (τs) =

√
2
π

sin

(
τs − 7π

4

)

for ξ(o)(r; ε). The functions H1 (τs) and H2 (τs) are represented
in Fig. 1 for Γ1,s = 5/3 and N2

s /gs = 3/5. It appears that the
node of the asymptotic solution ξ(o)(r; ε) that is associated with
k = 2 must be related to the first node of the asymptotic solution
ξ(s,u)(r; ε). The node associated with k = 2 is located at τ0

s (first) =
7 π/4 or, equivalently, at

τ0(last) = τR − τ0
s (first) =

(
2n − 5

6

)
π

2
·

Hence, according to Eq. (101), the last node counted from r = ra
is the nth node. The asymptotic solution for the radial component
of the Lagrangian displacement thus displays n nodes between
the lower boundary of the radiative envelope and the star’s sur-
face, so that the g+-mode considered has the radial order n.

The number of nodes of the asymptotic solution for the di-
vergence of the Lagrangian displacement can be determined in
a similar way. The nodes of the solution α(a,u)(r; ε), which is uni-
formly valid from r = ra, coincide with those of the uniformly
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Fig. 2. The functions H2 (τs) (thin line) and H3 (τs) (thick line) for
ne = 3.

valid solution ξ(a,u)(r; ε). In order to relate the nodes of the
asymptotic solution α(o)(r; ε) to those of the solution α(s,u)(r; ε),
which is uniformly valid from r = R, it is convenient to com-
pare the function H2 (τs) with the function H3 (τs) = τ

1/2
s J4 (τs).

From the representation of these functions in Fig. 2, it ap-
pears that the node of the asymptotic solution α(o)(r; ε) that
is associated with k = 3 must be related to the first node of
the uniformly valid solution α(s,u)(r; ε). Consequently, compared
with the asymptotic solution for the radial component of the
Lagrangian displacement, the asymptotic solution for the diver-
gence of the Lagrangian displacement displays one node less,
i.e. only (n − 1) nodes, between the lower boundary of the ra-
diative envelope and the star’s surface. The additional node of
the radial component is located close to the star’s surface at the
point whose coordinate τs is solution of the equation

1 − 2
N2

s

gs

1

τ2
s

[
d ln J4 (τs)

d ln τs
+ 4

]
= 0.

4. Stars consisting of a convective core, a radiative
zone, and a convective envelope

For stars consisting of a convective core, an intermediate radia-
tive zone, and a convective envelope, a second turning point ap-
pears in Eq. (3) at the point r = rb corresponding to the radial
distance of the boundary between the radiative zone and the con-
vective envelope. The asymptotic solutions constructed in the
previous section for a star composed of a convective core and
a radiative envelope remain valid, except those constructed from
the surface of the radiative envelope.

In this section, we start constructing boundary-layer solu-
tions on the inner side of the boundary between the radiative
zone and the convective envelope, and match them to the asymp-
totic solutions valid at larger distances from the boundaries of
the radiative zone.

Then we turn to the construction of asymptotic solutions in
the convective envelope. Here we successively construct two-
variable solutions in the central part of the envelope, boundary-
layer solutions near the boundary between the radiative zone and
the convective envelope, and boundary-layer solutions near the
star’s surface.

Next, we derive the eigenfrequency equation, impose
the condition relative to the Eulerian perturbation of the

gravitational potential at the star’s surface, and construct uni-
formly valid asymptotic solutions.

Finally, we determine the radial order of the g+-mode asso-
ciated with a given eigenfrequency in the case in which the slope
of the Brunt-Väisälä is continuous at the boundary beween the
intermediate radiative zone and the convective envelope.

4.1. Boundary-layer solutions on the inner side
of the boundary between the radiative zone
and the convective envelope

On the inner side of the boundary between the radiative zone and
the convective envelope, the use of the coordinate sb = rb − r is
convenient. When the coefficients of Eqs. (17) and (18) behave
similarly as on the outer side of the turning point at r = ra, it
formally suffices to replace the subscript a by the subscript b in
Taylor Expansions (19) to get the appropriate Taylor expansions.

Proceeding as in Sect. 3.2, we introduce the boundary-layer
coordinate

s∗b(r) =
sb(r)
ε2/3

(104)

and derive the boundary-layer solutions

α(b)(r; ε) = µ(b)
0 (ε)

√
s∗b

⎡⎢⎢⎢⎢⎢⎣A0,b J1/3

(
2
3

√
K1,b s∗3/2b

)

+B0,b J−1/3

(
2
3

√
K1,b s∗3/2b

)⎤⎥⎥⎥⎥⎥⎦,
ξ(b)(r; ε) =

c2 (rb)
g (rb)

⎡⎢⎢⎢⎢⎢⎣α(b)(r; ε)

+ν(b,2)
0 (ε) C0,b s∗b + ν

(b,3)
0 (ε) D0,b

⎤⎥⎥⎥⎥⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(105)

where A0,b, B0,b, C0,b, D0,b are general constants, and µ(b)
0 (ε),

ν(b,2)
0 (ε), ν(b,3)

0 (ε) yet undetermined functions.
For the matching of the boundary-layer solution α(b)(r; ε) to

the asymptotic solution α(o)(r; ε) valid at larger distances from
the turning point, we observe that, as sb → 0, the fast vari-
able τ(r) defined by Eq. (11) behaves as

τ(r) = τRad − 1
ε

2
3

√
K1,b s3/2

b (106)

with

τRad =
1
ε

∫ rb

ra

K1/2
1

(
r′
)

dr′, (107)

so that

lim
sb→0
α(o)(r, ε) =

K5,b

s1/4
b

⎡⎢⎢⎢⎢⎢⎣A∗0 cos

(
τRad − 1

ε

2
3

√
K1,b s3/2

b

)

+B∗0 sin

(
τRad − 1

ε

2
3

√
K1,b s3/2

b

)⎤⎥⎥⎥⎥⎥⎦. (108)

On the other hand, for sb → ∞, one has that

lim
sb→∞

α(b)(r; ε) = µ(b)
0 (ε) ε1/6

√
3√
πK1/4

1,b

1

s1/4
b

×
⎡⎢⎢⎢⎢⎢⎣A0,b sin

(
1
ε

2
3

√
K1,b s3/2

b +
π

12

)

+B0,b cos

(
1
ε

2
3

√
K1,b s3/2

b −
π

12

)⎤⎥⎥⎥⎥⎥⎦· (109)
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The matching relative to the divergence of the Lagrangian
displacement then leads to

µ(b)
0 (ε) = ε−1/6 (110)

and

A∗0 =
√

3√
πK1/4

1,b K5,b

⎡⎢⎢⎢⎢⎢⎣A0,b sin
(
τRad +

π

12

)

+B0,b cos
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦,
B∗0 = −

√
3√

πK1/4
1,b K5,b

⎡⎢⎢⎢⎢⎢⎣A0,b cos
(
τRad +

π

12

)

−B0,b sin
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(111)

Moreover, the matching relative to the non-oscillatory parts
in the radial component of the Lagrangian displacement leads to

C0,b = 0,

ν(b,3)
0 (ε) = ε0, D0,b =

g (rb)
c2 (rb)

G(o)
0 (rb) .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (112)

At the turning point at r = rb, the divergence of the
Lagrangian displacement, and the radial component of the
Lagrangian displacement and its first derivative have the values

α(b) (rb; ε) = ε−1/6 31/3

Γ(2/3) K1/6
1,b

B0,b

ξ(b) (rb; ε) =
c2 (rb)
g (rb)

α(b) (rb; ε) +G(o)
0 (rb) ,

(
dξ(b)(r; ε)

dr

)
r=rb

= −ε−5/6
37/6 Γ(2/3) K1/6

1,b

2 π
c2 (rb)
g (rb)

A0,b.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(113)

So far the two general constants A∗0 and B∗0, which appear
in the two-variable solutions α(o)(r, ε) and ξ(o)(r, ε) given by
Eqs. (12) and valid in the radiative zone at larger distances from
its boundaries, are related to the constant B0,a by Eqs. (52), and to
the two constants A0,b, and B0,b by Eqs. (111). From the asymp-
totic solutions in the convective envelope, which are constructed
hereafter, it will result that the two constants A0,b, and B0,b are re-
lated to a single constant denoted as B0,c. Therefore, Eqs. (111)
will be replaced by two equations that relate the constants A∗0
and B∗0 to the new constant B0,c (see Sect. 4.2.4).

4.2. Asymptotic solutions in the convective envelope

Since N2 < 0 in the convective envelope, we replace the co-
efficient of the term with the large parameter in Eq. (3) by the
positive coefficient

K′1(r) ≡ −K1(r) = −�(� + 1)
N2

r2
. (114)

With this modification, Eqs. (3) and (4) become

d2α

dr2
+ K2(r)

dα
dr

+

[
−K′1(r)

ε2
+ K3(r) +

ε2

c2(r)

]
α = −K4(r)

dξ
dr
,

d2ξ

dr2
+

4
r

dξ
dr
− �(� + 1) − 2

r2
ξ =

dα
dr
+

[
c2(r)
g(r)

K′1(r)

ε2
+

2
r

]
α.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(115)

4.2.1. Asymptotic solutions valid in the convective envelope
at larger distances from its boundaries

For the construction of asymptotic solutions valid in the con-
vective envelope at larger distances from the boundaries, we use
a two-variable expansion procedure similar to that applied for
a radiative envelope in Sect. 3.1. We still adopt the radial coor-
dinate r as the slow variable but define the fast variable as

τe(r) =
1
ε

∫ r

rb

K′1/21

(
r′

)
dr′. (116)

In terms of these variables, the asymptotic solutions for the
divergence and the radial component of the Lagrangian displace-
ment take the form

α(e)(r; ε) = µ(e)
0 (ε) K′5(r)

[
A∗∗0 exp τe + B∗∗0 exp (−τe)

]
,

ξ(e)(r; ε) =
c2(r)
g(r)

α(e)(r; ε) + µ(e)
0 (ε) G(e)

0 (r),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (117)

where the function K′5(r) is defined as

K′5(r) = g(r)
[
−N2(r) r6 c8(r) ρ2(r)

]−1/4
. (118)

The function G(e)
0 (r) is the general solution of Clairaut’s second-

order differential equation

G(e)
0 (r) = C∗∗0 y1(r) + D∗∗0 y2(r). (119)

We let the particular solutions y1(r) and y2(r) correspond to those
appearing in Solution (15) for G(o)

0 (r). The function µ(e)
0 (ε) is yet

undetermined, and A∗∗0 , B∗∗0 , C∗∗0 , D∗∗0 are general constants.
The main differences between asymptotic Solutions (117)

valid in a convective envelope and asymptotic Solutions (12)
valid in a radiative envelope are that the trigonometric functions
of the fast variable τ(r) are replaced by exponential functions of
the fast variable τe(r), and that the function K5(r) is replaced by
the function K′5(r).

To asymptotic Solutions (117), boundary-layer solutions
valid respectively near the upper boundary of the radiative zone
and near the star’s surface must be matched.

4.2.2. Boundary-layer solutions on the outer side
of the boundary between the radiative zone
and the convective envelope

We allow for the possibility that the first derivative of the square
of the Brunt-Väisälä frequency is not continuous at the bound-
ary between the radiative zone and the convective envelope.
Therefore, on the outer side of this boundary, we use Taylor se-
ries of the form

ρ(r) =ρ (rb) [1 + O (sc)] ,
g(r) =g (rb) [1 + O (sc)] ,
c(r) =c (rb) [1 + O (sc)] ,
N2(r)=N2

c sc [1 + O (sc)] ,

K′1(r)=−�(� + 1)

r2
b

N2
c sc [1 + O (sc)] ,

≡K′1,c sc [1 + O (sc)] ,
K2(r)=K2,c [1 + O (sc)] ,
K3(r)=K3,c [1 + O (sc)] ,
K4(r)=K4,c [1 + O (sc)] ,
K′5(r)=K′5,c s−1/4

c [1 + O (sc)] ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(120)

with sc(r) = r − rb. For the sake of clearness, the coefficient N2
c

in the Taylor series of N2(r) may be different from the coeffi-
cient N2

b , which appears in the Taylor series of N2(r) valid on
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the inner side of the boundary between the radiative zone and
the convective envelope

The boundary-layer solutions can be constructed in a way
similar to that followed in Sect. 3.2, but they now involve modi-
fied Bessel functions I and K instead of Bessel functions of the
first kind. In terms of the boundary-layer coordinate

s∗c(r) =
sc(r)
ε2/3
, (121)

the boundary-layer solutions can be written as

α(c)(r; ε) = µ(c)
0 (ε)

√
s∗c

⎡⎢⎢⎢⎢⎢⎣A0,c I1/3

(
2
3

√
K′1,c s∗3/2c

)

+B0,c K1/3

(
2
3

√
K′1,c s∗3/2c

)⎤⎥⎥⎥⎥⎥⎦,
ξ(c)(r; ε) =

c2 (rb)
g (rb)

⎡⎢⎢⎢⎢⎢⎣α(c)(r; ε)

+ν(c,2)
0 (ε) C0,c s∗c + ν

(c,3)
0 (ε) D0,c

⎤⎥⎥⎥⎥⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(122)

where µ(c)
0 (ε), ν(c,2)

0 (ε), ν(c,3)
0 (ε) are yet undetermined functions,

and A0,c, B0,c, C0,c, D0,c general constants.
The boundary-layer solutions α(c)(r; ε) and ξ(c)(r; ε) are

matched to the asymptotic solutions α(e)(r; ε) and ξ(e)(r; ε) valid
at larger distances in the convective envelope.

The matching relative to the divergence of the Lagrangian
displacement leads to

µ(e)
0 (ε) = ε1/6 µ(c)

0 (ε) (123)

and

A0,c =
2
√
π√

3
K′1/41,c K′5,c A∗∗0 ,

B0,c =
2√
3 π

K′1/41,c K′5,c B∗∗0 ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(124)

and the matching relative to the non-oscillatory parts in the radial
component of the Lagrangian displacement, to

C0,c = 0,

ν(c,3)
0 (ε) = µ(e)

0 (ε), D0,c =
g (rb)

c2 (rb)
G(e)

0 (rb) .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (125)

At the turning point at r = rb, the divergence of the
Lagrangian displacement, and the radial component of the
Lagrangian displacement and its first derivative have the values

α(c) (rb; ε) = µ(c)
0 (ε)

3−1/6 π

Γ(2/3) K′1/61,c

B0,c,

ξ(c) (rb; ε) =
c2 (rb)
g (rb)

α(c) (rb; ε) + ν(c,3)
0 (ε) G(e)

0 (rb) ,(
dξ(c)(r; ε)

dr

)
rb

= µ(c)
0 (ε) ε−2/3 37/6 Γ(2/3)

2 π

K′1/61,c

c2 (rb)
g (rb)

(
A0,c − π√

3
B0,c

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(126)

The continuity of the Lagrangian displacement and the
Lagrangian perturbation of the pressure at the boundary between
the radiative zone and the convective envelope requires that the
divergence, the radial component, and the first derivative of the
radial component of the Lagrangian displacement be continuous

at r = rb. On the grounds of Equalities (113) and (126), it results
that

µ(c)
0 (ε) = ε−1/6,

B0,b =
π√
3

⎛⎜⎜⎜⎜⎝ K1,b

K′1,c

⎞⎟⎟⎟⎟⎠
1/6

B0,c,

G(e)
0 (rb) = G(o)

0 (rb) ,

A0,b = −
( K′1,c

K1,b

)1/6 (
A0,c − π√

3
B0,c

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(127)

The constant B0,b is related to the constant B0,c, and the con-
stant A0,b to the constants A0,c and B0,c. Hereafter, it will result
from the matching of the boundary-layer solutions valid near
the surface that the constant A0,c is equal to zero, so that con-
stants A0,b and B0,b will just be related to constant B0,c.

From the combination of the first Eqs. (127) with (123), it
follows that

µ(e)
0 (ε) = ε0. (128)

4.2.3. Boundary-layer solutions near the surface

For the construction of boundary-layer solutions near the surface
of a star with a convective envelope, we proceed in a similar way
as for that of boundary-layer solutions near the surface of a star
with a radiative envelope.

We now introduce the boundary-layer coordinate

z∗e(z) =
1
ε

2 K′1/21,s z1/2. (129)

The first dominant boundary-layer equation is

d2α(s)
0

dz∗2e
+

2 ne + 3
z∗e

dα(s)
0

dz∗e
− α(s)

0 = 0 (130)

and admits of the solution that remains finite at r = R

α(s)
0

(
z∗e

)
= A0,s z∗−(ne+1)

e Ine+1
(
z∗e

)
, (131)

where A0,s is a general constant.
The second dominant boundary-layer equation is

d2w(s)
0

dz∗2e
+

3
z∗e

dw(s)
0

dz∗e
= −2

gs

c2
s

1
z∗e

dα(s)
0

dz∗e
+ α(s)

0 . (132)

By subtracting the first dominant boundary-layer equation and
introducing the function

w∗0
(
z∗e

)
= w(s)

0

(
z∗e

) − α(s)
0

(
z∗e

)
, (133)

one obtains an inhomogeneous differential equation of the
same form as Eq. (69), with a solution of the same form as
Solution (70). The integral in the solution is transformed by par-
tial integration and use of a recurrence relation between modified
Bessel functions I, so that

w∗0
(
z∗e

)
= 2 A0,s

N2
s

gs
z∗−(ne+2)

e Ine

(
z∗e

)
+C0,s z∗−2

e + D0,s. (134)

By the use of a second recurrence relation between modified
Bessel functions I, the solution is transformed into

w∗0
(
z∗e

)
= α(s)

0

(
z∗e

)
2

N2
s

gs

1

z∗2e

[
d ln Ine+1

(
z∗e

)
d ln z∗e

+ (ne + 1)

]

+C0,s z∗−2
e + D0,s. (135)
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Consequently, the boundary-layer solution for w(s)
0

(
z∗e

)
is

given by

w(s)
0

(
z∗e

)
= α(s)

0

(
z∗e

) {
1 + 2

N2
s

gs

1

z∗2e

[
d ln Ine+1

(
z∗e

)
d ln z∗e

+ (ne + 1)

]}

+C0,s z∗−2
e + D0,s. (136)

The boundary-layer solutions for the divergence and the ra-
dial component of the Lagrangian displacement can then be writ-
ten in the more general form

α(s)(r; ε) = µ(s)
0 (ε) A0,s z∗−(ne+1)

e Ine+1
(
z∗e

)
,

ξ(s)(r; ε) =
c2

s

gs
z

⎧⎪⎪⎨⎪⎪⎩α(s)(r; ε)

×
{

1 + 2
N2

s

gs

1

z∗2e

[
d ln Ine+1

(
z∗e

)
d ln z∗e

+ (ne + 1)

]}

+ν(s,2)
0 (ε) C0,s z∗−2

e + ν(s,3)
0 (ε) D0,s

⎫⎪⎪⎬⎪⎪⎭,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(137)

where µ(s)
0 (ε), ν(s,2)

0 (ε), ν(s,3)
0 (ε) are yet undetermined functions.

The matching relative to the divergence of the Lagrangian
displacement leads to

µ(s)
0 (ε) = ε−(ne+3/2) (138)

and

A∗∗0 = 0,

B∗∗0 = A0,s
exp [τe(R)]

√
2 π

(
2 K′1/21,s

)ne+3/2
K′5,s
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (139)

and the matching relative to the non-oscillatory parts in the radial
component of the Lagrangian displacement, to

D0,s = 0,

ν(s,2)
0 (ε) = ε−2 µ(e)

0 (ε),

C0,s =
gs

c2
s

4 K′1,s G(e)
0 (R).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(140)

4.2.4. Main result of the construction of asymptotic solutions
in the convective envelope

According to Eqs. (124) and (139), it follows from the construc-
tion of the asymptotic solutions in the convective envelope that

A0,c = 0, (141)

so that the last Eq. (127) reduces to

A0,b =
π√
3

( K′1,c
K1,b

)1/6

B0,c. (142)

By this equation and one of Eqs. (127), the constants A0,b and
B0,b are now related to the single constant B0,c.

For the sake of simplification of notation, we introduce the
quantity

K =
K′1,c
K1,b
· (143)

One then has that

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[
dK′1(r)/dsc

]
rh

[dK1(r)/dsb]lh

⎤⎥⎥⎥⎥⎥⎥⎥⎦
r=rb

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
dN2/dr

)
rh(

dN2/dr
)
lh

⎤⎥⎥⎥⎥⎥⎥⎥⎦
r=rb

· (144)

Hence, K is equal to the ratio of the right-hand first derivative
of N2(r) to the left-hand first derivative of N2(r), considered at
r = rb. It may be noted that K is a positive quantity.

Equations (111) can then be brought in the form

A∗0 = B0,c

√
π

K1/4
1,b K5,b

⎡⎢⎢⎢⎢⎢⎣K1/6 sin
(
τRad +

π

12

)

+K−1/6 cos
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦,
B∗0 = −B0,c

√
π

K1/4
1,b K5,b

⎡⎢⎢⎢⎢⎢⎣K1/6 cos
(
τRad +

π

12

)

−K−1/6 sin
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(145)

4.3. The eigenfrequency equation

Elimination of the constants A0∗ and B∗0 from the foregoing
equations and Eqs. (52) leads to the system of two algebraic,
linear, homogeneous equations

B0,a

√
3√

πK1/4
1,a K5,a

cos
π

12

−B0,c

√
π

K1/4
1,b K5,b

⎡⎢⎢⎢⎢⎢⎣K1/6 sin
(
τRad +

π

12

)

+K−1/6 cos
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦ = 0,

B0,a

√
3√

πK1/4
1,a K5,a

sin
π

12

+B0,c

√
π

K1/4
1,b K5,b

⎡⎢⎢⎢⎢⎢⎣K1/6 cos
(
τRad +

π

12

)

−K−1/6 sin
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(146)

The necessary and sufficient condition for the system of
equations to admit of a non-trivial solution for the constants B0,a
and B0,c yields the eigenfrequency equation

⎡⎢⎢⎢⎢⎢⎣K1/6 cos
(
τRad +

π

12

)
− K−1/6 sin

(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦ cos
π

12

+

⎡⎢⎢⎢⎢⎢⎣K1/6 sin
(
τRad +

π

12

)

+K−1/6 cos
(
τRad − π12

)⎤⎥⎥⎥⎥⎥⎦ sin
π

12
= 0. (147)

In the supposition that K � 0, the eigenfrequency equation
can be transformed into

cos (τRad) − K−1/3 sin
(
τRad − π6

)
= 0. (148)

Next, proceeding as Tassoul (1980, Appendix), we set

K−1/3 =
sin (π/6 − θ2)
sin (π/6 + θ2)

, (149)
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so that the eigenfrequency equation can be written as

τRad ≡ [�(� + 1)]1/2

|σ|
∫ rb

ra

(
N2(r)

r2

)1/2

dr

=

(
2 n − 4

3

)
π

2
+ θ2, (150)

where θ2 can be expressed in terms of K as

θ2 = −π6 + arctan
2 K1/3 cosπ/6

2 + K1/3
· (151)

In the particular case in which the slope of N2 is continuous
at the turning point at r = rb, K′1,c = K1,b, so that θ2 = 0. For this
case, we show below in Sect. 4.6 that n corresponds to the radial
order of the g+-mode.

Eigenfrequency Eq. (A.13) of Tassoul (1980), which has
been derived in the Cowling approximation, agrees with our
Eq. (150), when, in that equation, θ1 is set equal to π/6 be-
cause of the adiabatic equilibrium adopted in the convective core
(see Tassoul’s comment above her Eq. (A9)), and κ is replaced
by n − 1.

4.4. The boundary condition at the surface

In order to impose boundary Condition (10) relative to the
Eulerian perturbation of the gravitational potential at r = R, we
again use Eqs. (88). The divergence and the radial component of
the Lagrangian displacement at r = R are given by

αR = ε
−(ne+3/2) A0,s

2−(ne+1)

Γ (ne + 2)
,

ξR =
c2

s

gs

1
4 K′1,s

⎡⎢⎢⎢⎢⎢⎣ε−(ne−1/2) A0,s
2−(ne−1)

Γ (ne + 1)
N2

s

gs

+µ(e)
0 (ε) C0,s

⎤⎥⎥⎥⎥⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(152)

and their first derivatives, by
(

dα
dr

)
R

= −ε−(ne+7/2) A0,s
2−(ne+1)

Γ (ne + 3)
K′1,s,(

dξ
dr

)
R

= −ε−(ne+3/2) A0,s
2−(ne+1)

Γ (ne + 2)

×c2
s

gs

(
N2

s

gs
+ 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(153)

As in the case of a star with a radiative envelope, the bound-
ary condition is automatically satisfied by the boundary-layer so-
lution α(s)(r; ε) and the oscillatory part of the boundary-layer so-
lution ξ(s)(r; ε). The terms involving the non-oscillatory part of
the boundary-layer solution ξ(s)(r; ε) are of the order of ε0. For
the boundary condition to be satisfied also for these terms, one
must set

C0,s = 0. (154)

From the third Eq. (140), it then follows that

G(e)
0 (R) = 0. (155)

This equation, Eq. (48), and the third Eq. (127) generally imply
that

G(o)
0 (r) ≡ 0, G(e)

0 (r) ≡ 0, (156)

so that

C∗0 = 0, D∗0 = 0, C∗∗0 = 0, D∗∗0 = 0. (157)

As well as in the case of a star with a radiative envelope,
the boundary-layer solutions α(s)(r; ε) and ξ(s)(r; ε) have oppo-
site signs at the surface of a star with a convective envelope.

4.5. Uniformly valid asymptotic solutions

Since all constants involved in the asymptotic solutions are now
fixed, the uniformly valid asymptotic solutions for the diver-
gence and the radial component of the Lagrangian displacement
can be presented in final forms:

1. the uniformly valid solutions α(a,u)(r; ε) and ξ(a,u)(r; ε) given
by Eqs. (94) remain uniformly valid in the intermediate ra-
diative zone, from the upper boundary of the convective core
to a distance sufficiently large from the lower boundary of
the convective envelope;

2. the asymptotic solutions that are uniformly valid in the in-
termediate radiative zone, from the lower boundary of the
convective envelope to a distance sufficiently large from the
upper boundary of the convective core, can be expressed in
the compact form

α(b,u)(r; ε) = B0,c
π√

2 K1/4
1,b K5,b

K5(r)

τ1/2
b

[
K1/6 J1/3 (τb) + K−1/6 J−1/3 (τb)

]
,

ξ(b,u)(r; ε) =
c2(r)
g(r)

α(b,u)(r; ε),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(158)

with τb = τRad − τ;
3. the asymptotic solutions that are uniformly valid in the con-

vective envelope, from the upper boundary of the radiative
zone to a distance sufficiently large from the star’s surface,
can be expressed in the compact form

α(c,u)(r; ε) = B0,c

√
3√

2 K′1/41,c K′5,c
K′5(r) τ1/2

e K1/3 (τe) ,

ξ(c,u)(r; ε) =
c2(r)
g(r)

α(c,u)(r; ε);

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(159)

4. the asymptotic solutions that are uniformly valid in the con-
vective envelope, from the star’s surface to a distance suffi-
ciently large distance from the lower boundary of the enve-
lope, can be expressed in the compact form

α(s,u)(r; ε) = B0,c

×
√

3 π exp [−τe(R)]√
2 K′1/41,c K′5,c

K′5(r) τ1/2
s Ine+1 (τs) ,

ξ(s,u)(r; ε) =
c2(r)
g(r)

α(s,u)(r; ε)

⎧⎪⎪⎨⎪⎪⎩1

+2
N2

s

gs

1

τ2
s

[
d ln Ine+1 (τs)

d ln τs
+ (ne + 1)

]⎫⎪⎪⎬⎪⎪⎭,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(160)

with τs = τe(R) − τe.
The orders in ε of the eigenfunctions α(r), ξ(r), and η(r) in

various regions of the star are presented in Table 2. The orders
in ε of the eigenfunctions P′(r) and Φ′(r) in the corresponding
regions can be determined in the same way as for a star with
a radiative envelope.
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Table 2. The orders in ε of the divergence, the radial component, and
the transverse component of the Lagrangian displacement for different
regions in a star composed of a convective core in adiabatic equilibrium,
a radiative zone, and a convective envelope.

Conv. Rad. Boundary Conv. Surface
core zone env.

α(r) ε−1/6 ε0 ε−1/6 ε0 ε−(ne+3/2)

ξ(r) ε−1/6 ε0 ε−1/6 ε0 ε−(ne−1/2)

η(r) ε−1/6 ε−1 ε−5/6 ε−1 ε−(ne+3/2)

4.6. Identification of the radial order of a g+-mode

From the uniformly valid asymptotic solutions given by
Eqs. (94) and (158), it results that the nodes of the asymptotic
solutions for α(r) and ξ(r) coincide in the intermediate radiative
zone, so that these solutions have the same number of nodes in
the zone considered. The approximate positions of the nodes are
still given by Eq. (101).

In order to determine the approximate position of the last
node, we transform asymptotic solution ξ(o)(r; ε) by means of
Eqs. (145). The solution then becomes

ξ(o)(r; ε) = B0,c

√
π

K1/4
1,b K5,b

c2(r)
g(r)

K5(r)

×
[
K1/6 sin

(
τb +

π

12

)
+ K−1/6 cos

(
τb − π12

)]
· (161)

When the slope of N2 is continuous at the upper boundary of the
intermediate radiative zone, K = 1, and the asymptotic solution
reduces to

ξ(o)(r; ε) = B0,c

√
π

K1/4
1,b K5,b

c2(r)
g(r)

K5(r)

×2 cos
π

6
cos

(
τb − π4

)
(162)

and has nodes at

τ0
b =

(
2 k − 1

2

)
π

2
, k = 1, 2, 3, . . . (163)

The node associated with k = 1 is located at τ0
b = 3 π/4

and is related to the first node of the uniformly valid solutions
α(b,u)(r; ε) and ξ(b,u)(r; ε) counted from the boundary between the
radiative zone and the convective envelope. The position of the
last node of the asymptotic solutions for α(r) and ξ(r) counted
from the boundary between the convective core and the radiative
zone is then, in terms of the fast variable τ(r),

τ0(last) = τRad − τ0
b(first) =

[
2(n − 1) − 5

6

]
π

2
·

In accordance with Eq. (101), the last node is associated with
j = n−1. Consequently, both the divergence and the radial com-
ponent of the Lagrangian displacement display n−1 nodes in the
intermediate radiative zone.

The fact that the divergence and the radial component of the
Lagrangian displacement have opposite signs at r = R indicates
that at least one additional node appears in one of the asymptotic
solutions valid in the convective envelope. From the asymptotic
solutions α(s,u)(r; ε) and ξ(s,u)(r; ε), which are uniformly valid
from the surface to a distance sufficiently large from the bound-
ary between the radiative zone and the convective envelope, it

Fig. 3. The functions H4 (τs) (thin line) and H5 (τs) (thick line) for
ne = 1 and Γ1 = 5/3.

results that the radial component of the Lagrangian displace-
ment displays an additional node in the convective envelope at
the point at which

1 + 2
N2

s

gs

1

τ2
s

[
d ln Ine+1 (τs)

d ln τs
+ (ne + 1)

]
= 0.

In illustration, the parts of the uniformly valid asymptotic solu-
tions α(s,u)(r; ε) and ξ(s,u)(r; ε) that depend on the fast variable τs,
respectively

H4 (τs) = τ1/2
s I2 (τs)

and

H5 (τs) = H4 (τs)

{
1 + 2

N2
s

gs

1

τ2
s

[
d ln I2 (τs)

d ln τs
+ 2

]}
,

are represented in Fig. 3 for ne = 1 and Γ1 = 5/3.

5. Concluding remarks

We have developed a first-order asymptotic theory for low-
degree, higher-order g+-modes in stars with a convective core.
We considered stars containing a radiative envelope as well as
stars containing an intermediate radiative zone and a convective
envelope. In both cases, we regarded the convective core to be in
adiabatic equilibrium.

We started from the fourth-order system of differential equa-
tions in the divergence α(r) and the radial component ξ(r) of
the Lagrangian displacement that stems from Pekeris (1938). To
this system, we applied two-variable expansion procedures in
the central parts of the radiative and the convective regions, and
boundary-layer theory near the boundary and the turning points.
The two methods are commonly presented for single second-
order differential equations, but we extended their application
to the fourth-order system of differential equations considered.
In contrast with Willems et al. (1997), we no longer adopted
boundary-layer variables that correspond to the fast variable
used at larger distances from the boundary or singular point.

At the boundaries between a radiative and a convective re-
gion, we imposed the continuity of the divergence, the radial
component, and the first derivative of the radial component of the
Lagrangian displacement, in order to ensure that the Lagrangian



524 P. Smeyers and A. Moya: Higher-order g+-modes in stars with a convective core

displacement and the Lagrangian perturbation of pressure be
continuous there.

The system of differential equations in the divergence α(r)
and the radial component ξ(r) of the Lagrangian displacement
is particularly appropriate for the development of the asymptotic
theory, since, in the various regions of a star, the lowest-order
asymptotic approximation of α(r) is solution of a homogeneous
second-order differential equation. The lowest-order asymptotic
approximation of ξ(r), is subsequently obtained as solution of
an inhomogeneous second-order differential equation, which in-
volves the lowest-order asymptotic approximation of α(r) in
its inhomogeneous part. Consequently, the divergence of the
Lagrangian displacement plays a basic role in the development
of the asymptotic theory, as it does in the asymptotic theory for
higher-order p-modes.

In the central parts of the radiative zones, differential Eq. (3)
is formally comparable with a second-order differential equation
that governs a linear oscillator of constant frequency and small
damping. Consequently, in these zones, the eigenfunctions α(r)
and ξ(r) are given by trigonometric functions of a fast radial vari-
able, whose amplitudes are slowly modulated in terms of the ra-
dial coordinate r.

Our asymptotic approach shows that different eigenfunctions
may be of different orders in the small expansion parameter ε in
a given region of a star, and that the order of an eigenfunction
may vary from one region to another.

The eigenfrequency equations are given by Eqs. (87)
and (150). We have verified in two cases that the number n cor-
responds to the radial order of the g+-mode: in Eq. (87) when
ne = 3, and in Eq. (150) when the slope of N2 is continuous
at the boundary between the intermediate radiative zone and the
convective envelope.

In accordance with Cowling’s classification of non-radial
oscillations of stars, the asymptotic eigenfunction for ξ(r) of
a g+-mode of radial order n displays n nodes between r = 0
and r = R. On its side, the asymptotic eigenfunction α(r) dis-
plays one node less. In stars with a radiative envelope, the nodes
are situated in the radiative envelope, while in stars with a con-
vective envelope, they are situated in the intermediate radiative
zone, apart from the last node of ξ(r), which is situated in the
convective envelope.

For a star containing a convective envelope, the number κ
that appears in Eq. (A.13) of Tassoul (1980) corresponds to the
number of nodes displayed by the asymptotic eigenfunction ξ(r)
in the intermediate radiative zone, and not to the total number
of nodes displayed by that function between r = 0 and r = R.
Therefore, the number κ corresponds to the radial order of the
g+-mode minus one.

In the whole star, with the exception of the small bound-
ary layer near the surface, the asymptotic eigenfunction ξ(r)
is related to the asymptotic eigenfunction α(r) as ξ(r) =[
c2(r)/g(r)

]
α(r). This relation implies that the Eulerian pertur-

bation of the pressure is identically zero, that the asymptotic
eigenfunctions α(r) and ξ(r) have the same sign, and that the
first n − 1 nodes of the asymptotic eigenfunction ξ(r) coincide
with the n− 1 nodes of the asymptotic eigenfunction α(r). Since
the two eigenfunctions have the same sign, the mass elements
are subject to a dilation [α(r) > 0] in regions in which ξ(r) > 0,
and to a contraction [α(r) < 0] in regions in which ξ(r) < 0.

Near the surface, the eigenfunctionsα(r) and ξ(r) have oppo-
site signs, as follows from Eqs. (89) and (152). Hence, there the
ratio of the Eulerian perturbation of pressure to the mass density
is different from zero, and mass elements are subject to a dilation
when ξ(r) < 0, and to a contraction when ξ(r) > 0. The dilations
and the contractions of the mass elements are now dominated
by the transverse components of the Lagrangian displacement.
In this connection, it may be observed that, near the surface, the
ratio η(r)/ξ(r) is of the order of ε−2, as it appears from Tables 1
and 2.
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