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Abstract. This paper aims to present the theoretical study of
the precession and of the nutation of the planet Mars considered
as a rigid body, in a rigorous way, by using canonical equations
related to Hamiltonian theory, and by taking into account all
the coefficients of nutation up to 0.1 mas. The equations are
solved by taking into account the leading influence of the Sun,
but also those due to Jupiter, to the Earth, and to the Martian
satellites Phobos and Deimos. Opplolzer terms which make the
separation from the axis of angular momentum to the figure
axis as well as to the axis of rotation, are also determined, as
well as semi-diurnal terms coming from the triaxial asymetry
of the planet. Calculations and important remarks related to the
accuracy of the determination of the variation of the obliquity
at a long periodic time scale complete the results above.

Key words: celestial mechanics, stellar dynamics – planets and
satellites: individual: Mars

1. Introduction

The accurate theoretical study of the rotation of the planets other
than the Earth is particularly recent. One of the reason is that the
main observational parameter related to this study is the period
of rotation of each planet. Even in that point of view, concerning
Mercury and Venus this period of rotation has been definitely
known only in the 60’s. The first observations which clearly
showed the slow retrograde rotation of Venus have been done
by Carpenter (1964), whereas the 2/3 resonance of Mercury is
known only from 1965, starting from Doppler- spread measure-
ments by Petengill & Dyce (1965), after the planet’s spin was
often believed, for a long time, to be exactly equal to its orbital
period, as it is the case for the Moon. Because of the variety of
details on the surface of Mars, its period of rotation was deter-
mined with good accuracy from a long time ago with the help of
the observational data acquired from big telescopes. The com-
plementary information concerning the rotation of Mars other
than the spin rate, that is to say the motion of precession and
nutation of its figure axis in space, is much more difficult to
determine observationally.

The precession constant of Mars was calculated theoreti-
cally by Struve at the end of the 19th. century, but its obser-
vational determination at the present time cannot be done very

accurately, as it was shown by Pitjeva (1996), who found a value
of 750′′

±36′′/cy. Nevertheless the very recent results from the
Mars Pathfinder mission lead to a much more accurate determi-
nation of the precession, that is to say -757.6±3.5′′/cy (Folkner
et al., 1997) starting from spacecraft data.

Concerning the theoretical approach of the precession-
nutation motion of Mars, an important progress was done by
Borderies (1980) by considering only the leading torque due
to the Sun. Hilton (1991) has shown in fact that the effects
on the nutation related to the action of the two small but very
close artian satellites Phobos and Deimos are not negligible in
comparison with the main nutation term, with a roughly 1%
relative order of amplitude. Notice that the evaluations of the
nutations coming from the three main and recent theoretical
studies (Borderies, 1980; Reasenberg & King, 1979; Hilton,
1991) give some difference at a relative10−3.

Various reasons lead us to calculate here with the best ac-
curacy the coefficients of the precession and of the nutation of
Mars: one is that the launch of several spacecraft missions on and
around Mars are already achieved or in the way of a launch in
the near future. No doubt that the accumulation of data coming
from the tracking of the probes will require an improved ana-
lytical determination of the rotational parameters of the planet,
thus improving the knowledge about its physical and dynamical
characteristics.

For instance, the dynamical ellipticityHMa
d is well-known

in the case of the Earth, for it is determined from an accu-
rate observational value of the precession constant by the way
of a straightforward relationship (Kinoshita, 1972; Souchay &
Kinoshita, 1997). In factHMa

d , in the case of Mars, was de-
termined until now only from an hypothetic modeling of the
internal structure of the planet. Consequently, the variations of
this fundamental parameter according to the theoretical mod-
elings (without taking into account Pathfinder’s results), were
about±5%. The determination ofHMa

d which will be done
in the following starting from the new value of the precession
constant (Folkner et al., 1997), will be much more accurate.

Then we can expect that future probe explorations of the red
planet will bring enough information to get better constraints
concerning the value of parameters likeCMR2 andHMa

d , fol-
lowing a more accurate value of the precession constant and an
improved modeling of the planet’s interior.
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In a reciprocical way, it seems important in our analyti-
cal calculations carried out here to choose a level of truncation
smaller than that already adopted in the precedent series of the
nutation of Mars, in order to improve the modelisation of the
motion of the figure axis in the space and to avoid truncation
problems when using these series after taking into account more
and more accurate data analysis.

For this aim, we have decided to apply a theoretical way of
calculation of the rotation of the Earth, considered as a rigid
body, to the planet Mars. The basic analytical principles related
to this are taken from the work of Kinoshita (1977), improved
by Kinoshita & Souchay (1990), and constructed starting on
Hamiltonian canonical equations. In the case of the Earth, the
most accurate observations (essentially based on the VLBI tech-
nique) show that the difference between the values of the main
coefficients of the nutation in the case of a rigid body and a non-
rigid one, are of the order of a relative10−5. There is no real
reason to believe that for a telluric planet as Mars, the relative
difference will be noticeably bigger, that is to say by one order
or more, for the Martian characteristics (size, rotation, internal
structure) are relatively close to that of the Earth.

Then it seems that the accuracy concerning the determina-
tion of the rotation of the planet, which should be obtained from
missions around Mars in the very near future, will hardly enable
to detect the influence of non rigidity.

One of the new topics included in this paper is the com-
putation of the Oppolzer terms, which give the angular spatial
offset between the axis of figure and the axis of angular momen-
tum. Moreover we evaluate in the following the influence of the
planets in addition to that of the satellites Phobos and Deimos.
Notice that this influence can be ranged into two categories: the
direct one, that is to say the influence related to the direct torque
exerted by the planets on the equatorial martian bulge; and the
indirect one, caused by the perturbation of the planets on the
orbital motion of Mars around the Sun, and consequently on the
gravitational potential exerted by the Sun on the planet.

The ephemerides used in order to compute the potential ex-
erted by the external bodies are VSOP87 (Bretagnon & Francou,
1988) for the Sun and the other planets, and those calculated by
Chapront-Touźe (1990) concerning Phobos and Deimos.

2. The materialization of the motion of rotation

The canonical variables that we choose here in order to solve
the equations of motion of Mars by the way of the Hamiltonian
equations are the Andoyer variables equivalent to those used
in the case of the study of the motion of rotation of the Earth,
as done by Kinoshita (1977). Refer to Fig. 1. The basic plane
(P t

M ) is the mean orbit of Mars for the datet, which is sightly
moving with respect to an inertial plane, which is the mean orbit
of Mars (P 0

M ) at the epoch J2000.0. Nevertheless, the basic
point used in order to measure the motion of the precession and
nutation in longitude of Mars is not here an equinox, which is
classically chosen in the case of the Earth, but a point called
the “depature point”Dt along(P t

M ). The choice of this point
is justified by the fact that as considering the condition of non-

rotation which characterizes it, and which is described in detail
by Guinot (1979) and Capitaine et al. (1986),Dt is the natural
point to measure any motion along the moving plane(P t

M ). This
is particularly the case of the motion of the true martian equinox
whose determination is one of the aims of our study together
with the variation of the obliquityεM

A , which is defined as the
angle between the plane of the true martian equator with respect
to (PM ).

Let P be the node of the equator of figure with respect to
the plane perpendicular to the angular momentum vector, andΓ
the descending node of the plane perpendicular to the angular
momentum vector with respect to(P t

M ) (in fact one of the two
equinoxes of Mars when considering the equator perpendicular
to the angular momentum, not the true equator).

Still refer to Fig. 1. The angle variablesl, g, andh and the
action variablesL, G andH, are defined as in the following
(Kinoshita, 1977):

.l is the angle betweenP and the principal axes of Mars corre-
sponding to the minimum moment of inertia.

.g is the angle betweenΓ andP , along the plane perpendicular
to the angular momentum.

.h is the angle along the mean orbit of Mars(P t
M ), between the

departure pointDt and the nodeΓ.

.L is the component of the angular momentum on the axis along
the axis of figure.

.G is the total angular momentum of Mars.

.H is the component of the angular momentum along the axis
perpendicular to(P t

M ).
Notice that onlyh has a different meaning from that in Ki-

noshita (1977), for it is defined fromDt, not from an equinox.
Nevertheless we choose the departure pointD0 at J2000.0 in
coincidence with the equinoxΓ0 at this epoch. Moreover, by
calling J the angle between the true equatorial plane of Mars
(perpendicular to the fugure axis) and the plane perpendicular
to the angular momentum, andI ≈ −εM

A the angle between
this last plane and(P t

M ), we have the following relationships:

H = G× cos I (1)

L = G× cos J (2)

As the variablesh andI enable to give the location of the
plane perpendicular to the angular momentum vector, with re-
spect to(P t

M ), in a similar way the variables quoted ashf and
If will enable to give the location of the equator of figure with
respect to(P t

M ). Notice thathf andIf are two of the classical
Euler angles used to represent the rotation of the Earth (Woolard,
1953) or any other planet, the third one being generally quoted
asφ.

The link between the Andoyer variablesl, g, andh, and the
Euler angleshf , If , is given by the following classical relation-
ships, derived from the spherical triangle, neglecting the second
order ofJ (Kinoshita, 1977):

hf ≈ h+
J

sin I
sin g (3.1)

If ≈ I + J cos g (3.2)
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Fig. 1. Andoyer variables

φ = l + g − J cot I sin g (3.3)

Notice that the anglesI andIf characterize the obliquity,
whereash andhf are the combination of the general precession
in longitude and of the nutation in longitude, so that we can
write:

hf = −pM
A − ∆ψ (4.1)

If = −εM
A − ∆ε (4.2)

pM
A andεM

A being the notations corresponding respectively to
pA andεA for the Earth, as can be found in Lieske et al. (1977).

3. The Hamiltonian of the system
and the equation of the motion of rotation

The way chosen for the parametrization of the problem being
equivalent to that chosen by Kinoshita (1977), and by more re-
cent studies (Kinoshita & Souchay 1990; Souchay & Kinoshita
1996; Souchay et al., 1998) of the rotation of the Earth, naturally
the Hamiltonian related to the rotational motion of Mars can be
written in a similar manner, by:

K = F +
∑

i

Ui + E (5)

whereF is the Hamiltonian for the free motion,
∑

i Ui repre-
sents the potential due to the forced motion, that is to say to the
gravitational action exerted by the external bodies as the Sun,
the satellites Phobos and Deimos, and the other planets, andE
can be considered as a complementary term which is due to the
fact that our reference plane, that is to say the plane of the mean
orbital motion of Mars, is slightly moving with respect to an
inertial reference system.F has the following form:

F =
1

2

[

sin2 l

A
+

cos2 l

B

]

×
(

G2
− L2

)

+
1

2C
× L2 (6)

whereA,B andC are the principal moments of inertia of Mars.
For each of the external bodies represented by an indexi, the
disturbing potential is given at the first order by:

Ui =
κ2Mi

r3i
×

[(

2C −A−B

2

)

P 0
2 (sin δi)

+

(

A−B

4

)

P 2
2 (sin δi) cos 2αi

]

(7)

whereMi is the mass of the perturbing body andri is the
distance between its barycenter and the barycenter of Mars.αi

andδi are respectively the marsocentric longitude and latitude
of the perturbing bodies, with respect to the meridian given as an
origin and which is crossed by the axis of minimum moment of
inertiaA, and to the mean martian equator of the date.P 0

2 (sin δi)
andP 2

2 (sin δi) are the modified Legendre polynomials.
At last, the complementary componentE is expressed as:

E = G sin I ×

[

sinπ cos(h− ¯DtM)Π̇

− sin(h− ¯DtM) × π̇

]

(8)

Let us refer to Fig. 2.π is the angle between the two orbital
planes(P t

M ) and(P 0
M ), andΠ is defined as the angle between

the martian equinox of the epochΓ0 and the ascending node
of (P t

M ) with respect to(P 0
M ). π andΠ are the martian corre-

sponding variables to the classical variablesπA andΠA adopted
conventionally for the Earth (Lieske et al., 1977). Notice that for
the sake of simplicity, we have decided in the precedent section
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that at the epoch J2000.0, thea priori arbitrary pointD0 corre-
sponds to the martian equinoxΓ0 which is the ascending node
of the martian orbit w.r.t. the mean equator at the epoch J2000.0.
The numerical expressions forπ andΠ will be calculated and
given in a next section.

The free motion of a planet as studied from the principle
of the Hamiltonian has been abundantly studied by Kinoshita
(1972), in the case of the Earth. It is rather complex and involves
elliptic functions at the second order, but it has no important
effect on the anglesh andI. Moreover it is not studied here,
for we are only concerned with the forced motion of rotation of
Mars.

After the determination ofUi andE, the anglesh andI are
given by the means of canonical equations (Kinoshita, 1977):

ḣ =
∂K

∂H
= −

1

G sin I

∂K

∂I
≈ −

1

G sin I

(

∂E

∂I
+
∂Ui

∂I

)

(9.1)

I =
∂K

∂h
=

1

G

(

∂K

∂h

1

sin I
−
∂K

∂g

1

tan I

)

(9.2)

As it is the case in the method developed by Kinoshita
(1977), as well as in its improvements by Kinoshita & Souchay
(1990) concerning the study of the rotation of the Earth, we sep-
arate the periodic part of the Hamiltonian from the secular one,
in order to derive directly the quantities related to the nutation.
This can be done by using an averaging algorithm close to Lie
transformations (Hori, 1966). The coefficients of the nutation
are then given in a straightforward manner, by the following
formula:

∆ψ = −∆h = −
∂W1

∂H
−
∂W2

∂H
−

1

2

{

∂W1

∂H
,W1

}

(10.1)

∆ε = −∆I = −

[

1

G sin I

] (

∂W1

∂h
+
∂W2

∂h

−
1

2

{

∂W1

∂h
,W1

})

+
1

2
(∆I)2 cot I (10.2)

Notice that some of the terms in (10.1) and (10.2) are com-
pletely negligible w.r.t. our level of truncation of our coeffi-
cients, as the Poisson brackets and the last term at the r.h.s. of
(10.2). In the case of the Earth (Souchay et al., 1998) they are
relatively much larger, for they involve important effects be-
tween the Moon and the Earth, as croosed nutation effects and
coupling effects between the orbital motion of the Moon and
the Earth flattening.W1 andW2 are respectively the compo-
nents of the determining function at the first and second order.
The determining function at the first orderWi,1 is obtained by
integrating the potential, at the first orderUi,1, exerted by each
perturbing body, whose expression is given by (7):

Wi,1 =

∫

Ui,1 × dt (11)

As it was the case for the Earth (Kinoshita, 1977) the develop-
ment of the disturbing functionUi,1 as given by (7) can be done
in function of the coodinates of the perturbing bodyri, λi and
βi with respect to the moving orbital plane of Mars, and to the
departure pointDt on this plane instead of the equinox. For that
we use the same transformations ofP 0

2 (sin δ) andP 2
2 (sin δ) as

Kinoshita (1977), based on the Jacobi polynomials (Kinoshita
et al., 1974), that is to say:

P 0
2 (sin δ)

=
1

2
(3 cos2 J − 1)

[

1

2
(3 cos2 I − 1)P 0

2 (sinβ)

−
1

2
sin(2I)P 1

2 (sinβ) sin(λ− h)

−
1

4
sin2(I)P 2

2 (sinβ) cos 2(λ− h)

]

+ sin 2J

[

−
3

4
sin(2I)P2(sinβ) cos g −

∑

ε=±1

1

4
(1 + ε cos I)

×(−1 + 2ε cos I)P 1
2 (sinβ) sin(λ− h− εg)
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−

∑

ε=±1

1

8
sin I(1 + ε cos I)P 2

2 (sinβ) cos(2λ− 2h− εg)

]

+ sin2 J

[

3

4
sin2(I)P 0

2 (sinβ) cos 2g

+
1

4

∑

ε=±1

ε sin(I)(1 + ε cos I)P 1
2 (sinβ) sin(λ− h− 2εg)

−
1

16

∑

ε=±1

(1 + ε cos I)P 2
2 (sinβ) cos 2(λ− h− εg)

]

(12)

In the same way, we get:

P 2
2 (sin δ) cos 2α

= 3 sin2 J

[

−
1

2
(3 cos2 I − 1)P 0

2 (sinβ) cos 2l

+
1

4

∑

ε=±1

sin 2IP 1
2 (sinβ) sin(λ− h− 2εl)

+
1

8
sin2 IP 2

2 (sinβ) cos 2(λ− h− εl)

]

+
∑

ρ=±1

ρ sin J(1 + ρ cos J)

[

−
3

2
sin(2I)

×P 0
2 (sinβ) cos(2ρl + g)

−

∑

ε=±1

1

2
(1 + cos I)(−1 + 2ε cos I)P 1

2 (sinβ)

× sin(λ− h− 2ρεl − εg)

−

∑

ε=±1

1

4
ε sin I(1 + ε cos I)P 2

2 (sinβ)

× cos(2λ− 2h− 2ρεl − εg)

]

+
∑

ρ=±1

1

4
(1 + ρ cos J)2

[

−3 sin2(I)P2(sinβ)

× cos(2l + 2ρg) −

∑

ε=±1

ε sin I(1 + ε cos I)

×P 1
2 (sinβ) sin(λ− h− 2ρεl − 2εg)

+
∑

ε=±1

1

4
(1 + ε cos I)2P 2

2 cos 2(λ− h− ρεl − εg)

]

(13)

Notice that the second component in the parenthesis in the
r.h.s. (7) involves the potential at the second orderUi,2; it is not
considered in the present section, and gives birth to the terms
of nutation coming from the triaxial asymmetry of the planet,
which will be treated in the Sect. 4.6.

The three Legendre polynomialsP 0
2 (sinβ), P 1

2 (sinβ) and
P 0

2 (sinβ) present in Eq. (12) can be written as follows:

P 0
2 (sinβ) =

1

2
× (−1 + 3 sin2 β) (14.1)

P 1
2 (sinβ) = 3 sinβ cosβ (14.2)

P 2
2 (sinβ) = 3 sinβ cosβ (14.3)

Moreover the expressionκ
2Mi

r3

i

in (7) can be advantageously

replaced byκ2Mi

a3

i

×
a3

i

r3

i

whereai is the semi-major axis of the

Mars motion given by the following relationship, related to the
keplerian motion:

n2a3
i = κ2(MS +MM ) (15)

whereκ2 is the constant of the gravitation.
Then the first part of the expressionκ2Mi

a3

i

is a constant term.

In the opposite, the second parta3

i

r3

i

can be developed as a func-

tion of Mars excentricity and of its mean longitude, when the
perturbing body is the Sun. In the other cases (Phobos, Deimos
and planets), this development contains also the excentricity and
mean longitude of the perturbing body.

Contrary to the Earth for which the leading influence on the
nutation is coming from its satellite, the Moon for which the
amplitude is roughly 20 times that of the Sun, the nutation of
the planet Mars is largely dominated by the gravitational action
of the Sun, the influence of Phobos and Deimos being of the
order of 1/100 in comparison, and the influence of the planets
being still significantly smaller.

4. Results of the various contributions
to the martian nutation

4.1. The main terms of nutation
of Mars due to the Sun

The coefficients of the nutation of Mars due to the Sun are
computed in the following manner: the solar potential at the
first orderU1

S as expressed by the first part of the formula at the
r.h.s. of (7) is calculated by the way of the transformations given
by (12). The analytical expressions for the coordinatesλS , βS ,
and rS are taken from the ephemerides VSOP87 (Bretagnon
& Francou, 1988). More precisely the rectangular coordinates
of Mars w.r.t. the Sun extracted from these ephemerides have
been converted into the geocentric spherical solar ecliptic coor-
dinates above. It must be noticed thatβS which represents the
latitude of the Sun with respect to the mean ecliptic of the date,
is in fact non equal to 0, for we must take into consideration
the small oscillations of the orbital plane of the Sun (that is to
say the plane of the true ecliptic). Even if the terms of nuta-
tion coming from this contribution have a very small amplitude
they should be taken into consideration, as was demonstrated by
Souchay & Kinoshita (1997) in the case of the Earth. Moreover
the nutation coefficients coming from the second component of
the potential at the r.h.s. of (7) are not considered here, for they
can be neglected for two reasons: at firstA−B is very small in
comparison with2C−A−B, and at second (this is the main ex-
planation) they have a period close to half a martian day, which
means that the corresponding component inWS , that is to say
after integration in (11), becomes very small itself because of
the high frequency at the denominator. Nevertheless, we will
give a rough estimation of the largest semi-diurnal term related
to this component, in Sect. 4.6.
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Table 1.1. The solar influence on the nutation of Mars, longitude∆ψ

sin cos Period M ΛM Borderies Values Hilton values
(”) (”) (year) sin (”) sin (”)

−1.09689 0.00006 0.940 2 2 −1.0431 −1.0962
0.63460 1.881 1 0.6031 0.6357

−0.23971 0.00001 0.627 3 2 −0.2278 −0.2401
0.10463 −0.00001 1.881 1 2 0.0994 0.1047

−0.04076 0.470 4 2 −0.0387 −0.0409
0.04432 0.940 2 0.0421 0.0445

−0.00630 0.376 5 2 −0.0061 −0.0063
0.00405 0.627 3 0.0038 0.0041

−0.00093 0.313 6 2 −0.0009
0.00041 0.470 4

−0.00013 0.269 7 2

Table 1.2. The solar influence on the nutation of Mars, obliquity∆ε

sin cos Period M ΛM Borderies Values Hilton values
(”) (”) (year) cos (”) cos (”)

0.00003 0.51589 0.940 2 2 0.4908 0.5158
0.00001 0.11274 0.627 3 2 0.1072 0.1130

−0.04921 1.881 1 2 −0.0468 −0.0493
0.01917 0.470 4 2 0.0182 0.0193
0.00296 0.376 5 2 0.0029 0.0030
0.00044 0.313 6 2

Table 1.3. The solar influence on the nutation of Mars, mixed terms, longitude t x∆ψ

sin cos Period α (tα) λEa M λJu λSa Λ
(”) (”) (year) 1000 years

7590.39671 1
0.00627 −0.04917 1.881 1 1

−0.00223 0.01860 0.627 1 3 2
0.00959 0.00550 0.940 1 2 1
0.00101 0.00809 1.881 1 1 2

−0.00077 0.00632 0.470 1 4 2
0.00086 −0.00687 0.940 1 2

−0.00377 0.00105 1.881 1 1 1
0.00287 0.00179 −1783.395 1 4 −8 3
0.00127 0.00297 1.881 1 1 1
0.00212 0.00119 0.627 1 3 1
0.00163 −0.00160 −883.270 1 2 −5

−0.00018 0.00146 0.376 1 5 2

In Tables 1.1 and Table 1.2, we show respectively in
longitude and in obliquity the coefficients deduced from the
Eqs. (10.1) and (10.2) and characterizing the nutation of Mars
due to the Sun, together with the corresponding argument and
period. Borderies (1980) and Hilton (1991) calculated the same
coefficients by different approachs. Borderies used an Hamil-
tonian method with orbit elements given by Struve and Hilton
an Eulerian method by using the ephemerides VSOP82 (Bre-
tagnon, 1982). Their values are given in the two last columns
of Table1.1 and1.2. Our values are very close to Hilton’s ones.

The difference with Borderies results are more important. But
Borderies tookHMa

d = 5.103 × 10−3 while we tookHMa
d =

5.363 × 10−3. The coefficients are proportional to the value of
HMa

d . The difference between ourHMa
d and Borderies one ex-

plains a large part of the differences between the amplitudes of
the nutation coefficients.

Moreover, in Tables 1.3 and 1.4, we show the mixed secular
terms in the formt× cos or t× sin which result from our com-
putations. They result themselves from the presence of mixed
secular terms in the expression of the coordinatesλS , βS and
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Table 1.4. The solar influence on the nutation of Mars, mixed terms,
obliquity t x ∆ε

sin cos Period α (tα) M λJu λSa ΛM

(”) (”) (year) 1000 years

0.00875 0.00105 0.627 1 3 2
−0.00332 0.00579 0.940 1 2 1

0.00381−0.00048 1.881 1 1 2
0.00297 0.00036 0.470 1 4 2

0.00242 1
−0.00063−0.00227 1.881 1 1 1

0.00180−0.00077 1.881 1 1 −1
−0.00072 0.00128 0.627 1 3 1

0.00019 0.00104−877.785 1 2 −5 −1

rS . We are taking into account all the coefficients with absolute
amplitude up to 0.1 milliarcsecond (mas), in combined absolute
amplitude (sine and cosine). Notice that, as it can be expected
by similarity to the case of the Earth, the leading component of
nutation, with amplitude1.09512′′ and0.51532′′ respectively
in longitude and in obliquity, has a period corresponding to half
the period of revolution of the planet around the Sun, that is to
say 343.49 d, the relative argument being2M+2ΛM , whereM
is the mean anomaly of Mars andΛM corresponds to the angle
between the pointDt and the Mars perigee, along the moving
orbit of Mars (see Fig. 1). Notice thatΛM must not be confused
with the longitude of the perigee, for it is determined along the
mean martian orbit and the martian equinox, and not the ecliptic
and the equinox of the Earth.

The second term in decreasing order of amplitude has
no component in obliquity, but its amplitude in longitude is
−0.63358′′ and its period is 687.0 d, for the corresponding ar-
gument is the mean anomaly of Mars. At total 11 coefficients
are present for∆ψ and 6 coefficients for∆ε, above our level
of truncation, that is to say 0.1 mas. The value ofHMa

d which
serves to the determination of the scaling factor:

K ′ = 3
κ2MS

a3
Sω

×HMa
d

from which the values of the coefficients of nutation are depend-
ing directly, is dicussed in Sect. 6.

4.2. The indirect planetary effect on the nutation of Mars

As it is the case for the nutation of the Earth (Kinoshita &
Souchay, 1990; Souchay & Kinoshita, 1996) the solar potential
which gives birth to the nutation of Mars is influenced by the
planets by the intermediary of their perturbation on the orbital
motion of Mars, and consequently on the relative motion of the
Sun with respect to Mars. Therefore, some terms of nutation
involving the mean longitude of planets other than Mars appear
when the truncation threshold in the series of nutation is small
enough. These terms are sometimes called the “indirect plan-
etary effect”, although this terminology does not seem really
adequate, as was dicussed by Souchay et al. (1998).

Table 2.1. The indirect planetary effects on the nutation of Mars, lon-
gitude∆ψ

sin cos Period λV e λEa M λJu λSa ΛM

(”) (”) (year)

−0.00039 0.00019 2.235 1−1
0.00028−0.00035 2.754 1 −2
0.00030 0.00007 −0.940 4 −10 3 2
0.00014−0.00027 0.941 4 −6 3 2
0.00015−0.00017 1.118 2 −2

−0.00004−0.00024−877.785 2 −5 1
0.00028 0.00003−15.781 1 −2

−0.00019−0.00003 11.862 1
0.00014−0.00007 0.662 3 −1 2

−0.00008 0.00009 0.511 4−2 2
−0.00008 0.00010 0.701 3−2 2

0.00011 0.00004 2.135 1−1
0.00009 0.00008 2.470 2−3

−0.00002 0.00011 32.835 1 −3 2
0.00005−0.00009 0.627 4 −5 3 2

Table 2.2. The indirect planetary effects on the nutation of Mars, obliq-
uity ∆ε

sin cos Period λEa M λJu ΛM

(”) (”) (year)

−0.00003 0.00014−0.940 4 −10 3 2
−0.00013 −0.00007 0.941 4 −6 3 2

Their argument is a linear combination of the mean longi-
tude of Mars itself and of the other planets. These terms appear
simultaneously with the main terms of nutation due to the Sun,
for the planetary perturbations of the relative ecliptic coordi-
natesαS , βS andλS of the Sun in (7) and (12) are included as
Fourier series involving the mean longitudes of the other plan-
ets, together with terms characterizing a keplerian motion.

Notice that here the most influent planets are Jupiter and the
Earth, whereas for the nutation of the Earth, these are Venus and
Jupiter. The leading terms of the indirect planetary effects are
gathered in Tables 2.1 and 2.2 respectively in longitude and in
obliquity.

4.3. The nutation of Mars due to Phobos and Deimos

Phobos and Deimos, the two satellites of Mars, are bodies of
very small dimensions, with mean radius respectively about
11.1 km and 6.2 km. But they are very closed to the planet,
for their mean distance corresponds respectively to 2.76 and
6.91 Mars radii. In order to compute the nutation due to these
two bodies, we have used the series ESAPHO and ESADE
(Chapront-Touźe,1990). The means orbital elements of the two
satellites are the following ones, according to this last paper:

aPh = 9373.713 km

ePh = 0.015146
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Fig. 3. Equatorial Phobos ele-
ments

iPh = 1.067639◦

ḣPh = 0.436025◦/d

λ̇Ph = 1128.84476◦/d

and:

aDe = 23457.06 km

eDe = 0.00096

iDe = 1.78896◦

ḣDe = 0.018001◦/d

λ̇De = 285.161875◦/d

Because of the smallness of the influence of the two satellites
on the nutation, the second part of the potential at the r.h.s. of
(7) is completely negligible and not considered here. Thus for
the two satellites the perturbing potential can be expressed as:

Us ≈
k2MS

r3s
×

[(

2C −A−B

2

)

P2 (sin δs)

]

(16)

the indices being associated with the given satellite. Then, we
must notice some particularity in the way of computation of the
nutation here, which looks like an extension with respect to the
usual one as set up by Kinoshita (1977) and used precedently
to calculate the coefficients of the nutation due to the Sun. The
reason is that the coordinates (X,Y,Z) of the satellites in the
ephemerides ESAPHO and ESADE (Chapront-Touzé, 1990)
used here, are determined with respect to the equatorial plane
of the planet and to the ascending node of the mean equator
with respect to the mean orbital planeP t

M . We call this refer-
ence system(RM ). Therefore we want to avoid to compute the
coordinatesλs andβs of the satellites with respect to the mean
orbital plane of the planet, and to compute the Legendre poly-
nomialP2(sin δs) by the intermediary of the transformations in
Eq. (12). In other words, we use the same canonical equations
as those given by (9.1) and (9.2), but, by keeping, for further
developments the original angleδs, which is the declination of
the satellite with respect to the mean equator. Notice that the

expression of the Legendre polynomialP2(sin δs) is:

P2(sin δs) =
3

2
sin2 δs −

1

2
(17)

As our procedure here is a new one, we develop it exhaustively
in the following: let us consider (Fig. 3) the angleshs, λs and
is which enable to give the position of the satellite (Phobos or
Deimos) with respect to the mean equator of the planet of the
date and to the node between the mean equator of the date and
the mean orbit of the planet of the dateγMa. hs is the longitude
of the ascending node of the orbit of the perturbing satellite with
respect to the mean orbit of Mars and counted fromγMa. λs is
the mean longitude of the satellite andis is the inclination of
the orbit of the satellite, with respect to the equator of Mars.

Then, the coordinates (X,Y, Z) of the perturbing satellite,
with respect to the equatorial frame(RM ), are related to its
coodinates (x,y,z) with respect to the frame materialized by
the mean orbital plane andγMa, by the way of the following
transformation:

[X,Y, Z] = Mx(I)Mz(h+ Π)[x, y, z] (18)

whereMx andMz are respectively the rotations around the
x-axis and the z-axis.

Then after (17) we find:

∂P2

∂h
=

∂P2(sin δs)

∂h
= 3 sin δs

∂ sin δs
∂h

(19.1)

∂P2

∂I
=

∂P2(sin δs)

∂I
= 3 sin δs

∂ sin δs
∂I

(19.2)

Then, with the help of (18), we can write:

∂ sin δs
∂h

= sin I cos δs cosαs (20.1)

∂ sin δs
∂I

= − cos δs sinαs (20.2)

Notice thatαs is the equivalent of the right ascension of the satel-
lite with respect to the planet’s equatorial reference frame and
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equinox. Then, the combination of Eqs. (19.1), (19.2), (20.1)
and (20.2) enables to write:

∂P2

∂h
= 3 sin I sin δs cos δs cosαs (21.1)

∂P2

∂I
= −3 sin δs cos δs sinαs (21.2)

In a second step, we write the equations above as a function of
X, Y andZ, with the help of trigonometric transformations:

X = cos δs cos(αs − hs) = cos(λs − hs) (22.1)

Y = sin(αs − hs) cos δs = sin(λs − hs) cos is (22.2)

Z = sin δs = sin(λs − hs) sin is (22.3)

Thus, by combining the Eqs. (21.1–2) and (22.1–3), we find the
following relationships:

∂P2

∂h
= 3Z(X coshs − Y sinhs) sin I (23.1)

∂P2

∂I
= −3Z(Y coshs +X sinhs) (23.2)

or, by substitution ofX, Y andZ:

1

sin Ie

∂P2

∂h
= −

3

4
sin 2is sinhs

+
3

4
sin is(1 + cos is) sin(2λs − hs)

+
3

4
sin is(1 − cos is) sin(2λs − 3hs) (24.1)

∂P2

∂I
= −

3

4
sin 2is coshs

+
3

4
sin is(1 + cos is) cos(2λs − hs)

−
3

4
sin is(1 − cos is) cos(2λs − 3hs) (24.2)

In the following we will assimilate the orbit of the two satel-
lites to a circle, for their excentricity is very small (respectively
0.015146 and 0.00096 for Phobos and Deimos). Thus, by choos-
ing as as the mean distance of the satellite, the derivatives of
the perturbing potentialUs w.r.t. the variablesh andI can be
written in the following form:

∂Us

∂h
=

(

κ2MS

a3
s

) (

2C −A−B

2

) (

∂P2

∂h

)

(25.1)

∂Us

∂I
=

(

κ2MS

a3
s

) (

2C −A−B

2

) (

∂P2

∂I

)

(25.2)

Then, the integration of the canonical equations at the first order
gives:

∆h = −
1

G sin I

∫

∂Us

∂I
(26.1)

∆I =
1

G sin I

∫

∂Us

∂h
(26.2)

Let us callKs the coefficient:

Ks =

(

3κ2MS

4a3
sω

)

×

(

2C −A−B

2C

)

Then the nutations∆ψ = −∆h and∆ε = −∆I are given by:

∆ψ = −
Ks

sin I

[[

sin 2is

ḣs

]

× sinhs −

[

sin is (1 + cos is)

2λ̇s − ḣs

]

sin (2λs − hs)

+

[

sin is(1 − cos is)

2λ̇s − 3ḣs

]

sin (2λs − 3hs)

]

(27.1)

∆ε = −Ks

[[

sin 2is

ḣs

]

× coshs −

[

sin is(1 + cos is)

2λ̇s − ḣs

]

cos(2λs − hs)

−

[

sin is(1 − cos is)

2λ̇s − 3ḣs

]

cos(2λs − 3hs)

]

(27.2)

The leading components of the nutation due to Phobos and
Deimos are by far those which involve the longitude of the
node of the satellites, in Eqs. (27.1) and (27.2). Thus at the 0.1
milliarcsecond truncation level, we find only two terms both in
longitude and obliquity:

∆ψ = −0′′.01209 × sinhPhobos − 0′′.00439 × sinhDeimos

∆ε = 0′′.00514 × coshPhobos + 0′′.00187 × coshDeimos

Notice that the respective periods are 2.260 y forhPhobos and
54.754 y forhDeimos.

4.4. The nutation of Mars due to the direct action of the planets

The attraction of the other planets on Mars causes nutations
which can be calculated in the same manner as the nutation com-
ing from the attraction of the Sun, by replacing the marsocentric
coordinates of the SunrS , λS andβS by the marsocentric coor-
dinatesrp, λp andβp, inside the Eqs. (7), (12), (14.1–3). These
coordinates are obtained by substraction of the heliocentric co-
ordinates of Mars from the heliocentric coordinates of the given
planet, as they are expressed analytically by the ephemerides
VSOP87 (Bretagnon & Francou, 1988). The coefficients of nu-
tation are still here obtained after integration of the potential to
provide the determining functionW p

1 by the way of Eqs. (10.1)
and (10.2). The Earth and Jupiter are the sole planets to give
significant influence at the 0.1mas level. The precession due to
these two planets is listed together with the main nutation terms
in Tables 3.1 (longitude) and 3.2 (obliquity).

4.5. The Oppolzer terms and the nutation
and precession of the figure axis

All the coefficients of nutation which have been calculated in the
precedent chapters concerned the axis of angular momentum,
following the Eqs. (9.1), (9.2), (10.1) and (10.2). Nevertheless,
it must be noticed that generally users are much more interested
by the nutation of the axis of figure, rather than by the nutation of
the angular momentum, for the former enables to give directly
the orientation of the planet w.r.t. a given reference frame. The
difference between the orientation of the axis of figure and that
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Table 3.1. The direct influence of the planets on the nutation of Mars,
longitude∆ψ

coefficient Period arguments influence
(”) (year)

−0.22154 − t (1000 y.) Jupiter
−0.00019 5.930 sin(2λJu) Jupiter
−0.00003 5.930 cos(2λJu) Jupiter
−0.08153 − t (1000 y.) Earth

0.00014 −15.781 sin(λEa − 2λMa) Earth
−0.00008 −15.781 cos(λEa − 2λMa) Earth

Table 3.2. The direct influence of the planets on the nutation and pre-
cession of Mars, obliquity∆ε

coefficient Period argument influence
(”) (year)

−0.00622 − t (1000 y.) Jupiter
0.00009 5.930 sin(2λJu) Jupiter

−0.00002 5.930 sin(2λJu) Jupiter
0.00249 − t (1000 y.) Earth

Table 4.1. The Oppolzer terms making the difference between the axis
of angular momentum and the axis of figure, longitude,∆ψ

sin Period M ΛM

(”) (year)

−0.00361 0.940 2 2
−0.00119 0.627 3 2
−0.00027 0.470 4 2

0.00017 1.881 1 2

of the axis of angular momentum is given by the following
expressions, obtained with the help of Eqs. (3.1) and (3.2):

∆ψf − ∆ψ = − (∆hf − ∆h) = −∆

(

J

sin I
× sin g

)

(28.1)

∆εf − ∆ε = − (∆If − ∆I) = −∆ (J cos g) (28.2)

The development of the expressions at the r.h.s. of (27.1) and
(27.2) by the intermediary of canonical equations giving both
∆J and∆g, and the numerical treatment related to this devel-
opment, are still here exactly the same as in the case of the
calculation of Oppolzer terms for the Earth, as analytically car-
ried out by Kinoshita (1977). Thus we can refer to that last
paper to know in detail the whole procedure. Four coefficients
are found and listed in Tables 4.1 and 4.2, up to 0.1 mas in
absolute amplitude.

Thus we can refer to that last paper to know in detail the
whole procedure. Four coefficients are found and listed in Ta-
bles 4.1 and 4.2, up to 0.1 mas in absolute amplitude. These
coefficients have to be added to the corresponding one (with the
same argument) for the axis of angular momentum, in order to
get the nutation for the figure axis. Notice that the argument of
the leading coefficients for the Oppolzer terms correspond to
the leading ones for the axis of angular momentum or the axis

Table 4.2. The Oppolzer terms making the difference between the axis
of angular momentumand the axis of figure, obliquity,∆ε

cos Period M ΛM

(”) (year)

−0.00139 0.940 2 2
−0.00046 0.627 3 2

0.00040 1.881 1
−0.00010 0.470 4 2

of figure, as can be seen from Tables 1.1 and 1.2. At last, the
Oppolzer terms which give the orientation of the axis of rotation
with respect to the axis of angular momentum are much smaller
in absolute amplitude, than those which have been calculated
above for the determination of the axis of figure, that is to say by
a ratio (C-A)/C. Thus they are at the order of the microarcsec-
ond level which is negligible in the frame of our present study,
and consequently they are not studied here. In other words, we
can assimilate the axis of rotation to the axis of figure.

4.6. The influence of the triaxiality on the rotation of Mars

As it is the case for the Earth, Mars is not an axisymetric body,
which means that the moment of inertiaA andB are not iden-
tical. The consequence is the presence of semi-diurnal (which
means here with period corresponding to half a martian day)
components of the nutation. The way of calculation of these
components starting from Hamiltonian theory is quite identical
to that already used by Kinoshita (1977) and more precisely by
Souchay & Kinoshita (1997). Then the final formula giving the
nutation in longitude and obliquity are the same, the values of
the parameters being changed. The two leading terms can be
written as follows:

∆ψ1/2d =
B −A

2C −A−B
×K ′

[

1

8
(1 + cos I)

×

[

1

(ġ + l̇ − Ṁ − ḣ)

]

A2M+2ΛM

× sin (2g + 2l − 2M − 2ΛM )

−
1

2
cos I

[

1

(ġ + l̇)

]

A0 × sin(2g + 2l)

]

(29.1)

∆ε1/2d =
B −A

2C −A−B
×K ′

[

1

8
sin I(1 + cos I)

×

[

1

(ġ + l̇) − (Ṁ + ḣ)

]

A2M+2ΛM

× cos (2g + 2l − 2M − 2ΛM )

−
1

4
sin 2I

[

1

(ġ + l̇)

]

A0 × cos(2g + 2l)

]

(29.2)

where the coefficientK ′ has the following expression:

K ′ = 3
κ2MS

a3ω
×

[

2C −A−B

2C

]
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A2M+2ΛM
being the coefficient of the term with argu-

ment 2M + 2ΛM in the development of the expression
( as

rS
)3 cos2 βs cos 2λs andA0 the constant term in the expres-

sion 1

2
(as

rs
)3(1 − 3 sin2 βs).

We can observe that to determine numerically the Oppolzer
terms, we need to know the value of the angular rate of the vari-
ablesl andg whose definitions have been given at the beginning
of the paper. The value of this angular rate is determined when
studying the free motion of rotation of the planet. By analogy
with the free motion of the Earth studied extensively by Ki-
noshita (1972), we can approximateġ and l̇ by the following
simple expressions:

ġ =
1

2

[

C

A
+
C

B

]

× ω (30)

l̇ = ω − ġ (31)

These approximations are available at the condition that the
triaxiality expressed by the parametere is small, where:

e =

[

C
A −

C
B

]

2 −
[

C
A + C

B

] (32)

A rough calculation leads to:e = 0.065 which gives the follow-
ing numerical values of the main semi-diurnal nutations, after
substitution of aguments:

∆ψ1/2d = 0′′.00011 sin(2λMa − 2g − 2l − 2h)

−0′′.00011 sin(2g + 2l)

and:

∆ε1/2d = −0′′.00005 cos(2λMa − 2g − 2l − 2h)

+0′′.00005 cos(2g + 2l)

The periods are respectively0.514d and 0.513d. λMa is the
mean longitude of Mars, and (l+g+h) has a period equal to the
sidereal rotation of the planet.

These expressions hold for the axis of angular momentum.
As it is the case for the Earth, the corresponding expressions for
the nutation of the axis of figure for these semi-diurnal coeffi-
cients are opposite, at the level of precision of these coefficients.

5. The planetary precession
and the secular variation of the obliquity

As the Eqs. (5), (8), (9.1) and (9.2) are pointing out, the addi-
tional componentE in the Hamiltonian, which is related to a
secular motion of the plane of reference to compute the nutation
terms, that is to say the mean orbital plane of Mars, has to be
taken into account.E depends on the anglesπ andΠ, which
have been determined in the following of (8).

These angles can be expressed as a function of the elements
Ω andiwhich are respectively the longitude of the node of Mars
orbit and the inclination of the orbit w.r.t. ecliptic of J2000.0.
The numerical expressions for these two parameters have been

calculated by Bretagnon (1982), and we take these values. Thus,
we can write:

sin(Π + ψ) sinπ = sin(Ω − Ω0) sin i (33.1)

cos(Π + ψ) sinπ = − cos i sin i0

+ sin i cos i0 cos(Ω − Ω0) sin i (33.2)

The variableψ corresponds to the angleN0D0 in the Fig. 2.
And the values found for the angles are:

π = 897.4480134T − 1.380904T 2
− 0.091923T 3 (34.1)

Π = −446819.38155 + 12842.087336T

−4.352970T 2 + 15.967223T 3 (34.2)

The angle from the nodeN between ecliptic J2000.0 and (P t
m),

and the departure point is:

(ND) = −520206.882048 + 27780.958512T

+5.827291T 2 + 8.236316T 3 (34.3)

The units are arcseconds and thousand of years for the time.
The partial derivatives ofE with respect to the variablesh

andI are obtained with the help of (8):

∂E

∂I
= −G cos I

[

π̇ sin
(

h− ¯DM
)

−Π̇ sinπ cos(h− ¯DM)
]

(35)

∂E

∂h
= G sin I

[

−Π̇ sinπ sin
(

h− ¯DM
)

− π̇ cos(h− ¯DM)
]

(36)

Notice that the variations of these angles are very small:h, π
andΠ have respectively the periods1.71 × 105y, 2.87 × 106y
and1.59 × 105y. We can consider them as constant terms for a
short span of time.

The rate of precessioṅhE coming from the motion of the
mean orbit of Mars, as well as the secular variation of the obliq-
uity ε̇ of Mars equator with respect to the mean ecliptic of the
date, are given by:

ḣE =
−1

G sin I

∂E

∂I
(37)

= cot I
[

π̇ sin
(

h− ¯DM
)

− Π̇ × sinπ cos
(

h− ¯DM
)

]

İ =
1

G sin I

∂E

∂h
(38)

= −Π̇ × sinπ sin
(

h− ¯DM
)

− π̇ cos
(

h− ¯DM
)

These last equations lead to:

ḣE ≈ cot I sin(h− ¯DM) × π̇ (39)

İ ≈ − cos(h− ¯DM) × π̇ (40)

where the value ofsinπ has been neglected because of the
smallness of the angleπ. The following resulting numerical
determinations are:̇hE ≈ −1.57970′′/y and: ε̇Ma = −İ =
−0.50336′′/y
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At the first order the martian planetary precessionχ̇Ma

which is the equivalent expression of the planetary precession
χ̇A for the Earth as defined in Lieske et al. (1977), is related to
ḣE by the straightforward formula:

χ̇Ma = −
ḣE

cos εMa
= 1.74571′′/y

Notice that these values are respectively for the Earth:
ε̇ = −0.46815′′/yr andχ̇ = 0.10553′′/yr

6. The contributions to the precession in longitude
and its relationships with the dynamical ellipticity

As it has been defined for the Earth, the general precession in
longitude in the case of Mars characterizes the motion, with
respect to the slightly moving plane of the Mars orbital motion
of the date, of the intersection of the ascending node of this
plane with the mean equator of Mars. We call in the following
this general precession in longitudepMa

In a very similar manner as for the Earth (Kinoshita &
Souchay, 1990; Williams, 1994; Souchay & Kinoshita, 1996)
pMa is the sum of several contributions, which can be enumer-
ated as: the leading one due to the gravitational attraction of the
Sun, the contribution due to the gravitational attraction of the
planets (direct planetary effect) as well as to the gravitational
attraction of Phobos and Deimos, and the geodesic precession,
which is a small correction related to a relativistic effect (De
Sitter,1938). At last we must take into account the rather big
component which is coming from the fact that the general pre-
cession in longitude is not measured from an inertial plane (for
instance the orbital plane for the epoch of reference J2000.0),
but from the moving orbital plane of the date. This component
corresponds in fact to the expressionχ̇ cos εMa as calculated
in the precedent chapter, whereχ̇ characterizes the planetary
precession.

From the Viking/Pathfinder experiments the Mars’ rate of
the precession in longitudeψMa, with respect to the fixed mean
orbital plane of Mars at the epoch J2000.0, has been determined
with a good accuracy, that is to say7.576 ± 0.035′′/y. It must
not be confused withpMa; neverthelsee, to get the sole contri-
bution of the Sun toψMa, as quoted asψS

Ma, we must make
the substitutions of all the other components which have been
enumarated above, excepted the leading one due to the change
of reference plane.

The influence of Phobos and Deimos on the precession of
Mars derived from our calculations are not present, which seems
to indicate that because the plane of their orbit is very closed to
the equatorial plane of the planet, this influence does not exist.

The influence of Jupiter is -0.00022′′/y and that of the Earth
-0.00008′′/y (the sign “-” indicates that the related motion is a
retrograd one). Thus all these effects are considerably small (the
cumulative effect of these contributions is only about 1/10000
that of the total value of the precession). Moreover, we can
neglect the direct effects of the other planets as the Earth and
Jupiter.

In order to determine the value of the geodesic precession for
Mars, we can refer to a basic formula as it has been established
by De Sitter(1938) and calculated by Barker and O’Connell
(1975) as well as by Williams (1994) for the Earth, that is to
say:

pgeod. =
3

2
×

[na

c

]2

×

[

n

1 − e2

]

(41)

Wheren, a, ande are respectively the mean motion, the semi-
major axis and the excentricity of the Mars orbit, and c is the
speed of light. The numerical value thus found is:pGeod =
0′′.67547/cy.

In a similar way as it was the case for the Earth (Souchay
& Kinoshita, 1996),ψS

Ma can be expressed as a function of the
dynamical ellipticity of MarsHMa

d = 2C−A−B
2A , and of param-

eters which are known with a relatively very good accuracy, as
the mean motion, the mean rotation, and the orbital character-
istics of the planet. By using the same formula as for the Earth
(Kinoshita & Souchay, 1990; Souchay & Kinoshita, 1996) but
by taking into account the sole solar contribution, we can write
the relationship betweeṅψS

Ma andHMa
d :

ψ̇S
Ma = −3 ×HMa

d ×

[

MMa

MMa +MS

]

×

[

n2
Ma

ωMa

]

S0 cos εMa (42)

WhereS0 is the constant term in the expression of the potential
given in (14.1). Some additioning relatively small contributions
already calculated in the case of the Earth (Kinoshita & Souchay,
1990) will not be considered here because of their expected
smallness as it is the case for the contribution due to the solar
interaction withJ4. Unless future determinations of the ratioJ4

J2

look astonishingly relatively large for Mars in comparison with
the Earth, we can neglect this last influence. Notice that for the
Earth it amounts only to−0′′.0026/cy, that is to say a relative
5 × 10−7 ratio with respect to the total precession value.

At last some other influences present in the case of the
Earth, as coupling effects between the planet and its satellite
(Kinoshita & Souchay, 1990) which can be divided into two
parts as crossed-nutation and tilt-effects (Williams, 1994) are
not considered here, because the corresponding coupling inter-
action between Mars and its satellites Phobos and Deimos look
completely negligible in comparison: the effects of Phobos and
Deimos on the first order precession and nutations are less than
1% that of the Sun, whereas in comparison the effects of the
Moon on the precession of the Earth are twice that of the Sun and
more than ten times in the case of the nutation. Finally, our value
for HMa

d as deduced from (42) is:HMa
d = 0.3669 ± 0.0017

This value ofHMa
d is a little different of that calculated by

Folkner et al., that is to say:HMa
d = 0.3662 ± 17, but notice

that we use this last value in the computation of our series. Thus
the series calculated with our valueHMa

d may be obtain in a
simple manner by multiplying the series of this paper by the
ratio of the values of the factorHMa

d taht is to say 1.0019.
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Table 5. Values of the parameters and angles used in this paper

name of the variable value uncertainty unit origin

ω 350.89198226 ±8 ◦ /d Folkner et al. (1997)
n 1886.51820925 ′′/day conventional value of IAU.
κ2MS 1.32712438 × 1020 m3

× sec2 conventional value of IAU.
MS/MMa 3098710 – conventional value of IAU.
J2 0.001964 – conventional value of IAU.
J3 0.000036 – conventional value of IAU.
S2,2 0.000031 – conventional value of IAU.
C2,2 −0.000055 – conventional value of IAU.
C/MR2 0.3662 ±17 – Folkner et al. (1997)
Hd 0.005363 ±25 – this paper
(B −A) /C 0.0006896 ±32 –
C/A 1.005741 ±27 – this paper
C/B 1.005044 ±24 – this paper
Rma 3397.2 ±40 km conventional value of IAU.
ġ 352.7842 ±88 ◦ /d this paper
l̇ −1.8922 ±88 ◦ /d this paper
e 0.0646 ±5 –
K′ 16557 ±77 ′′/1000 ans
εMa 25.189417 ±35 ◦ Folkner et al. (1997)
α2000 317.68143 ±1 ◦ Folkner et al. (1997)
δ2000 52.88650 ±3 ◦ Folkner et al. (1997)
Λ0 −108.994438 ◦

aPh 9373.713 km Chapront-Touźe (1990)
ePh 0.015146 – Chapront-Touźe (1990)
vPh 1128.845 ◦ /d Chapront-Touźe (1990)
iPh 1.067639 ◦ Chapront-Touźe (1990)
κ2MPh 6.38825 × 1015 m3

× d2 Chapront-Touźe (1990)
˙hPh 0.436025 ◦ /d Chapront-Touźe (1990)

KPh 383.8 ±18 ′′/1000 ans this paper

aDe 23.457 km Chapront-Touźe (1990)
eDe 0.000196 – Chapront-Touźe (1990)
vDe 285.1619 ◦ /d Chapront-Touźe (1990)
iDe 1.78896 ◦ /d Chapront-Touźe (1990)
κ2MDe 8.96375 × 1014 m3

× d2 Chapront-Touźe (1990)
˙hDe 0.018001 ◦ /d Chapront-Touźe (1990)

KDe 3.436 ±16 ′′/1000ans this paper

MJu/MS 1047.355 – conventional value of IAU.
MTerre/MS 328900.5 – conventional value of IAU.

7. Long time scale evolution of the motion
of rotation of Mars

In order to study on a long time scale the variation of the pa-
rameters related to the rotation of Mars, especially that of the
obliquity εMa and of the precession rate in longitudeψ̇Ma, we
first express the long period and the secular parts of the Hamil-
tonian related to this rotation. For this purpose, we do not con-
sider here the Hamiltonian related to the free motion as well as
its component related to the short-periodic forced motion. With
a suitable change of canonical variables, the HamiltonianFLP

becomes (LP for Long Period andSP for Short Period):

FLP =
L2

2C
+G sin I

[

sin i cos
(

h− D̄N
)

Ω̇

− sin(h− D̄N)
di

dt

]

+
k2M ′

r3
×

2C −A−B

2
× [P2(sin δ)]sec (43)

with:

[P2 (sin δ)]sec = −
1

4

( r

a

)3
(

3 cos2 I − 1
) (

1 − e2
)−3/2

(44)

The termE that stay in this HamiltonianFLP seems to
differ from the termE use in the previous parts of this paper.
In fact, the only difference is the choice of the inertial plane.
For the short period study, we choose the mean orbital plane of
Mars at J2000 as inertial plane. The choice of this inertial plane
of reference comes from the intention to describe the motion
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of precession-nutation of Mars in a way analogous to what is
chosen in general for the Earth, that is to say the mean orbital
plane of the Earth or ecliptic, at J2000.0.

For the long period study, we choose the ecliptic of the epoch
J2000.0. This plane is easier to use because the ephemerides of
Mars relate to it. In both cases, the termE is written:

E = −Ω1 × Ĺ1 − Ω2 × Ĺ2 − Ω3 × Ĺ3 (45)

Ωi, i = 1, 2, 3 are the coordinates of the instantaneous vec-
tor of rotation of the reference frame linked to the mean orbit
of Mars w.r.t. the reference frame linked to the inertial plane.
We remark that for the long period study as well as for the short
period study, the origin of the angleh is the departure pointDt.
ThereforeΩ3 is equal to zero. For the long period study, the
Ωi are written with the help of the variablesi et Ω describe in
chapter5. Until chapter6, theΩi are written with the help of
the variablesπ etΠ. So we have the relation:

ELP = G sin I

[

sin i cos(h− D̄N)Ω̇ − sin(h− D̄N)
di

dt

]

= ESP = G sin I
[

sinπ cos
(

h− ¯DM
)

Π̇

− sin
(

h− ¯DM
)

π̇
]

(46)

The same thing occurs for the definition of the variation of the
departure pointDt. We have the two following relations that
determine the same motion:

˙̄ND = − cos iΩ̇

or

˙̄MD = − cosπΠ̇ (47)

With the HamiltonianFLP , the two equations of the system can
be written

ḣ = −
1

G sin I

∂F

∂I

ḣ = −
cos I

sin I

[

sin i cos(h− D̄N)Ω̇ − sin(h− D̄N)
di

dt

]

−
3

2

k2M ′

Ga3

(

2C −A−B

2

)

(

1 − e2
)

−3

2 cos I (48)

İ =
1

G sin I

∂F

∂h

= −

[

sin i sin
(

h− D̄N
)

Ω̇ + cos
(

h− D̄N
) di

dt

]

(49)

Practically the coordinatesΩi, i = 1, 2, 3 can be expressed as
a function of the variablesp and q given by the long period
ephemerides of Mars (Bretagnon, 1984; Laskar, 1988). They
are given by:

p = sin

(

i

2

)

sin Ω (50.1)

q = sin

(

i

2

)

cos Ω (50.2)
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Fig. 4. Motion of variable h over 500 000 years

The componentsΩi, i = 1, 2, 3 can then be written in the fol-
lowing form:

Ω1 =
2(pṗ+ qq̇)

√

p2 + q2
√

1 − p2 − q2
(51.1)

Ω2 =
2(ṗq − q̇p)

√

1 − p2 − q2
√

p2 + q2
(51.2)

Ω3 = 0 (51.3)

With the help of Eqs. (51.1–3), we can express theΩi with re-
spect top andq. Moreover the expression(1 − e2)

−3

2 in (48)
can be determined from the anglesh = e sin ω̃ andk = e cos ω̃
given by the long period ephemeris:
(

1 − e2
)

−3

2 =
(

1 − h2
− k2

)

−3

2 (52)

Thus the differential Eqs. (48) and (49) can be expressed as a
function of the time, and a numerical integration can be car-
ried out, leading to the determination of the rotation anglesh
andI. We use a numerical integrator of Runge-Kunta at 8th.
order with variable step. In the continuation, we use the Laskar
ephemerides. On a 500 000 years period the differences with
the Bretagnon ephemerides are negligible for this study. The
limitation to this time span is principally due to the uncertainty
on the frequencies of the orbital motion of the planets (that is
to say roughly 0.1′′/y). This uncertainty brings a phase shift of
about15◦ on the longitudes after 1/2 million years. Moreover,
Laskar & Robutel (1993) have shown that Mars is located inside
a chaotic zone, and that after 5 million years time interval, the
determination of the orientation of the planet cannot be mod-
elized.

As a first step we integrate the Eqs. (47), (48) and (49) with
C

MR2 = 0.3662 that is to say the value determined by Folkner
et al. (1997) from a precession value set to 7.576′′/y. Fig. 4
shows the variation of (h − ḣ × T ), (where T is the time),
from −500 000 years until nowdays. Fig. 5 shows the variation
of εMa(= −I) on the same period. At last, Fig. 6 shows the
variation of( ¯DtN − ¯D0N0 − ¯N0N) = V (D) that represent
the motion of the departure point onP t

M .
Variations of the obliquityI of Mars on a very long time

scale have already been done by Ward (1979). Borderies (1980)
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has also studied the variations of the obliquity and of the pre-
cession in longitude ofΓ measured from the parameterh, on
the same time scales, but with an origin for the determination of
the angleh the pointNt which has not the same propperties as
the pointDt. However, the choice of the origin does not affect
directly the obliquity, which is the more significant variable for
the past history of Mars weather. Although they are different
ephemerides, the variations of obliquity determined by Ward
and Borderies were very similar to our results. The main dif-
ferences between the results are due to the choice of(MR2

C ) of
which uncertainly has been improved recently by the Pathfinder
mission, (see Fig. 8).

The large variations of the obliquity (Fig. 5) come from the
commensurability between the frequency of the precessionḣ
and the linear combinations of the frequencies of the revolutions
of the planets. Notice that the Earth is taken away from resonant
zones, because of the dynamical couple exerted by the Moon, the
precession caused by this last body being roughly 30′′/y. Thus
the variations in obliquity for the Earth are about1◦ whereas
for Mars they reach15◦.
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Fig. 7. Relative motion of I with different Pathfinder values ofC/MR2
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Fig. 8. Relative motion of I with Pathfinder and Viking values of
C/MR2

Moreover, the frequency of the precessionḣ depends on the
ratio (MR2

C ) as a scaling factor. The rotation of Mars at a long
time scale depends also strongly from this parameter because of
resonances closed to this frequency. As we already mentioned it
before, the accuracy on this parameter has been drastically im-
proved by the measurements done by Pathfinder (Folkner et al.,
1997). Nevertheless, despite the better delimitation of the range
of the values ofI andh in a 500 000 y time scale, Mars could
still cross resonant zones. Thus we have studied this possibil-
ity; in Fig. 7 we have represented the evolution w.r.t. the time
of the difference between the determinations of obliquities cal-
culated with different values of the coefficient( C

MR2 ) located
inside the uncertainty range, and that calculated with the nom-
inal value( C

MR2 = 0.3662). Then we show that no resonance
occur on a period of 500 000 y (the curves do not overlap but
present the same form with gradually increasing amplitudes).
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The Pathfinder data has allowed to reduce by a factor ten
the uncertainty of the(MR2

C ) parameter since Viking missions.
The Fig. 8 shows the drastic improvement of the accuracy in
the determination of the martian obliquity from -500000 y until
now. The same curves as in Fig. 7 are shown in comparison with
the isolated curve which shows the uncertainty on the value of
I before the mission Pathfinder. We can then remark that the
accuracy on the determination ofI has also been improved by a
factor 10. However, the peak to peak uncertainty after 500,000
years of integration is still about one degree. Variations of am-
plitude of the Earth obliquity are the main reason of ice age for
our planet. Then it looks very interesting to constrain at best the
time evolution of such a parameter as the obliquity for Mars, as
we did here.

8. Conclusion

In this paper, we carried out a complete study of the combined
motion of precession and nutation of the planet Mars by choos-
ing basic canonical equations based on the Hamiltonian for the
motion of rotation of the planet analogous to that set up by Ki-
noshita (1977) for the Earth. We have used very recent parame-
ters of the planet coming from the Pathfinder mission (Folkner
et al., 1997), especially those concerning the moments of iner-
tia and the precession constant (7′′.567 /y). We have calculated
the coefficients of the nutation at the 0.01 milliarcsecond level
for both the axis of angular momentum, and the axis of figure,
when taking into account the Oppolzer terms which make the
difference between these two axes. We have considered not only
the main terms of nutation which are due to the influence of the
Sun, but also those which are coming from the direct action of
the planets. Moreover we have made some suitable theoretical
transformations to calculate the nutation due to the two satel-
lites Phobos and Deimos, whose the amplitude is at the level
of 1% w.r.t. the main nutation term due to the Sun. We have
also evaluated the effect of the triaxial component of the poten-
tial of the planet on the nutation, characterized by half diurnal
coefficients.

At last we have studied the evolution of Mars obliquity and
precession rate at a very long time scale (500 000 y), by the
way of a numerical integration. Thus we have shown that the
improved accuracy of data concerning Mars by the intermediary

of the Pathfinder mission leads a much better delimitation, by
roughly a factor 10, of this evolution. Then we can observe
that the uncertainty of the Martian obliquity for the time scale
above does not exceed 1 degree peak to peak. We hope that this
work might be useful to determine at best the orientation of the
axis of figure in space in the perspective of future missions as
NETLANDER.
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