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Abstract. This paper aims to present the theoretical study atcurately, as it was shown by Pitjeva (1996), who found a value
the precession and of the nutation of the planet Mars consideoé@50” + 36" /cy. Nevertheless the very recent results from the
as a rigid body, in a rigorous way, by using canonical equatiokkars Pathfinder mission lead to a much more accurate determi-
related to Hamiltonian theory, and by taking into account allation of the precession, thatis to say -75%3%5" /cy (Folkner
the coefficients of nutation up to 0.1 mas. The equations aral., 1997) starting from spacecraft data.
solved by taking into account the leading influence of the Sun, Concerning the theoretical approach of the precession-
but also those due to Jupiter, to the Earth, and to the Martiantation motion of Mars, an important progress was done by
satellites Phobos and Deimos. Opplolzer terms which make Berderies (1980) by considering only the leading torque due
separation from the axis of angular momentum to the figut@ the Sun. Hilton (1991) has shown in fact that the effects
axis as well as to the axis of rotation, are also determined,@sthe nutation related to the action of the two small but very
well as semi-diurnal terms coming from the triaxial asymetrglose artian satellites Phobos and Deimos are not negligible in
of the planet. Calculations and important remarks related to ttemparison with the main nutation term, with a roughly 1%
accuracy of the determination of the variation of the obliquitselative order of amplitude. Notice that the evaluations of the
at a long periodic time scale complete the results above.  nutations coming from the three main and recent theoretical
studies (Borderies, 1980; Reasenberg & King, 1979; Hilton,
Key wor ds: celestial mechanics, stellar dynamics — planets af@91) give some difference at a relativ@ 3.
satellites: individual: Mars Various reasons lead us to calculate here with the best ac-
curacy the coefficients of the precession and of the nutation of
Mars: one is thatthe launch of several spacecraft missions on and
around Mars are already achieved or in the way of a launch in
1. Introduction the near future. No doubt that the accumulation of data coming

The accurate theoretical study of the rotation of the planets otlt{&m ;[Ze traclgng_of thfe tf) robes_W|II Ir equire an |mpfr0k\]/ ed Iana-
than the Earth is particularly recent. One of the reason isthat{ técq etermlnaltqtlollz 0 tl € drotat:)ona_parz;mt_etelrs 0 dt d €p af_‘et’l
main observational parameter related to this study is the perf s Improving the knowledge aboutits physical and dynamica

of rotation of each planet. Evenin that point of view, concernin aract_enstlcs. , TS PO

Mercury and Venus this period of rotation has been definitel For instance, the dynam|cgl e.||lptICIlHd. is well-known
known only in the 60’s. The first observations which clearl the case qf the Earth, for it is dete_rmlned from an accu-
showed the slow retrograde rotation of Venus have been d a obs_en/atlonal value _Of the_ precession constant by the way
by Carpenter (1964), whereas the 2/3 resonance of Mercur &a straightforward relationship (Kinoshita, 1972; Souchay &

H Ma
known only from 1965, starting from Doppler- spread measur. Inoshita, 1997). In fact;*, in the case of Mars, was de-

ments by Petengill & Dyce (1965), after the planet's spin Wégrmined until now only from an hypothetic modeling qf the
ternal structure of the planet. Consequently, the variations of

often believed, for a long time, to be exactly equal to its orbitg!. tund | di he th ical mod
period, as it is the case for the Moon. Because of the varietyt s fundamental parameter according to t e,t eoretical mod-
ings (without taking into account Pathfinder’s results), were

details on the surface of Mars, its period of rotation was det 5% The d L #7Ma which will be d
mined with good accuracy from a long time ago with the help SPOUt 5%. The determination of,;* which will be done
the following starting from the new value of the precession

the observational data acquired from big telescopes. The cdhh .
d g P 1997), will be much more accurate.

plementary information concerning the rotation of Mars Othgpn_ﬁ]ant (Folkner etal., hat f b lorati f the red
than the spin rate, that is to say the motion of precession ar,d en we can expect that future probe explorations of the re

nutation of its figure axis in space, is much more difficult fg'anet Wi" bring enough information tp get better constraints
determine observationally. concerning the value of parameters I%é,'? gnd HMea  fol-

The precession constant of Mars was calculated theoré?W'ng amore a(;curate value of th? precession constantand an
cally by Struve at the end of the 19th. century, but its Obsép}proved modeling of the planet's interior.
vational determination at the present time cannot be done very
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In a reciprocical way, it seems important in our analytirotation which characterizes it, and which is described in detail
cal calculations carried out here to choose a level of truncatiby Guinot (1979) and Capitaine et al. (198B), is the natural
smaller than that already adopted in the precedent series offtbt to measure any motion along the moving plaREg ). This
nutation of Mars, in order to improve the modelisation of this particularly the case of the motion of the true martian equinox
motion of the figure axis in the space and to avoid truncatievhose determination is one of the aims of our study together
problems when using these series after taking into account maith the variation of the obliquity’, which is defined as the
and more accurate data analysis. angle between the plane of the true martian equator with respect

For this aim, we have decided to apply a theoretical way taf (Pyy).
calculation of the rotation of the Earth, considered as a rigid Let P be the node of the equator of figure with respect to
body, to the planet Mars. The basic analytical principles relattte plane perpendicular to the angular momentum vector'and
to this are taken from the work of Kinoshita (1977), improvethe descending node of the plane perpendicular to the angular
by Kinoshita & Souchay (1990), and constructed starting eanomentum vector with respect (@},) (in fact one of the two
Hamiltonian canonical equations. In the case of the Earth, thguinoxes of Mars when considering the equator perpendicular
most accurate observations (essentially based on the VLBI tetththe angular momentum, not the true equator).
nigue) show that the difference between the values of the main Still refer to Fig. 1. The angle variablésg, andh and the
coefficients of the nutation in the case of arigid body and a nosection variabled., G and H, are defined as in the following
rigid one, are of the order of a relatiu@—>. There is no real (Kinoshita, 1977):

reason to believe that for a telluric planet as Mars, the relatiygs the angle betweeR and the principal axes of Mars corre-
difference will be noticeably bigger, that is to say by one ordgponding to the minimum moment of inertia.

or more, for the Martian characteristics (size, rotation, internal . .
' . ' ' .g is the angle betweel and P, along the plane perpendicular
structure) are relatively close to that of the Earth. J g 9 P Perp

. . .to the angular momentum.
Then it seems that the accuracy concerning the determina- 9

tion of the rotation of the planet, which should be obtained frorft IS the angle along the mean orbit of M4#g;, ), between the

missions around Mars in the very near future, will hardly enabfiéParture poinD; and the nodé'.

to detect the influence of non rigidity. .L is the component of the angular momentum on the axis along
One of the new topics included in this paper is the conthe axis of figure.

putation of the Oppolzer terms, which give the angular spati@f js the total angular momentum of Mars.

offset between the axis of figure and the axis of angular MOMER i< the component of the angular momentum along the axis
tum. Moreover we evaluate in the following the influence of thﬁerpendicular tgPt,)
M-

planets in addition to that of the satellites Phobos and Deimos. Notice that onth has a different meaning from that in Ki-

Notice that this influence can be ranged into two categories: the piia (1977), for it is defined from,, not from an equinox.
direct one, that is to say the influence related to the direct torqyg, artheless we choose the departure pélgtat J2000.0 in
_exe_rted by the planets on the equatori_al martian bulge; and the, idence with the equinok, at this epoch. Moreover, by
indirect one, caused by the perturbation of the planets on {1 7 the angle between the true equatorial plane of Mars
orbital motion of Mars around the Sun, and consequently on the hendicular to the fugure axis) and the plane perpendicular
gravitational potential exerted by the Sun on the planet. to the angular momentum, add~ —" the angle between

The ephemerides used in order to compute the potential &5 last plane andP!, ), we have the following relationships:
erted by the external bodies are VSOP87 (Bretagnon & Francou,

1988) for the Sun and the other planets, and those calculatedby= G x cos I Q)
Chapront-Toué (1990) concerning Phobos and Deimos. L = G xcosJ 2)

S _ _ As the variables: andI enable to give the location of the
2. The materialization of the motion of rotation plane perpendicular to the angular momentum vector, with re-

PR - .
The canonical variables that we choose here in order to soﬁpeec_t to(Py,), in a.S|m|Iar way_the variables quoted {a)s and .

the equations of motion of Mars by the way of the Hamiltonia{\f will enablia to give the location of the equator of f|gure. with
equations are the Andoyer variables equivalent to those u ggpect td ;). Notice thath andly are two of the classical

in the case of the study of the motion of rotation of the Eart ulerangles usedto represent the rotation of the Earth (Woolard,

as done by Kinoshita (1977). Refer to Fig. 1. The basic plaﬂlgsg’) or any ather planet, the third one being generally quoted

(P%,) is the mean orbit of Mars for the datewhich is sightly L .
moving with respect to an inertial plane, which is the mean orhit The link between the Andoyer variableg, andh, and the

of Mars (P),) at the epoch J2000.0. Nevertheless, the ba -8Ierang!es§Lf, Iy, is given bythefpllowing classigal relation-
point used in order to measure the motion of the precession QH S, derlve_d from the spherical triangle, neglecting the second
nutation in longitude of Mars is not here an equinox, which Rraer ofJ (Kinoshita, 1977):

classically chosen in the case of the Earth, but a point called .
the “depature pointD; along(P},). The choice of this point "/ ~ h+ sing o 8.1)
is justified by the fact that as considering the condition of nos ~ I+ Jcosg (3.2)
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Perpendicular plane Equator of figure
to the angular momentum

Mean Orbit of Mars
for the date t :,\tljl’

Mars perigee

Principal axes of Mars ) i
(the minimum moment of inertia)  Fig. 1. Andoyer variables

_ _ . 2 2
¢ =1l+g—Jcotlsing (3.3) F:l sin l+COS ! ><(G2—L2)+LXL2 (6)
. . o A B 2C
Notice that the angles and/; characterize the obliquity,
whereash andh ¢ are the combination of the general precessiamhereA, B andC are the principal moments of inertia of Mars.

in longitude and of the nutation in longitude, so that we cafor each of the external bodies represented by an indese

write: disturbing potential is given at the first order by:
hy = —pi — A 4.1 20/, —A—
S=TPA Ay @Dy, M {(20 A B) PY (sind;)
Iy = —ej — Ac (4.2) T 2
p) ande’ being the notations corresponding respectively to + <A_B> P2 (sin ;) cos 2%} )
p4 ande 4 for the Earth, as can be found in Lieske et al. (1977). 4

where M; is the mass of the perturbing body ands the
3. The Hamiltonian of the system distance between its barycenter and the barycenter of Mars.
and the equation of the motion of rotation andJ; are respectively the marsocentric longitude and latitude

.of the perturbing bodies, with respect to the meridian given as an

The way chosen for the parametrization of the problem be'B%gin and which is crossed by the axis of minimum moment of
equivalent to that chosen by Kinoshita (1977), and by more fiertiaA, and to the mean martian equator of the dBf¥sin d;)
cent studies (Kinoshita & Souchay 1990; Souchay & Kinoshi dPg(éin 5,) are the modified Legendre polynomials !
1996; Souchay et al., 1998) of the rotation of the Earth, naturally At2last tttwe complementary compondits expresse.d as:
the Hamiltonian related to the rotational motion of Mars can be ’ '
written in a similar manner, by:

E = Gsinl x {sinﬂ'cos(h — DtM)H
K=F+) U+E (5)

¢ —sin(h — D M) x 7%} (8)
whereF is the Hamiltonian for the free motior},_, U; repre-
sents the potential due to the forced motion, that is to say to the Let us refer to Fig. 2r is the angle between the two orbital
gravitational action exerted by the external bodies as the Sptanes(P},) and(P),), andIl is defined as the angle between
the satellites Phobos and Deimos, and the other planetdyanthe martian equinox of the epodh, and the ascending node
can be considered as a complementary term which is due todh¢P%,) with respect to PY,). = andIl are the martian corre-
fact that our reference plane, that is to say the plane of the maaonding variables to the classical variabtgsandII 4 adopted
orbital motion of Mars, is slightly moving with respect to arconventionally for the Earth (Lieske etal., 1977). Notice that for
inertial reference systent. has the following form: the sake of simplicity, we have decided in the precedent section
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Mean Orbit of Mars
forthe date t = b

32000 Mars Orbit 5P

Perpendicular plane
to the angular momentum
at J2000

J2000 Ecliptic

Perpendicular plane
to the angular momentum
for the date t

Fig. 2. Moving reference plane

that at the epoch J2000.0, theriori arbitrary pointDq corre- Notice that some of the terms in (10.1) and (10.2) are com-
sponds to the martian equind¥ which is the ascending nodepletely negligible w.r.t. our level of truncation of our coeffi-
of the martian orbit w.r.t. the mean equator at the epoch J200@&i@nts, as the Poisson brackets and the last term at the r.h.s. of
The numerical expressions ferandII will be calculated and (10.2). In the case of the Earth (Souchay et al., 1998) they are
given in a next section. relatively much larger, for they involve important effects be-
The free motion of a planet as studied from the principteveen the Moon and the Earth, as croosed nutation effects and
of the Hamiltonian has been abundantly studied by Kinoshitaupling effects between the orbital motion of the Moon and
(1972), inthe case of the Earth. Itis rather complex and involviee Earth flatteningly; and W, are respectively the compo-
elliptic functions at the second order, but it has no importanéents of the determining function at the first and second order.
effect on the angles and . Moreover it is not studied here, The determining function at the first ord8f; ; is obtained by
for we are only concerned with the forced motion of rotation afitegrating the potential, at the first ordéy ;, exerted by each

Mars. perturbing body, whose expression is given by (7):
After the determination of/; and F, the angled and! are
given by the means of canonical equations (Kinoshita, 1977f%i.1 = /Ui,l x dt (11)
p_ 9K _ 1 9K 1 <5E 3U¢> (9.1) Asitwas the case for the Earth (Kinoshita, 1977) the develop-
OH Gsinl 01 Gsinl \ oI ~ 0I ment of the disturbing functiof; ; as given by (7) can be done
OK 1 (0K 1 oK 1 in function of the coodinates of the perturbing bady)\; and
I= oh G <8hsinI - 8gtan[) (9-2) 5, with respect to the moving orbital plane of Mars, and to the

L . . departure poinD; on this plane instead of the equinox. For that
As it is the case in the method developed by Klnosh|€% use the same transformations/¥f(sin §) and P (sin §) as

. . Finoshita (1977), based on the Jacobi polynomials (Kinoshita
(1990) concerning the study of the rotation of the Earth, we See[{'al., 1974), that i to say:

arate the periodic part of the Hamiltonian from the secular one
in order to derive directly the quantities related to the nutatioffz (sin d)
This can be done by using an averaging algorithm close to Liel 9 1 9 0/ .

transformations (Hori, 1966). The coefficients of the nutation 3 (5 €05 J — 1) | 5 (3cos™ [ — 1) Py (sin 5)

are then given in a straightforward manner, by the following 4 )
formula: —3 sin(21) P; (sin B) sin(A — h)

owy oW, 1 (oW,
AYp = —Ah = “3H  9H 2 {8H’Wl} (10.1) —i sin? (1) P#(sin 8) cos 2(\ — h)]
_ _ 1 oWy, oW,
Ae = Al = — {Gsin]] ( B + Ih +sin 2.J [—isin@[)Pg(sinﬁ)cosg— Z i(l +ecos])
1 6W1 1 A ) ) e==+1
—3 W,Wl +§( 1) cot I (10.2) x (=14 2ecos I) Py (sin B) sin(A — h — eg)
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e==+1

+sin? J {3 sin?(I) P (sin ) cos 2g

1
- Z 3 sin I(1 4 e cos I)Pj(sin 3) cos(2\ — 2h — 6g)]

+ Z esin(I)(1 + e cos I) Py (sin 3) sin(A — h — 2eg)

16 e=+1

In the same way, we get:
P3(sin §) cos 2
1
= 3sin?J {—2(3 cos®> I — 1) P (sin ) cos 21

1
+- Z sin 21 P} (sin 8) sin(\ — h — 2¢l)
4 e=%1

1
+§ sin? I Py (sin 3) cos 2(\ — h — al)}

+ Z psinJ(1 4 pcosJ) {—3sin(2l)
p==%1 2

ng(sinﬁ) cos(2pl + g)

- Z (1+cosI)(—1+2ecos )Py (sin3)
e= il

x sin(A — h — 2pel — €g)

1
- Z Zssin](1+scosI)P§(sinﬂ)
e==+1

X cos(2\ — 2h — 2pel — 69)]

+ Z (1 + pcos J)? { 3sin?(I) Py(sin 3)

p= il
x cos(2l + 2pg) — Z esinI[(1+ecosl)
e==+1
><P21(sinﬁ) sin(A — h — 2pel — 2eg)

+Z (14 ecosI)>PZ cos2(\ — h — pel — eg)
e= il

(14 ecos I)Pi(sin 3) cos2(A — h — eg)] (12)

(13)

Moreover the expressm% in (7) can be advantageously

replaced by"a—3 X whereaz is the semi-major axis of the
Mars motion given by the following relationship, related to the
keplerian motion:
n?a? = k*(Mg + M) (15)
wherex? is the constant of the gravitation.
. 2T .
Then the first part of the express@g@ﬁ is a constant term.

In the opposite, the second péét can be developed as a func-
tion of Mars excentricity and of its mean longitude, when the
perturbing body is the Sun. In the other cases (Phobos, Deimos
and planets), this development contains also the excentricity and
mean longitude of the perturbing body.

Contrary to the Earth for which the leading influence on the
nutation is coming from its satellite, the Moon for which the
amplitude is roughly 20 times that of the Sun, the nutation of
the planet Mars is largely dominated by the gravitational action
of the Sun, the influence of Phobos and Deimos being of the
order of 1/100 in comparison, and the influence of the planets
being still significantly smaller.

4. Results of the various contributions
to the martian nutation

4.1. The main terms of nutation
of Mars due to the Sun

The coefficients of the nutation of Mars due to the Sun are
computed in the following manner: the solar potential at the
first orderU} as expressed by the first part of the formula at the
r.h.s. of (7) is calculated by the way of the transformations given
by (12). The analytical expressions for the coordinatesss,
andrg are taken from the ephemerides VSOP87 (Bretagnon
& Francou, 1988). More precisely the rectangular coordinates
of Mars w.r.t. the Sun extracted from these ephemerides have
been converted into the geocentric spherical solar ecliptic coor-
dinates above. It must be noticed thigt which represents the
latitude of the Sun with respect to the mean ecliptic of the date,
is in fact non equal to 0, for we must take into consideration
the small oscillations of the orbital plane of the Sun (that is to
say the plane of the true ecliptic). Even if the terms of nuta-
tion coming from this contribution have a very small amplitude

Notice that the second component in the parenthesis in they should be taken into consideration, as was demonstrated by
r.h.s. (7) involves the potential at the second oldgy; it is not
considered in the present section, and gives birth to the terRg nutation coefficients coming from the second component of
of nutation coming from the triaxial asymmetry of the planethe potential at the r.h.s. of (7) are not considered here, for they

which will be treated in the Sect. 4.6.

The three Legendre polynomial¥ (sin 3), Ps (sin 3) and
PJ(sin 3) present in Eq. (12) can be written as follows:

P)(sinfB) = % x (=1 + 3sin? B)

P} (sin3) = 3sinfBcosf
Pj(sin8) = 3sincosf

(14.1)

(14.2)
(14.3)

Souchay & Kinoshita (1997) in the case of the Earth. Moreover

can be neglected for two reasons: at fidst B is very small in
comparison witC'— A — B, and at second (this is the main ex-
planation) they have a period close to half a martian day, which
means that the corresponding componenifig, that is to say
after integration in (11), becomes very small itself because of
the high frequency at the denominator. Nevertheless, we will
give a rough estimation of the largest semi-diurnal term related
to this component, in Sect. 4.6.
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Table 1.1. The solar influence on the nutation of Mars, longitulle

sin cos Period M A Borderies Values Hilton values
() () (vear) sin () sin ()
—1.09689 0.00006 0.940 2 2 —1.0431 —1.0962
0.63460 1.881 1 0.6031 0.6357
—0.23971 0.00001 0.627 3 2 —0.2278 —0.2401
0.10463 —0.00001 1.881 1 2 0.0994 0.1047
—0.04076 0.470 4 2 —0.0387 —0.0409
0.04432 0.940 2 0.0421 0.0445
—0.00630 0.376 5 2 —0.0061 —0.0063
0.00405 0.627 3 0.0038 0.0041
—0.00093 0.313 6 2 —0.0009
0.00041 0.470 4
—0.00013 0.269 7 2

Table 1.2. The solar influence on the nutation of Mars, obliquity

sin cos Period M Ay Borderies Values Hilton values
" " (year) cos (") cos (")
0.00003 0.51589 0.940 2 2 0.4908 0.5158
0.00001 0.11274 0.627 3 2 0.1072 0.1130
—0.04921 1.881 1 2 —0.0468 —0.0493
0.01917 0.470 4 2 0.0182 0.0193
0.00296 0.376 5 2 0.0029 0.0030
0.00044 0.313 6 2

Table 1.3. The solar influence on the nutation of Mars, mixed terms, longitudA#x

sin cos Period a (t%) AEa M A ASa A
@) @) (year) 1000 years
7590.39671 1
0.00627 —0.04917 1.881 1 1
—0.00223 0.01860 0.627 1 3 2
0.00959 0.00550 0.940 1 2 1
0.00101 0.00809 1.881 1 1 2
—0.00077 0.00632 0.470 1 4 2
0.00086 —0.00687 0.940 1 2
—0.00377 0.00105 1.881 1 1 1
0.00287 0.00179 —1783.395 1 4 -8 3
0.00127 0.00297 1.881 1 1 1
0.00212 0.00119 0.627 1 3 1
0.00163 —0.00160 —883.270 1 2 -5
—0.00018 0.00146 0.376 1 5 2

In Tables 1.1 and Table 1.2, we show respectively ifihe difference with Borderies results are more important. But
longitude and in obliquity the coefficients deduced from thBorderies tookH}/* = 5.103 x 10~ while we took H}/* =
Egs. (10.1) and (10.2) and characterizing the nutation of Mar$63 x 10~3. The coefficients are proportional to the value of
due to the Sun, together with the corresponding argument afig’*. The difference between oiif @ and Borderies one ex-
period. Borderies (1980) and Hilton (1991) calculated the samlains a large part of the differences between the amplitudes of
coefficients by different approachs. Borderies used an Hanifte nutation coefficients.
tonian method with orbit elements given by Struve and Hilton Moreover, in Tables 1.3 and 1.4, we show the mixed secular
an Eulerian method by using the ephemerides VSOP82 (Bterms in the fornt x cos or ¢ x sin which result from our com-
tagnon, 1982). Their values are given in the two last columpatations. They result themselves from the presence of mixed
of Tablel.1 and1.2. Our values are very close to Hilton’s onessecular terms in the expression of the coordinatesss and
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Table 1.4. The solar influence on the nutation of Mars, mixed termJable 2.1. The indirect planetary effects on the nutation of Mars, lon-

obliquity t x Ae gitude Ay
sin cos Period «a (%) M Xju Ase Aum sin cos Period A\ve Aga M Aju Asa Am
() () (year) 1000years () () (year)
0.00875 0.00105 0.627 1 3 2 —0.00039 0.00019 2.235 1-1
—0.00332 0.00579 0.940 1 2 1 0.00028-0.00035 2.754 1-2
0.00381-0.00048 1.881 1 1 2 0.00030 0.00007 —0.940 4 -10 3 2
0.00297 0.00036 0.470 1 4 2 0.00014-0.00027 0.941 4 -6 3 2
0.00242 1 0.00015-0.00017 1.118 2-2
—0.00063-0.00227 1.881 1 1 1 —0.00004-0.00024-877.785 2 -5 1
0.00180-0.00077 1.881 1 1 -1 0.00028 0.00003-15.781 1 -2
—0.00072 0.00128 0.627 1 3 1 —0.00019-0.00003 11.862 1
0.00019 0.00104877.785 1 2 -5 -1 0.00014-0.00007 0.662 3-1 2
—0.00008 0.00009 0.511 4-2 2
—0.00008 0.00010 0.701 3-2 2
rs. We are taking into account all the coefficients with absolute?-00011 0.00004 5'135 ;_1
amplitude up to 0.1 milliarcsecond (mas), in combined absolul%'ggggg 8'8882? Sz'ggg 1 _g 5
amplitude (sine and cosine). Notice that, as it can be expecte(sj'00005_000009 0.627 4_5 3 >

by similarity to the case of the Earth, the leading component of
nutation, with amplitudd .09512” and0.51532" respectively
in longitude and in obliquity, has a period corresponding to halfble2.2. The indirect planetary effects on the nutation of Mars, oblig-
the period of revolution of the planet around the Sun, that is ¥y A¢
say 343.49 d, the relative argument betdd +2A »,, whereM
is the mean anomaly of Mars ard,; corresponds to the angle ~ sin cos  Period Aga M Aju Aum
between the poinD; and the Mars perigee, along the moving () ) (year)
orbit of Mars (see Fig. 1). Notice thaty; must not be confused _g.00003  0.00014—0.940 4 —-10 3 2
with the longitude of the perigee, for it is determined along the0.00013 —0.00007  0.941 4 -6 3 2
mean martian orbit and the martian equinox, and not the ecliptic
and the equinox of the Earth.

The second term in decreasing order of amplitude has

nc()) gg;g?/nendt 'Itn Ob“.qléllt.y’ é);; gsd a;npllr':ude n Ionglzjgde Yude of Mars itself and of the other planets. These terms appear
e ti tin IS period 1 | f M ' OrAtEi (iolrrfipon ﬁl_ng agimultaneously with the main terms of nutation due to the Sun,
gument IS the mean ahomaly ot Mars. ota coefficienfs, e planetary perturbations of the relative ecliptic coordi-
are prese.nt for\y gnd 6 coefficients fore, above[our Igvel natesug, Bs andg of the Sun in (7) and (12) are included as
of truncation, that is to say 0.1 mas. The valueff'* which Fourier series involving the mean longitudes of the other plan-

serves to the determination of the scaling factor: ets, together with terms characterizing a keplerian motion.

Their argument is a linear combination of the mean longi-

) k2 Mg o Notice that here the most influent planets are Jupiter and the
K" =3 Bw x Hg™* Earth, whereas for the nutation of the Earth, these are Venus and
S

Jupiter. The leading terms of the indirect planetary effects are
from which the values of the coefficients of nutation are depengithered in Tables 2.1 and 2.2 respectively in longitude and in
ing directly, is dicussed in Sect. 6. obliquity.

4.2. The indirect planetary effect on the nutation of Mars  4.3. The nutation of Mars due to Phobos and Deimos

As it is the case for the nutation of the Earth (Kinoshita &hobos and Deimos, the two satellites of Mars, are bodies of
Souchay, 1990; Souchay & Kinoshita, 1996) the solar potentiary small dimensions, with mean radius respectively about
which gives birth to the nutation of Mars is influenced by th#1.1km and 6.2 km. But they are very closed to the planet,
planets by the intermediary of their perturbation on the orbithr their mean distance corresponds respectively to 2.76 and
motion of Mars, and consequently on the relative motion of tfe91 Mars radii. In order to compute the nutation due to these
Sun with respect to Mars. Therefore, some terms of nutatiomo bodies, we have used the series ESAPHO and ESADE
involving the mean longitude of planets other than Mars appd&hapront-Tougz,1990). The means orbital elements of the two
when the truncation threshold in the series of nutation is sma#tellites are the following ones, according to this last paper:
enough. These terms are sometimes called the “indirect plan-

etary effect”, although this terminology does not seem realfypn = 9373.713 km

adequate, as was dicussed by Souchay et al. (1998). eph 0.015146



S. Bouquillon & J. Souchay: Precise modeling of the precession-nutation of Mars 289

Mean Orbit of Mars
For the date t :NFI:

[o]

Phobos

Mean equator of Mars
for the date t

—

Orbit of Phobos

Fig. 3. Equatorial Phobos ele-

el ments
ipy, = 1.067639° expression of the Legendre polynom#al(sin d;) is:
hp, = 0.436025°/d . 3 1
Apn = 1128.84476°/d Py(sind) = 5 sin 0s — 3 a7
and: As our procedure here is a new one, we develop it exhaustively
in the following: let us consider (Fig. 3) the angleg \; and
ape = 23457.06 km i which enable to give the position of the satellite (Phobos or
epe = 0.00096 Deimos) with respect to the mean equator of the planet of the
ipe = 1.78896° date and to the node between the mean equator of the date and

o~ 0 018001°/d the mean orbit of the planet of the datg,. /s is the longitude
e — . of the ascending node of the orbit of the perturbing satellite with
Ape = 285.161875°/d respect to the mean orbit of Mars and counted from,. A is

Because of the smallness of the influence of the two satellifd§ Mean longitude of the satellite andis the inclination of

on the nutation, the second part of the potential at the rh.s 3¢ orbit of the satellllte, with respect to the equgtor of Mgrs.
Then, the coordinatesX(, Y, Z) of the perturbing satellite,

7) is completely negligible and not considered here. Thus fo
(N plerely negig [th respect to the equatorial frani&,,), are related to its

the two satellites the perturbing potential can be expressed 26+ ! ) S
P gp P coodinates «,y,z) with respect to the frame materialized by
k2Mg y KQC’—A—B

P, (sins 16 the mean orbital plane ang,;,, by the way of the following
73 2 2 (sin d;) (16)  transformation:

the indices being associated with the given satellite. Then, W& Y, Z] = M, (I)M,(h + 1I)[x, y, 2] (18)
must notice some particularity in the way of computation of the ) ]
nutation here, which looks like an extension with respect to tMd1ere M, and M. are respectively the rotations around the

usual one as set up by Kinoshita (1977) and used precedetf§Xis and the z-axis.
to calculate the coefficients of the nutation due to the Sun. The Then after (17) we find:

Us ~

reason is that the coordinates (X,Y,Z) of the satellites in tl}gzp2 OPy(sin 8,) __ Bsiné,

ephemerides ESAPHO and ESADE (Chapront-Bou990) .= = — 5 — = 3sin ds o (19.1)
used here, are determined with respect to the equatorial plaéﬂ,g2 OPy(sin 6,) Osind

of the planet and to the ascending node of the mean equ = TS = 3sin 587‘g (19.2)
with respect to the mean orbital pla@,. We call this refer-

ence systeniR,,). Therefore we want to avoid to compute thd hen, with the help of (18), we can write:

coordinates\; andg; of the satellites with respect to the mea sins

orbital plane of the planet, and to compute the Legendre poé*S = sin I cos d5 cos ag (20.1)
nomial P (sin d5) by the intermediary of the transformations in8 S‘?ﬁ(s

Eq. (12). In other words, we use the same canonical equatiohrs—> = — cos J, sin o, (20.2)

as those given by (9.1) and (9.2), but, by keeping, for further I
developments the original angig, which is the declination of Notice thaty isthe equivalent of the right ascension of the satel-
the satellite with respect to the mean equator. Notice that tite with respect to the planet’'s equatorial reference frame and
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equinox. Then, the combination of Egs. (19.1), (19.2), (20.Then the nutation&y = —Ah andAe = —A[ are given by:

and (20.2) enables to write: K. sin 2,
o= 3sin I sin d5 cos 05 oS aig (21.1) sim hs
. sini, (14 cosiy)] .
P, sinhg — | —————%| sin (2As — A,
% = —3sind, cos b sin o (21.2) S { s — by } sin (2 5)

[sin is(1 — cosig)

e in (2, — 3h, 271
97, — 3h. ] sin )] @7-1)

In a second step, we write the equations above as a function of
X, Y andZ, with the help of trigopnometric transformations:

sin 24

X = cosd;cos(as — hs) = cos(As — hy) (22.1) Ae = —K, Hh}
Y = sin(as — hs) cosds = sin(Ag — hg) cosis (22.2) . sinig(1 + cosis) o b
Z = sind, = sin(A, — hy) sini, (22.3) xcoshy = | =5 — | 0s(2As —h)
Thus, by combining the Egs. (21.1-2) and (22.1-3), we find the _ Sinis.(l - CQSis) cos(2Xs — 3hy) 27.2)
following relationships: 2Ms — 3hy
or, . ) The leading components of the nutation due to Phobos and
Oh 3Z(X coshs — Y sin hy) sin 1 (23.1) Dpeimos are by far those which involve the longitude of the
0P, ) node of the satellites, in Egs. (27.1) and (27.2). Thus at the 0.1
oI —3Z(Y coshs + X sinhs) (23.2) milliarcsecond truncation level, we find only two terms both in
or, by substitution of', Y and Z: longitude and obliquity:

1 0P, 3 Ay = —0".01209 x $in hphovos — 0”.00439 X Sin hpeimos
sinl, Oh = g 2is sin fg Ae = 0”7.00514 X cos hphobos + 0"”.00187 X cos hpeimos

43 sin iy (1+ cos i) sin(2X, — hy) Notice that the respective periods are 2.260 yHf,op0. and
4 54.754 y fotheimos-

3
+1 sinis(1 — cosis)sin(2As — 3hs)  (24.1)

OP, 3 . ) 4.4. The nutation of Mars due to the direct action of the planets
—— = —-—-sIn2i45cos hg
oI 4 The attraction of the other planets on Mars causes nutations
+§ sinis(1 4 cosig) cos(2As — hs) which can be calculated in the same manner as the nutation com-
4 S S S S

ing from the attraction of the Sun, by replacing the marsocentric
_3 sinig(1 — cosiy) cos(2As — 3h,)  (24.2) coordinates of the Suny, As and3s by the marsocentric coor-
dinatesr,, A\, andg,, inside the Egs. (7), (12), (14.1-3). These
In the following we will assimilate the orbit of the two satel-coordinates are obtained by substraction of the heliocentric co-
lites to a circle, for their excentricity is very small (respectivelgrdinates of Mars from the heliocentric coordinates of the given
0.015146 and 0.00096 for Phobos and Deimos). Thus, by chopisinet, as they are expressed analytically by the ephemerides
ing a,; as the mean distance of the satellite, the derivatives\68OP87 (Bretagnon & Francou, 1988). The coefficients of nu-
the perturbing potentidl/; w.r.t. the variabled and can be tation are still here obtained after integration of the potential to

written in the following form: provide the determining functio? by the way of Egs. (10.1)
9 4 and (10.2). The Earth and Jupiter are the sole planets to give
oUs _ (“ ]\js> <2C A B) (8132) (25.1) significantinfluence at the Orkas level. The precession due to
Oh as 2 Oh these two planets is listed together with the main nutation terms
s _ Mg\ (20 —A—B\ (0P, (25.2) in Tables 3.1 (longitude) and 3.2 (obliquity).
oI al 2 oI
Then, the integration of the canonical equations at the first ordieb. The Oppolzer terms and the nutation
gives: and precession of the figure axis
Ah — _ 1 U (26.1) All'the coefficients of nutation which have been calculated in the
~ Gsinl ol ' precedent chapters concerned the axis of angular momentum,
1 oU, following the Eqgs. (9.1), (9.2), (10.1) and (10.2). Nevertheless,
Al = Gsinl / oh (26.2) it must be noticed that generally users are much more interested

by the nutation of the axis of figure, rather than by the nutation of
the angular momentum, for the former enables to give directly

3k2Mg 2C—-A-B the orientation of the planet w.r.t. a given reference frame. The
Ky = ( ) X < 20 ) difference between the orientation of the axis of figure and that

Let us callK; the coefficient:

3
4aiw
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Table 3.1. The direct influence of the planets on the nutation of Mar3able 4.2. The Oppolzer terms making the difference between the axis

longitudeAy of angular momentumand the axis of figure, obliquiky,
coefficient Period arguments influence cos Period M Aum
" (year) " (year)
—0.22154 — t(1000y.)  Jupiter —0.00139 0940 2 2
—0.00019 5.930 sin(2Ayu) Jupiter —0.00046 0.627 3 2
—0.00003 5.930 cos(2Au) Jupiter 0.00040 1.881 1
—0.08153 — t(1000y.) Earth —0.00010 0.470 4 2

0.00014 —15.781 sin(Ags — 2Ana) Earth
—0.00008 —15.781 cos(AEa — 2AMa) Earth

of figure, as can be seen from Tables 1.1 and 1.2. At last, the
85ppolzer terms which give the orientation of the axis of rotation
with respect to the axis of angular momentum are much smaller
in absolute amplitude, than those which have been calculated
above for the determination of the axis of figure, that is to say by

Table 3.2. The direct influence of the planets on the nutation and pr
cession of Mars, obliquityAe

coefficient Period argument influence

—0.(0)0622 (ye_ar) £(1000y)  Jupiter a ratio (C-A){C. Thus thgy are at the order of the microarcsec-
0.00009 5.930 sin(2\s,)  Jupiter ond level which is negligible in the f_rame of our present study,
—0.00002 5.930 sin(2X\;,)  Jupiter and consequently they are not studied here. In other words, we

0.00249  — t (1000y.) Earth can assimilate the axis of rotation to the axis of figure.

Table4.1. The Oppolzer terms making the difference between the axds6. The influence of the triaxiality on the rotation of Mars

of angular momentum and the axis of figure, longitud - . . .
g g gitudles As itis the case for the Earth, Mars is not an axisymetric body,

which means that the moment of inerlaand B are not iden-
tical. The consequence is the presence of semi-diurnal (which
means here with period corresponding to half a martian day)
components of the nutation. The way of calculation of these
components starting from Hamiltonian theory is quite identical
to that already used by Kinoshita (1977) and more precisely by
Souchay & Kinoshita (1997). Then the final formula giving the
nutation in longitude and obliquity are the same, the values of

of the axis of angular momentum is given by the followin§'® Parameters being changed. The two leading terms can be
expressions, obtained with the help of Egs. (3.1) and (3.2): Written as follows:

J . B-A 1
—(Ahy — Ah) = —-A <s1nI X smg>(28.l) A jaq = 5 _A_B"~ K' [8(1 +cos 1)

sin Period M An
(" (year)

—0.00361 0.940
—0.00119 0.627
—0.00027 0.470

0.00017 1.881

A WN
NNDNN

Ay — Ay

Aep— Ae = — (AI; — AI) = —A(Jcos g) (28.2) " { 1
(g+1—M—h)

X sin (29 + 20 —2M — 2A1\/[)

:| A2M+2A1u
The development of the expressions at the r.h.s. of (27.1) and
(27.2) by the intermediary of canonical equations giving both

) . ) 1 1
AJ andAg, ant_j the numerical treatment relqted to this devel L ost | 4 x sin(2g + 21) (29.1)
opment, are still here exactly the same as in the case of the 2 (g+1)

calculation of Oppolzer terms for the Earth, as analytically car- B_A

1
ried out by Kinoshita (1977). Thus we can refer to that lashe/2a = K’ [8 sinI(1 + cos )

— X
paper to know in detail the whole procedure. Four coefficients 20-A-B

are found and listed in Tables 4.1 and 4.2, up to 0.1 mas in « { i 1 B ] Agnitan,,
absolute amplitude. (G+1)—(M+h)
Thus we can refer to that last paper to know in detail the x cos (29 + 21 — 2M — 2A )
whole procedure. Four coefficients are found and listed in Ta- 1 1
bles 4.1 and 4.2, up to 0.1 mas in absolute amplitude. These —7sin2! [(g’ n l')} Ap x cos(2g + QZ)] (29.2)

coefficients have to be added to the corresponding one (with the
same argument) for the axis of angular momentum, in order{@ere the coefficienk” has the following expression:
get the nutation for the figure axis. Notice that the argument of

the leading coefficients for the Oppolzer terms correspond tg, KZMg 2C—-A-B

the leading ones for the axis of angular momentum or the axts = ° 3, * { 20 ]
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Aanrt2n,, being the coefficient of the term with argu-calculated by Bretagnon (1982), and we take these values. Thus,
ment 2M + 2A,; in the development of the expressiomwe can write:
(;}—;)3 cos? 3, cos 2\, and Ay the constant term in the expres-

sion %(%)3(1 ~ 3sin? 3,). sin(IT + v) s%nﬂ' = sin(Q2 —QO) sin ¢ (33.1)
We can observe that to determine numerically the Oppolz&s(Il + ¢) sinT = —cosisinig
terms, we need to know the value of the angular rate of the vari- +sinicosigcos( — Qo) sini  (33.2)

abled andg whose definitions have been given at the beginnin . . .

of the paper. The value of this angular rate is determined whefe variabley corresponds to the angl?;&bDo in the Fig. 2.
studying the free motion of rotation of the planet. By analogiynd the values found for the angles are:

with Fhe free motion of the Earth studied extensively py Ki- 897 44801347 — 1.380904T2 — 0.091923T3 (34.1)
noshita (1972), we can approximaieand!/ by the following

simple expressions: II = —446819.38155 + 12842.0873367

—4.3529707? + 15.967223T" (34.2)
) 1{¢ C -
g=cl7+t5|*xw (30) The angle from the nod® between ecliptic J2000.0 anéy)),
2|/A B .
) and the departure point is:
l=w—yg (31)

(ND) = —520206.882048 + 27780.958512T

These approximations are available at the condition that the 15.82729172 + 8.2363161"° (34.3)

triaxiality expressed by the parametes small, where: _ _
The units are arcseconds and thousand of years for the time.

[§ - %] The partial derivatives of with respect to the variablés
T 9 [€+9] (32)  andr are obtained with the help of (8):
Arough calculation leads te:= 0.065 which gives the follow- aiE — —Gecosl [7} sin (h _ DM)
ing numerical values of the main semi-diurnal nutations, aftét
substitution of aguments: —IIsin7 cos(h — DM )} (35)
Aty jq = 0"7.00011sin(2A g — 29 — 20 — 2h) a—E = Gsinl [—H sin 7 sin (h — DM)
—0"”.00011 sin(2g + 21) Oh _
— eos(h — DM)} (36)
and:
Notice that the variations of these angles are very sralk.
Aeyjaq = —07.00005 cos(2Arra — 29 — 21 — 2h) andII have respectively the periodsT1 x 10%y, 2.87 x 10%y
-+0.00005 cos(2g + 21) and1.59 x 10°y. We can consider them as constant terms for a
short span of time.
The periods are respectively514d and 0.513d. An, is the The rate of precessiohz coming from the motion of the
mean longitude of Mars, and (I+g+h) has a period equal to thfean orbit of Mars, as well as the secular variation of the oblig-
sidereal rotation of the planet. uity ¢ of Mars equator with respect to the mean ecliptic of the

These expressions hold for the axis of angular momentugiate, are given by:
As itis the case for the Earth, the corresponding expressions for
the nutation of the axis of figure for these semi-diurnal coeffi; =~ _ —-1 0B 37)
cients are opposite, at the level of precision of these coefficients. ~ Gsinl 91

— cot I [fsin (h — DM) — I x sin 7 cos (h — DM) |

5. Theplanetary precession i- 1 oF (38)
and the secular variation of the obliquity = Gsinl 0h
As the Egs. (5), (8), (9.1) and (9.2) are pointing out, the addi- — —1I > sinmsin (h — DM) — 7 cos (h — DM)

tional component in the Hamiltonian, which is related to aThese last equations lead to:
secular motion of the plane of reference to compute the nutation
terms, that is to say the mean orbital plane of Mars, has to bg ~ cot Isin(h — DM) x 7 (39)
taken into accountEy depends on the anglesandIl, which I~ —cos(h — DM) x # (40)
have been determined in the following of (8).

These angles can be expressed as a function of the elemeititsre the value ofin ©# has been neglected because of the
Q2 andi which are respectively the longitude of the node of Mamallness of the angle. The following resulting numerical
orbit and the inclination of the orbit w.r.t. ecliptic of J2000.0determinations aréhz ~ —1.57970" /y and:éyre = —1 =
The numerical expressions for these two parameters have be@rb0336” /y
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At the first order the martian planetary precessipn, In order to determine the value of the geodesic precession for
which is the equivalent expression of the planetary precessiars, we can refer to a basic formula as it has been established
x 4 for the Earth as defined in Lieske et al. (1977), is related by De Sitter(1938) and calculated by Barker and O’Connell

hg by the straightforward formula: (1975) as well as by Williams (1994) for the Earth, that is to
. say:
. hg
XMa = — = 1.74571" Jy 3 nai? n
COSEMa Pgeod. = 5 X |:7:| X ﬁ (41)

. Notice tha/t these vqlues are res,pectlvely for the Earth: Wheren, a, ande are respectively the mean motion, the semi-
¢ = —0.46815" /yr andx = 0.10553" /yr major axis and the excentricity of the Mars orbit, and c is the
speed of light. The numerical value thus foundgi..q =
0”.67547 /cy.

In a similar way as it was the case for the Earth (Souchay
& Kinoshita, 1996),@[1;@& can be expressed as a function of the
As it has been defined for the Earth, the general precessiorljmamical ellipticity of Marst }/¢ = 2¢=2=8 and of param-
longitude in the case of Mars characterizes the motion, wigters which are known with a relatively very good accuracy, as
respect to the slightly moving plane of the Mars orbital motiotile mean motion, the mean rotation, and the orbital character-
of the date, of the intersection of the ascending node of ttiggics of the planet. By using the same formula as for the Earth
plane with the mean equator of Mars. We call in the followinfKinoshita & Souchay, 1990; Souchay & Kinoshita, 1996) but
this general precession in longituggy, by taking into account the sole solar contribution, we can write

In a very similar manner as for the Earth (Kinoshita &he relationship betweeny,, and Hj/*:
Souchay, 1990; Williams, 1994; Souchay & Kinoshita, 1996)

6. The contributionsto the precession in longitude
and itsrelationships with the dynamical dlipticity

Para IS the sum of several contributions, which can be enumels,, = —3 x H}® x [MMaM]
ated as: the leading one due to the gravitational attraction of the Ma + Ms
Sun, the contribution due to the gravitational attraction of the N3,
. L X | =22 | Spcosepa (42)
planets (direct planetary effect) as well as to the gravitational WhMa

attr.act|.on of Phobos and_ Deimos, and the gegde;m precesswﬂereso is the constant term in the expression of the potential
which is a small correction related to a relativistic effect (D

X , ivenin (14.1). Some additioning relatively small contributions
Sitter,1938). At last we must take into account the rather b ( ) ¢ y

twhich i ing f the fact that th | eady calculated inthe case of the Earth (Kinoshita & Souchay,
component which IS coming from the fact that the genera prerQO) will not be considered here because of their expected
cession in longitude is not measured from an inertial plane (

inst th bital ol for th h of ref JZOOO%[na"neSS as it is the case for the contribution due to the solar
Instance the orbrtal plane for the epoch of reference Reraction withJ,. Unless future determinations of the ra‘,li;%)

but from the moving orbital plane of.the date. This componefbtok astonishingly relatively large for Mars in comparisoh with
corresponds in fact to the expressiguos ey, as calculated

) ) X the Earth, we can neglect this last influence. Notice that for the
in the precedent chapter, whegecharacterizes the pIanetaryEarth it amounts only te-0".0026/cy, that is to say a relative

precession. 5 x 1077 ratio with res [
o . . , pect to the total precession value.
From the Viking/Pathfinder experiments the Mars’ rate of At last some other influences present in the case of the

the precession in longitude,,,,, with respect to the fixed mearanrth, as coupling effects between the planet and its satellite

orbital plane of Mars at the epoch J2000.0, has been determi 9] hi hav. 1 hich o .
with a good accuracy, that is to s&@p76 + 0.035"/y. It must lag oshita & Souchay, 1990) which can be divided into two

b fused wit i thel : tth | ¢ _parts as crossed-nutation and tilt-effects (Williams, 1994) are
not be contused wi Pasa; neverthelsee, SO get the sole Contriy, o+ considered here, because the corresponding coupling inter-
bution of the Sun tap,,,, as quoted agy,,, we must make

action between Mars and its satellites Phobos and Deimos look

the substitutions of all the other comppnents which have be &npletely negligible in comparison: the effects of Phobos and
e?ur?arated albove, excepted the leading one due to the Ch%'gi?hos on the first order precession and nutations are less than
ofreterence plane. 1% that of the Sun, whereas in comparison the effects of the

The influence of Phobos and Deimos on the PrecessIonilon onthe precession of the Earth are twice that of the Sun and

Me_lrs Qerlved from our calculations are nqt pre_sgnt, which S€€MBre than ten times in the case of the nutation. Finally, our value
to indicate that because the plane of their orbit is very close 19 gMa a5 deduced from (42) igTMa = 0.3669 + 0.0017
d d - v .

the equatorial plane of the planet, this influence does not exiglys ;a6 of H}% is a little different of that calculated by
The influence of Jupiter is -0.0002 and that of the Barth o ot 1., that is to sayf M = 0.3662 + 17, but notice
-0.000081y (the sign *- indicates that the relz_ited motion s at we use this last value in the computation of our series. Thus
retrograd one). Thus all these effects are considerably small ( € series calculated with our valigMe may be obtain in a
d

cumulative effect of these contributions is only about 1/100 I ; :
; mple manner by multiplying the series of this paper by the
that of the total value of the precession). Moreover, we CaLy P y ping baper by

: jo of the values of the factdi}/ “taht is to say 1.0019.
neglect the direct effects of the other planets as the Earth and d y
Jupiter.
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Table5. Values of the parameters and angles used in this paper

name of the variable value uncertainty unit origin
w 350.89198226 +8 °/d Folkner et al. (1997)
n 1886.51820925 “Iday  conventional value of IAU.
k* Mg 1.32712438 x 10%° m?3 x sec>  conventional value of IAU.
Ms/Mpia 3098710 — conventional value of IAU.
Jo 0.001964 — conventional value of IAU.
J3 0.000036 — conventional value of 1AU.
S22 0.000031 — conventional value of IAU.
Cap2 —0.000055 — conventional value of IAU.
C/MR? 0.3662 +17 - Folkner et al. (1997)
Hy 0.005363 +25 - this paper
(B—A)/C 0.0006896 +32 -

C/A 1.005741 +27 - this paper
C/B 1.005044 +24 - this paper
Rma 3397.2 440 km conventional value of IAU.
g 352.7842 +88 o/d this paper
I —1.8922 +88 o/d this paper
e 0.0646 +5 -

K’ 16557 +77 /1000 ans

€Ma 25.189417 +35 o Folkner et al. (1997)
Q2000 317.68143 +1 o Folkner et al. (1997)
02000 52.88650 +3 o Folkner et al. (1997)
Ao —108.994438 o

aph 9373.713 km Chapront-Toug (1990)
epn 0.015146 - Chapront-Tou& (1990)
VP, 1128.845 o/d Chapront-Tou&z (1990)
iPh 1.067639 ) Chapront-Toug (1990)
k> Mpy, 6.38825 x 10*° m® x d? Chapront-Toué (1990)
hpn 0.436025 o /d Chapront-Toué (1990)
Kpp 383.8 +18 /1000 ans this paper
ape 23.457 km Chapront-Touz (1990)
€De 0.000196 - Chapront-Tou& (1990)
UDe 285.1619 o/d Chapront-Tou&z (1990)
iDe 1.78896 o/d Chapront-Touz (1990)
K>Mpe 8.96375 x 10** m> x d? Chapront-Toué (1990)
hpe 0.018001 o /d Chapront-Tou& (1990)
Kpe 3.436 +16  //1000ans this paper
Myu/Msg 1047.355 — conventional value of IAU.
Mrerre/Ms 328900.5 — conventional value of IAU.

7. Long time scale evolution of the motion

of rotation of Mars dt

K*M' 20 —-A-B
+ X

—sin(h — D_N)di]

In order to study on a long time scale the variation of the pa- 2 X [Py(sin §)] (43)
rameters related to the rotation of Mars, especially that of the r? 2 oo

obliquity 7, and of the precession rate in longitudg;,, we Wwith:

first express the long period and the secular parts of the HanLiF . 1 /r\3 5 o\ —3/2
tonian related to this rotation. For this purpose, we do not con-2 (sind)],. = 4 (*) (3cos® I —1) (1 —¢?) (44)

sider here the Hamiltonian related to the free motion as well as The term £ that stay in this Hamiltoniar, p seems to

its component related to the short-periodic forced motion. Wifliter from the termE use in the previous parts of this paper.

a suitable change of canonical variables, the Hamiltodian | fact, the only difference is the choice of the inertial plane.

becomes L P> for Long Period ands P> for Short Period): For the short period study, we choose the mean orbital plane of
L? Mars at J2000 as inertial plane. The choice of this inertial plane

5¢ T Gsinl |sinicos (h — DN) Q of reference comes from the intention to describe the motion

F =
LP 20
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of precession-nutation of Mars in a way analogous to what is
chosen in general for the Earth, that is to say the mean orbite
plane of the Earth or ecliptic, at J2000.0.

For the long period study, we choose the ecliptic of the epoéf
J2000.0. This plane is easier to use because the ephemeridés
Mars relate to it. In both cases, the tefiris written: E

E=—-Q1 x1T; —Qy XLy — Q3 x13 (45)

ation of [ h-m *T|

-10

Q;,7 = 1,2, 3 are the coordinates of the instantaneous veg-
tor of rotation of the reference frame linked to the mean orbit-15
of Mars w.r.t. the reference frame linked to the inertial plane.
We remark that for the long period study as well as for the shori=2250 Z400 Z300 200 “100 o
period study, the origin of the angleis the departure poirid;. Time (unitis thousand of years)

Therefore_Qg is _equal to zero. For thg Iong period st_udy_, thgig. 4. Motion of variable h over 500 000 years

Q; are written with the help of the variable®t 2 describe in
chapters. Until chapter6, the Q2; are written with the help of
the variablesr etII. So we have the relation:

The component§);, i = 1,2, 3 can then be written in the fol-

lowing form:
. _di
Erp = GsinI |sinicos(h — DN)Q — sin(h — DN) S 2(pp + q4)
dt Q, = (51.1)
o VP + V1P -
= ESP:GSinI[sinwcos(thM)H . . R
Q, = 2P p)V1—p*—q (51.2)
— sin (b — DM) #| (46) N

The same thing occurs for the definition of the variation of th%3 =0 (13)
departure pointD,. We have the two following relations thatWith the help of Egs. (51.1-3), we can express{henith re-
determine the same motion: spect top andq. Moreover the expressiofi — €2)2 in (48)
can be determined from the angles- esin© andk = e cos @

ND = — cosif) given by the long period ephemeris:
or 2% 2 2\

. (1-¢)? =(1-hr -k (52)
MD = —cosll (47)  Thus the differential Egs. (48) and (49) can be expressed as a

function of the time, and a numerical integration can be car-

With the HamiltonianF, p, the two equations of the system can: ; e )
ried out, leading to the determination of the rotation angles

be written : i
and /. We use a numerical integrator of Runge-Kunta at 8th.
b o= _#67}7 order with variable step. In the continuation, we use the Laskar
Gsinl 01 . ephemerides. On a 500000 years period the differences with
i — _C?SI {sinicos(h _ D_N)Q — sin(h — D_N)dq t'he. Br_etagnor} ephemeridgs are _negligible for this study._ The
sin dt limitation to this time span is principally due to the uncertainty

on the frequencies of the orbital motion of the planets (that is
to say roughly 0.1/y). This uncertainty brings a phase shift of

2M' (2C—-A—-B =3
Sk (C )(1—62) 2 cosl (48)

2 Gad 2
about15° on the longitudes after 1/2 million years. Moreover,
Laskar & Robutel (1993) have shown that Mars is located inside
. 1 OF X o o
I = Genlon a chaotic zone, and that after 5 million years time interval, the

. di determination of the orientation of the planet cannot be mod-
= — [Sinisin (h — D_N) Q + cos (h — D_N) d} (49) elized.
t As afirst step we integrate the Eqgs. (47), (48) and (49) with
Practically the coordinate®;,i = 1,2, 3 can be expressed asyirz = 0-3662 that is to say the value determined by Folkner
a function of the variablep and ¢ given by the long period €t al. (1997) from a precession value set to 7'3y6Fig. 4
ephemerides of Mars (Bretagnon, 1984; Laskar, 1988). Theijows the variation of/i( — h x T)), (where T is the time),

are given by: from —500 000 years until nowdays. Fig. 5 shows the variation
] of epra(= —I) on the same period. At last, Fig. 6 shows the
p = sin (Z> §inQ (50.1) Variation of (DN — DyNy — NoN) = V(D) that represent
the motion of the departure point d?,.

. (0 Variations of the obliquity/ of Mars on a very long time
g = sin| g JcosQ (50-2)  5cale have already been done by Ward (1979). Borderies (1980)
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has also studied the variations of the obliquity and of the prgy 8. Relative motion of | with Pathfinder and Viking values of
cession in longitude of measured from the parameteron ¢/n Rr?

the same time scales, but with an origin for the determination of
the anglen the pointV; which has not the same propperties as )
the pointD,. However, the choice of the origin does not affect Moreover, the frequency of the precesstodepends on the
directly the obliquity, which is the more significant variable foratio (MTRZ) as a scaling factor. The rotation of Mars at a long
the past history of Mars weather. Although they are differefiine scale depends also strongly from this parameter because of
ephemerides, the variations of obliquity determined by Wardsonances closed to this frequency. As we already mentioned it
and Borderies were very similar to our results. The main difefore, the accuracy on this parameter has been drastically im-
ferences between the results are due to the choi(:é"—§f) of proved by the measurements done by Pathfinder (Folkner et al.,
which uncertainly has been improved recently by the Pathfinde€397). Nevertheless, despite the better delimitation of the range
mission, (see Fig. 8). of the values off andh in a 500 000 y time scale, Mars could
The large variations of the obliquity (Fig. 5) come from thstill cross resonant zones. Thus we have studied this possibil-
commensurability between the frequency of the precessiority; in Fig. 7 we have represented the evolution w.r.t. the time
and the linear combinations of the frequencies of the revolutiookthe difference between the determinations of obliquities cal-
of the planets. Notice that the Earth is taken away from resonantated with different values of the coefficie(ry{fﬁ) located
zones, because of the dynamical couple exerted by the Moon,ititede the uncertainty range, and that calculated with the nom-
precession caused by this last body being roughl{\80’hus inal value(ﬁ = 0.3662). Then we show that no resonance
the variations in obliquity for the Earth are abdiitwhereas occur on a period of 500 000 y (the curves do not overlap but
for Mars they reachi5°. present the same form with gradually increasing amplitudes).
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The Pathfinder data has allowed to reduce by a factor tefthe Pathfinder mission leads a much better delimitation, by
the uncertainty of théMTRQ) parameter since Viking missions.roughly a factor 10, of this evolution. Then we can observe
The Fig. 8 shows the drastic improvement of the accuracy titat the uncertainty of the Martian obliquity for the time scale
the determination of the martian obliquity from -500000 y untitbove does not exceed 1 degree peak to peak. We hope that this
now. The same curves as in Fig. 7 are shown in comparison witark might be useful to determine at best the orientation of the
the isolated curve which shows the uncertainty on the valueais of figure in space in the perspective of future missions as
I before the mission Pathfinder. We can then remark that tNETLANDER.
accuracy on the determination bhas also been improved by a
factor 10. However, the peak to peak uncertainty after 500,08@¢er ences
years of integration is still about one degree. Variations of am-
plitude of the Earth obliquity are the main reason of ice age fBarker B.M., O’Connell R.F., 1975, In: Proceed of the Enrico Fermi
our planet. Then it looks very interesting to constrain at best the Summer School, Varenna, Italy

ime evolution of such a parameter as the obliquity for Mars, §8rderies N., 1980, A&A 82, 129
time evolution of such a parameter as the obliquity for Mars, $etagnonP.,1982,A&A114,278

we did here. Bretagnon P., 1984, In: Berger A.L., et al. (eds.) Milankovitch and
climate. p. 1
8. Conclusion Bretagnon P., Francou G., 1988, A&A 202, 309

) ) _ Capitaine N., Guinot B., Souchay J., 1986, Celest. Mech 39, 283
In this paper, we carried out a complete study of the combinedrpenter R.L., 1964, AJ 69, 2

motion of precession and nutation of the planet Mars by cho@hapront-Toug M., 1990, A&A 240, 159

ing basic canonical equations based on the Hamiltonian for the Sitter W., 1938, Bull. Astron. Netherlands 8, 213

motion of rotation of the planet analogous to that set up by Kfolkner W.M., Yoder C.F., Yuan D.N., Standish E.M., Preston R.A.,
noshita (1977) for the Earth. We have used very recent parame-1997, Sci 278, 1749

ters of the planet coming from the Pathfinder mission (Folkng#inot B., 1979, In: Time and the Earth's rotation. Proceed. of the
et al., 1997), especially those concerning the moments of iner- Eighty-second Symposium, San Fernando, Spain, p. 7

tia and the precession constant.&67 /y). We have calculatedHIIton J.L., 1991, AJ 102, 1510

the coefficients of the nutation at the 0.01 milliarcsecond |GVE£:CI,${$?.|66'1§¢ZS JPTASS'\?Z 423

for both the a_X'S of angular momentum, and the QX'S of figurmoshita H., Hori G., Nakai H., 1974, Annals Tokyo Astr. Obs. 14, 14
when taking into account the Oppolzer terms which make tRgoshita H, 1977, Celest. Mech. 33, 26
difference between these two axes. We have considered not ®iRshita H., Souchay J., 1990, Celest. Mech. 48, 187
the main terms of nutation which are due to the influence of thaskar J., 1988, A&A 198, 341
Sun, but also those which are coming from the direct action lcdskar J., Robutel P., 1993, Nat 361, 608
the planets. Moreover we have made some suitable theoretldaske J.H., Lederle T., Fricke W., Morando B., 1977, A&A 58, 1
transformations to calculate the nutation due to the two satBettingill G.H., Dyce R.B., 1965, Nat 206, 1241
lites Phobos and Deimos, whose the amplitude is at the lef&eva E.V., 1996, In: Proceed. IAU Collogium 165 Poznan, Poland,
of 1% w.r.t. the main nutation term due to the Sun. We have 21 _
also evaluated the effect of the triaxial component of the pot gasenberg R.D., King RW., 1979 J. Geophys. Res. 84, 6231
tial of the planet on the nutation, characterized by half diurn EuchayJ., Kinoshita H., 1996, A&A 312, 1017
’ 5 uchay J., Kinoshita H., 1997, A&A 318, 639

coefficients. . ) o Souchay J., Loysel B., Kinoshita H., Folgueira M., 1998, A&A 134,
At last we have studied the evolution of Mars obliquity and 543

precession rate at a very long time scale (500000 y), by fgrd W.R., 1979, J. Geophys. Res. 84, 243
way of a numerical integration. Thus we have shown that thlliams J.G., 1994, AJ 108, 711
improved accuracy of data concerning Mars by the intermediatipolard E.W., 1953, Astron. Papers Amer. Eph. 15, 1
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