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Abstract. The observation of a few mixed modes on solar-like oscillating stars would enable their rotation profile to be inverted
with success. Here simulated data are used to show that it is possible to find models for solar-like stars that present stochastically
excited mixed modes with detectable amplitudes. We take special care to build the mode set by computing the mode amplitudes
and selecting those modes with amplitudes compatible with the performance of the forthcoming seismic space experiment,
COROT. The frequency set is inverted for various cases where input and trial stellar models differ and where random noise
is added to the splittings. We show it is possible to localize a rotation gradient and assess its magnitude. Moreover the use of
inverse and forward procedures in parallel gives access to a large part of the profile. We provide several constraints to help the
selection of such stars. One looks for a relatively evolved star (still on the main sequence) of �1.5 M� and the rotation rate on
the surface should not be too small.
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1. Introduction

Helioseismology has proven to be a powerful tool for probing
the interior of the Sun. In particular the inversion of the so-
lar eigenfrequencies has provided localized information on the
internal structure and rotation of our star (Gough et al. 1996;
Basu & Christensen-Dalsgaard 1997; Basu et al. 2000; Schou
et al. 1998). Solar-like oscillations have now been detected for
several other stars from the ground;αCen A (Butler et al. 2004;
Bedding et al. 2004), Procyon (Martić et al. 2004; Eggenberger
et al. 2004), β Hydri (Bedding et al. 2002), η Bootis (Kjeldsen
et al. 2003); for a review see (Bouchy & Carrier 2003; Bedding
& Kjeldsen 2003). Furthermore, ongoing and forthcoming
space seismic missions (MOST, COROT) should provide much
more accurate data.

The tools developed for helioseismology can be adapted to
study stellar interiors; however, the transition from helioseis-
mology to asteroseismology is not an easy task. Stars other
than the Sun are not spatially resolved. Because of averaging
over the stellar surface, only oscillation modes with low de-
grees will be detected. The available mode sets will be much
more restricted than in the solar case. Several studies have nev-
ertheless explored what we can expect from inversion to probe
the structure of solar-like stars; e.g. Basu (2003) has reviewed
the different attempts in this field using simulated data sets.

These attempts to invert solar-like oscillations focused
mostly on inversion for the structure of the star (sound speed,

density profile, etc.) It has been shown that structure inver-
sion for solar-like stars is not as straightforward as for the
Sun but remains possible. The success of the inversion is
definitely linked to the number of observed modes bearing
independent information, to the accuracy of the frequency
measurement, but also to the quality of other observational
constraints on the star, such as the basic stellar parameters
which are usually poorly known. Rotational inversions based
on simulated data sets have also been performed for δ Scuti
stars, using opacity-driven modes (Goupil et al. 1996). It is ex-
pected that such inversions are unlikely to succeed with pure
p mode oscillations (see Christensen-Dalsgaard 2004). Gough
& Kosovichev (1993) showed successful rotational inversion
results with solar-like oscillations; but the nature of the modes
was not mentioned, and the relative error on the splittings was
very small.

Obviously a restricted mode set and a degraded frequency
resolution prevent the inversion process from providing com-
parable constraints on the stellar interiors to those on the solar
interior. However we aim here at showing that for some spe-
cific stars, rotational inversion can be achieved using solar-like
oscillations, primarily in the framework of the space seismic
mission COROT. Indeed some stars must present a few mixed
modes in the high frequency regime where modes are usually
pure p modes (see Christensen-Dalsgaard 2004). These mixed
modes present dual characterisitics as they have kinetic energy
both in the inner regions of the star (g mode nature) and in the
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outer layers (p mode nature). Such modes may have already
been observed for the star ηBoo (Christensen-Dalsgaard et al.
1995; Guenther & Demarque 1996; Di Mauro et al. 2003). We
expect that observation of such modes might help to determine
the variation of the rotation profile along the radius and local-
ize some possible strong rotational gradient. This information
would be valuable in providing useful constraints for the mod-
elling of the angular momentum transport mechanisms inside
the star.

To establish what one can expect from rotational inver-
sion with low degree, high radial order modes, we needed to
construct artificial “observational” datasets comprised of rota-
tional splittings. To do so, we began selecting a stellar model
and generating the frequencies and the rotational kernels asso-
ciated with its eigenmodes; see Sect. 3. In this selection, our
main criterion was the existence of a few mixed modes in the
stochastically excited frequency range. As the mode set is cru-
cial to the success of the inversion (Basu et al. 2002), we took
special care in its selection (Sect. 4). We first formulated an
a priori mode rejection process based on criteria such as the de-
gree and the physical nature of the modes. Then we computed
the oscillation amplitudes for the remaining modes according
to our current knowledge of the excitation and damping pro-
cesses. We also determined a detection threshold according to
the expected performance of COROT. Amplitudes of the modes
were then compared to the COROT threshold to select the set
of modes (Sect. 4). Assuming a slow rotation with a given rota-
tional profile, we then computed the rotational splittings which
were optionally contaminated with random noise.

We then inverted the rotational splittings using the SOLA
inversion technique (Sect. 2) for three different cases, from the
ideal to a more realistic case: 1) inversion of the splittings us-
ing the input kernels; 2) inversion of the same splittings using
trial kernels, i.e. kernels computed from a stellar model differ-
ing from the input model used to build the rotational splittings,
where the trial model was selected according to observational
constraints such as the location of the model in the HR diagram
and the large and small frequency separations; 3) inversion with
trial kernels and splittings contaminated by noise. The results
of these inversions for rotation –Ω(r) – are presented in Sect. 5.

2. SOLA inversion technique

For slow rotators, the rotational splitting of an (�, n)
mode (δωn,�) is related to the rotational rate along the radius,
Ω(r), as follows:

δωn,� =

∫ 1

0
kn,�(r) Ω(r)dr + εn,�, (1)

where kn,�(r) is the rotational kernel and εn,� the error associ-
ated with the (n, �) mode (Christensen-Dalsgaard 1998). Pure
p mode rotational kernels are not highly localized, so that the
splittings only provide an average of the rotation rate over their
widths.

We use here the SOLA inversion method (Pijpers &
Thompson 1994), which aims at constructing an inversion

kernel K(r0, r) localized in r0 built as a linear combination of
the rotational kernels, i.e.:

K(r0, r) =
∑

j

c j(r0) k j(r), (2)

where the subscript j denotes the (n, �) indices of the mode.
K(r0, r) is sought to match a pre-selected target function J(r0, r)
as close by as possible, while keeping the effects of the data
errors low. The aim is to minimize the following combination
of the distance between K and J and the data error propagation:
∫ 1

0
(J(r0, r) − K(r0, r))2dr + µ

∑
i j

Ei jcic j, (3)

where µ is a trade-off parameter to set the relative weight
between the first and second terms in Eq. (3). E is the er-
ror variance-covariance matrix of the observed frequencies.
Combining Eqs. (2) and (1) yields the average rotation rate
around r0:

〈Ω〉r0 ≡
∑

j

c jδω j =

∫ 1

0
K(r0, r)Ω(r)dr +

∑
j

c j(r0)ε j. (4)

The target function is chosen here as a Gaussian with width ∆:

J(r0, r) =
1
N

exp

(
−

(r − r0

∆

)2
)

(5)

where N is a normalization factor. The error on 〈Ω〉r0 is Σ jc jε j,
with ε j the errors on the observed splittings δω j. For errors on
the splittings independent of frequency (ε), the error magnifi-
cation can be expressed as follows:

Λ(r0) =


∑

j

[c j(r0)]2


1/2

. (6)

In this case, the error on 〈Ω〉r0 is:

σΩ(r0) = Λ(r0) ε. (7)

Hereafter rotation rates are normalized to the surface rotation
rate Ωsurf . Thus the errors are normalized as well.

3. Stellar modelling

Our stellar models were computed with the CESAM stellar
evolution code (Morel 1997). This computation assumed the
EFF equation of state, OPAL opacities (Iglesias & Rogers
1996), the classical theory for convection (MLT), and the
NACRE nuclear reaction rates (Gautier & Morel 1997).
Diffusion and rotation were neglected in the stellar model com-
putations.

In the next sections the choice of the mass and the age
of the stellar models is motivated by the expected amplitudes
and the nature of the oscillation modes respectively. A correct
choice of these parameters ensures that mixed modes exist in
the stochastically excited frequency range. Numerical calcula-
tions showed that for main sequence stars with mass lower than
1.50 M�, mixed modes are less likely to appear in the appropri-
ate frequency range. As a typical case, our input model had the
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following parameters: M = 1.55 M�, while the initial hydro-
gen and helium abundances were X0 = 0.705 and Y0 = 0.275.
The mixing-length parameter was set to α = 1.76, and no over-
shoot was included for this model (αov = 0). Our input model
was on the main sequence with a central hydrogen abundance
Xc = 0.10. The input model and its evolutionary track are rep-
resented in Fig. 3. The input rotation profile, Ω(r), used in this
study was built a posteriori, assuming local conservation of an-
gular momentum.

4. Selection of the mode set

The ability to recover the correct rotation profile with an in-
version process is strongly linked to the available mode set. To
make this study as realistic as possible we selected the mode
set on the basis of the expected amplitudes of the modes and of
the constraints imposed by performance of the space seismic
mission COROT (launch in 2006).

4.1. A priori selection

We selected a priori specific modes according to their nature
and degree, �, since the quality of the inversion kernels de-
pends on these properties. The depths which the modes probe
depend very much on the nature of the modes. Pure p modes
mainly probe the outer layers of the star where most of their
kinetic energy is concentrated. Gravity modes – also named
g modes – have most of their energy in the deep interior. Their
large inertia are responsible for their very small amplitudes on
the surface. For this reason their detection seems unlikely (see
Unno et al. 1989). However, for sufficiently massive stars the
convective core recedes with evolution, which leads to an in-
crease in the chemical composition gradient at the edge of the
core. This gradient is directly involved in the expression of the
Brunt-Väissälä frequency N. Figure 2 shows that N2 increases
at the edge of the core with the age of the star. For relatively
evolved stars, modes with mixed nature appear. These mixed
modes present a g mode character in the deep interior and a
p mode character in the outer part of the star. They share their
kinetic energy between these two regions, the degree of their
“mixedness” depends on their fraction of energy in these re-
gions. Some of these modes showing a dual nature have inertia
that allows them to be detected, thus making it possible to probe
the star at low radii.

We chose here to reject the pure gravity modes from our
mode set and to keep only pure p modes and those mixed modes
with a rather low mixed character i.e. with their p mode nature
dominating over their g mode nature.

The apparent amplitude of a mode is an average of the
mode amplitude over the stellar surface, which strongly de-
pends on the degree � of the mode. The observable ampli-
tude decreases with �. The forthcoming space missions, such as
COROT, are expected to measure modes with � ≤ 3. According
to Libbrecht (1992) the signal to noise ratio and the uncertainty
on the eigenfrequency determinations are linked; thus the fre-
quencies of � = 3 modes may be determined with a rather low
precision. We therefore restrained ourselves to � = 1, 2 modes.

4.2. Amplitude computation

For these a priori selected modes, the root mean square am-
plitudes in terms of velocity, v was calculated from the acous-
tic excitation rate P and damping rate η, itself obtained from
the tables of Houdek et al. (1999), calculated on the basis
of Gough (1977a,b)’s non-local and time-dependent formula-
tion of convection. We used the closest available model from
the input model in Houdek’s table of mass and temperature
(M = 1.50 M� and Teff = 6400 K).

Excitation rates were computed according to the model of
stochastic excitation by Samadi & Goupil (2001). The calcu-
lations assumed a Lorentzian function for modelling the con-
vective eddy time-correlations (see Samadi et al. 2003). For
simplicity, we used the adiabatic assumption formulated by
Kjeldsen & Bedding (1995) to deduce the root mean square
of the intrinsic mode amplitudes in terms of luminosity fluctu-
ations (δL/L)intrinsic from their velocity v according to:

(
δL
L

)
intrinsic,max

=

(
δL
L

)
�,intrinsic,max

Vmax

V�max

√
Teff,�
Teff
· (8)

One should point out that this relation has been established
for bolometric amplitudes while COROT observes only in a
finite bandwidth. Although this bandwidth is optimized for
solar-like stars, the actual amplitudes are expected to be very
similar to the bolometric ones. For the Sun we took the rms
values (δL/L)�,max � 4 ppm (see Kjeldsen & Bedding 1995,
Table 2; Barban et al. 2004) and V�max � 27 cm/s according
to Chaplin et al. (1998)’s seismic observations. As the adia-
batic assumption is not correct in the outer layers of a star, we
performed a rough comparison with what is available in the
literature (Houdek et al. 1999). At a high frequency, the adi-
abatic assumption underestimates the amplitudes compared to
Houdek’s results, so it is quite conservative in this case. At a
low frequency a rough estimate showed that the adiabatic ap-
proach overestimates the amplitudes of the luminosity fluctu-
ations; thus considering the non-adiabatic assumption would
result in the present case losing one mode with a mixed char-
acter from the final mode set. This has no severe consequence
for the inversion results. At the worst, it would mean that the
present results are relevant for a star that is only a little more
massive or evolved than our case.

Strictly speaking the theory underlying the excitation and
damping rate computations used here is valid only for radial
pure p modes. Only non-radial modes present rotational split-
tings but the � = 1, 2 modes are quasi-radial in the zone where
the excitation occurs. They are excited in the same manner as
the radial modes. Then, as the excitation rate is proportional
to the inverse of the mode inertia I, the excitation rates of the
non-radial modes P� can be deduced from those of the radial
ones P0 according to the relation:

P�
P0
� I0

I�
(9)

for pure p and low � degree modes I0/I� � 1. To some ex-
tent, it is the same for the damping rates. Indeed according to
Balmforth (1992), the main contribution to damping is due to
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Fig. 1. Apparent mode amplitudes in terms of relative luminosity vari-
ations for � = 0, 1, 2. The solid line shows the amplitude of the ra-
dial modes; the triangle and square symbols represent the � = 1 and
� = 2 modes respectively. The filled symbols represent the mixed
modes. The horizontal lines correspond to Eq. (15) and apply to modes
whose widths are smaller than the frequency bin in the Fourier do-
main (i.e. modes with ν � 0.4 mHz). The upper line (dashed-dot)
corresponds to SNR∞ = 9 (confidence level: 99%) and the lower
one (dashed-dot-dot-dot) to SNR∞ = 6 (confidence level: 95%). The
frequency-dependent thresholds apply to the other modes and cor-
respond to Eq. (18) computed with SNR= 9 (dashed-dot line) and
SNR= 6 (dashed-dot-dot-dot line).

convection and occurs mainly in the uppermost part of the con-
vection zone where the modes are quasi-radial. Then we can
deduce η� from η0 using the relation:

η�
η0
� I0

I�
(10)

with η being the damping rates. In the region where excitation
and damping of the modes takes place, the mixed modes have
the characteristics of pure p modes. Thus Eqs. (9) and (10) also
apply to mixed modes.

The intrinsic amplitude
(
δL
L

)
intrinsic

and the apparent ampli-

tude
(
δL
L

)
of a mode with a degree � are related by:

(
δL
L

)
�
= S � ∗

(
δL
L

)
intrinsic,�

(11)

where S l is the spatial filtering function (see
Christensen-Dalsgaard 1998). We used here the filtering
functions used for the VIRGO instrument aboard SOHO
spacecraft (Appourchaux et al. 1997), which observes the Sun
as a star and monitors its luminosity variations as COROT
and future asteroseismology space missions will do for other
stars. S l=1 and S l=2 were set to 0.9 and 0.5 respectively, these
coefficients depend on the angle between the rotation axis of
the star and the line of sight. As an illustrative case we take
the solar values. Figure 1 presents the apparent amplitudes of
the luminosity variations for the � = 0, 1, 2 modes. The mixed
modes are found at low frequency, and their amplitudes clearly
depart from those of the pure p modes, while their smaller
amplitudes are due to their larger inertia.

Fig. 2. Squared normalized Väissälä frequency for 1.55 M� models
at different evolutionary stages. The Väissälä frequency is normal-
ized by (G 〈ρ〉 /π)1/2 with 〈ρ〉 the mean density and G the gravita-
tional constant. The solid line corresponds to the ZAMS model (the
hydrogen abundance in the core is Xc = 0.7), the dotted line to an
Xc = 0.4 model. The dashed line represents the Väissälä frequency for
an Xc = 0.10 model. In the insert frame, we focus on the deep inte-
rior, where one can see that along evolution, at the edge of the core, a
cavity where g modes can be trapped develops in the high frequency
regime.

Fig. 3. Hertzsprung-Russell diagram with the evolutionary tracks of
the input model (solid line) and the trial model (dashed line). Both
models are represented by the black points on the tracks. The box ma-
terializes the typical uncertainties in determination of the luminosity
and effective temperature.
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4.3. COROT detection threshold and frequency
accuracy

Our detection threshold was based on COROT specifications.
The white noise level over 5 days of observation will be
0.61 ppm for a star of magnitude 5.7 (Auvergne & COROT
Team 2000); consequently the level of the photon noise in the
power spectrum B is (see Berthomieu et al. 2001):

B = (0.61 ppm)2 5 days =
(0.61 ppm)2

2.3 µHz
(ppm)2 s. (12)

To set the threshold and to determine the precision at which a
mode frequency can be measured, two distinct cases must be
considered depending on the widths of the modes versus the
frequency resolution of the spectrum (also refer to Berthomieu
et al. 2001).

4.3.1. Modes with long lifetimes

Modes with lifetimes longer than the observation time have
their widths in the frequency domain smaller than the fre-
quency bin and hence correspond to a single peak in the power
spectrum with height H∞ given by (see Berthomieu et al.
2001):

H∞ =
Tobs

2
(δL/L)2 (ppm)2 s, (13)

where δL/L is the root mean square of the observed apparent
mode amplitude in intensity as defined in Eq. (11).

The corresponding signal to noise ratio (SNR hereafter)
in the power spectrum, SNR∞, is then according to Eqs. (13)
and (12):

SNR∞ ≡ H∞
B
=

1
2

(δL/L)2

(0.61 ppm)2

Tobs

5 days
(14)

where Tobs is expressed in unit of days. We stress that the SNR
is expressed in terms of power (i.e. in terms of the square of the
mode amplitude) because theoretical evaluations of the mode
amplitudes (see Sect. 4.2) are derived in terms of mean square.
A possible alternative is to define a signal to noise in terms of
amplitude as in Kjeldsen & Frandsen (1992).

The value of SNR∞ does not affect the precision of fre-
quency determination. Indeed, for long lifetimes, whatever the
value of SNR∞, the uncertainty on the frequency determina-
tion corresponds to the size of the bin, that is, to 0.08 µHz for
Tobs = 150 days. However the value of SNR∞ sets the confi-
dence level for the detection of an eigenmode. For SNR∞ = 9,
the confidence level reached is 99%.

For modes with long lifetimes, the detection threshold is
from Eq. (14) then:

(
δL
L

)
∞,threshold

=

√
2 SNR∞

5 days
Tobs

0.61 ppm. (15)

For SNR∞ = 9 (confidence level: 99%), the threshold (Eq. (15))
is equal to � 0.47 ppm, and for SNR∞ = 6 (confidence level:
95%) it is equal to �0.39 ppm. These thresholds are shown in
Fig. 1 by horizontal dashed lines and are relevant for modes

whose widths are smaller than a single frequency bin, viz.,
modes below ν � 0.4 mHz. Mixed modes are shown in
Fig. 1 with filled symbols. Two � = 1 modes lie above the
SNR∞ = 9 threshold, while another � = 2 stands between the
SNR∞ = 9 and SNR∞ = 6 thresholds. The first two modes are
detected with a 99% confidence level and the latter with a level
above 95%.

4.3.2. Modes with short lifetimes

For a mode with lifetime shorter than the observation time, the
amplitude in the Fourier domain spreads over several frequency
bins. In a first approximation the mode profile in the power
spectrum is Lorentzian. The mean squared apparent amplitude
of a mode is the integral over the peak profile. Consequently
the height of the Lorentzian profile H is linked to the mode
apparent amplitude δL/L and its width through the following
relation (in ppm2/µHz) (see e.g. Baudin et al. 2005)

H =
(δL/L)2

πΓ
(16)

where Γ = η/π is the mode line-width in µHz with η the damp-
ing rate. According to Eqs. (12) and (16) the signal to noise
ratio (SNR) then becomes:

SNR ≡ H
B
=

(δL/L)2

(0.61 ppm)2

2.3µHz
πΓ

· (17)

Again, for SNR∞ = 9 , the mode is detected with a confidence
level of ∼99%. Thus from Eq. (17) the detection threshold for
modes with short lifetimes is:

(
δL
L

)
threshold

=

√
SNR

πΓ

2.3 µHz
0.61 ppm. (18)

Hence, for SNR= 9, a mode with amplitude δL/L >
(δL/L)threshold is detected with a confidence level better
than 99%. The threshold given by Eq. (18) is plotted in Fig. 1
for SNR = 9 and SNR = 6. Only modes with SNR ≥ 6 were
kept. Most of the modes were detected with a confidence level
better than 99%; however, few � = 2 modes were detected with
a confidence level between 99% and 95%.

Note that the threshold depends only on Γ; as the width de-
pends on the mode, the threshold also varies with frequency.
We point out that Eqs. (16) and (12) assume that the Fourier
transform is normalized with respect to T−1/2

obs , where Tobs is
the duration of observation. This is why Eqs. (16) and (12) are
independent of Tobs. However whatever the choice of normal-
ization, Eqs. (17) and (18) do not depend on Tobs. Increasing
the duration of observation does not increase the SNR but does
decrease the stochastic fluctuations of the mode profile lead-
ing to better precision when determining of the mode fre-
quency. Indeed Eq. (2) in Libbrecht (1992) gives the precision
at which the frequency of a mode – with a life time shorter
than the observation time – can be measured for a given SNR.
This precision depends on the observation time (Tobs), on the
mode line-width (Γ), and also on the SNR Eq. (17). Among
the remaining modes with short lifetimes, the precision in fre-
quency ranged between ∼0.05 µHz and ∼0.3 µHz, according to
Libbrecht (1992)’s formula.
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4.4. Final set

The selection above left us with a set of 50 � = 1, 2 modes
among which 3 were mixed modes. For these modes, we com-
puted the associated rotational splittings according to Eq. (1)
and assumed local conservation of angular momentum in the
star. At high frequency, the widths of the modes increase. This
might make the determination of the rotational splittings less
accurate and some of the corresponding splitting useless; how-
ever, modes at such a frequency have very redundant kernels.
The loss of their splittings does not affect the inversion results.
In Sect. 5 below, we discuss the inversion results in cases of
a set of splittings free of noise and one set contaminated with
random noise. For short lifetime modes the error bars on the
splittings were deduced from Eq. (2) in Libbrecht (1992). For
modes with long lifetime, the error bars were set to the fre-
quency bin.

5. Results of inversion

In this study we proceeded in 3 steps, successively aiming at
more realistic conditions.

5.1. Optimal case

We first inverted the rotational splittings of our simulated data
set, using the associated rotational kernels issued from the in-
put model for k j in Eq. (2). These are the optimal conditions,
to check how far we can recover the rotational profile. The
modes become evanescent in the convective core for interme-
diate mass stars and it was not possible to recover the rotational
information in that specific region. On the other hand, Fig. 6a
shows that we properly retrieved the rotation rate from the edge
of the core (0.07 r/R∗) to �0.30 r/R∗ with R∗ the star radius. It
was found that a few mixed modes only are sufficient to con-
struct localized rotational kernels close to the core.

At intermediate radii, i.e. from �0.30 to 0.70 r/R∗, it was
not possible to construct localized inversion kernels. Neither
pure p modes nor mixed modes have enough energy at inter-
mediate radii, as their rotational kernels do not peak in these
regions.

Further up in the outer layers of the star, p modes were sen-
sitive to the rotation. The rotational kernels differ much more
with the degree � of the mode than with the mode frequency. As
we assumed that we had access only to � = 1 and 2, the avail-
able p mode rotational kernels were too redundant to enable
to construct localized inversion kernels. To obtain an estimate
of the rotation rate in these layers, we are left with the forward
method. As in Soufi et al. (1998), one can write the r-dependent
rotational profile Ω(r) as:

Ω(r) = Ω̄(1 + η(r)) (19)

where Ω̄ is the mean rotation rate. A rigid body rotation corre-
sponds to η(r) = 0. One can then write Eq. (1) as follows:

δωn,� = Ω̄

∫ 1

0
kn,�(r)dr + Ω̄

∫ 1

0
kn,�(r)η(r)dr (20)

and∫ 1

0
kn,�(r)dr = 1 −Cn�, (21)

where Cn� is the Ledoux constant in the inertial frame (see
Unno et al. 1989, Eq. (19.46)). For pure p modes, Cn� can be
neglected with regard to 1. In the outer part of the star, rota-
tion is expected to be almost rigid, i.e. η(r) � 0. Thus the mean
rotation rate in these layers can be expressed as:

Ω̄ ∼ 〈
δωn,�

〉
. (22)

We selected a subset of rotational splittings of pure p modes in
the asymptotic frequency range (32 modes). We then computed
the mean value of the subset. The extent of the pure p mode
kernels lead to a value which is an average over a large region.
This mean value of the rotation rate is represented in Fig. 6a at
r/R∗ = 0.78. The horizontal error bar extended between 0.55
to 1 stellar radius and was determined so that more than 95%
of the kernel energy is located within this range for the subset
of modes used for the forward computation. The vertical bar is
the linear average of the errors on the splittings. One notices
that the rotational rate obtained by forward computing is over-
estimated. This shift is linked to the relatively small extent of
the rotational kernels in the deep interior where the rotational
rate increases.

5.2. Inversion with trial kernels

The stellar model used in the inversion process is not expected
to represent the real star exactly. This departure from reality
also exists for the rotational kernels used for the inversion pro-
cess. In our simulated experiment, therefore, we must assume
that the rotational kernels issued from computed models would
not match the real ones exactly. To study the impact of differ-
ences between the true and trial kernels, we inverted the split-
tings with rotational kernels associated with a stellar model dif-
fering from the input one. The input or reference model is the
model described in Sect. 3. The trial model was determined as
for a blind experiment, i.e. by trying to approach our reference
model as close as possible.

We used two steps to constrain the trial model. The first step
consisted in getting as close as possible to the input model us-
ing the HR diagram information. As for real observations, we
drew an error box around the input model in the HR diagram
with typical observational uncertainties (σTeff = 150 K and
σL/L� = 0.15, Fig. 3). We built several models with various ini-
tial parameters and retained only those consistent with the error
box. Then the asteroseismic constraints enabled us to make a
selection among the remaining trial models. The comparison of
the large and small separations of the trial and input models, as
defined in Eqs. (23) and (24) below, gave additional constraints.
The large separation – Eq. (23) – is mostly linked to the overall
structure of the star and to its mean density. The small separa-
tion – Eq. (24) – is related to the chemical composition gradient
close to the core, giving hints about the evolutionary stage of
the reference model (see Christensen-Dalsgaard 2004).

∆νn,� = νn,� − νn−1,� (23)
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Fig. 4. Comparison of the large separations for the input and the trial
models; see Eq. (23). Diamonds represent the large separation of the
input model and filled circles correspond to that of the trial model.
Each panel corresponds to a given degree � (top panel: � = 0 to bottom
panel: � = 2).

δν02 = ν0,n − ν2,n−1. (24)

For several models within the HR diagram error box, we could
reproduce the large separation reasonably well (see Fig. 4).
However, we could recover the small separation only over a
part of the frequency range (see Fig. 5). We gave priority
to the model reproducing the small separation in the interval
0.5–1 mHz, as we were mainly interested in low frequency
modes; modes above 1 mHz indeed produce very redundant
rotational kernels. Eventually we selected the most appropriate
model according to these criteria: M = 1.52 M�, X0 = 0.7,
Y0 = 0.28, α = 1.8, and an overshoot parameter αov = 0.1.

As was already the case when using the input kernels for
the inversion, we recovered the rotational profile only partially.
However, in this case the retrieved rates depart from the orig-
inal profile, see Fig. 6b, although still in an acceptable way.

Fig. 5. Comparison of the small separations between � = 0, 2 – see
Eq. (24) – for the input (crosses with associated error bars) and the
trial models (diamonds).

Fig. 6. Rotational profiles along the normalized radius of the stellar
model. The dashed line represents the input rotation profile. The in-
verted rotation profiles are represented by black dots and their associ-
ated error bars: a) input rotational kernels, no noise included; b) trial
rotational kernels, no noise included; c) one typical realization for trial
rotational kernels, noise included (Vsurf = 30 km s−1, ε = 0.08 µHz). In
each panel, the point at 0.75 r/R∗ is derived from the forward compu-
tation (see Sect. 5.1). The vertical error bar represent a 1σ error bars;
the horizontal bars correspond to the width of the inversion kernels.

As previously, we used the forward computation to derive an
estimate of the outer region rotation rate.

5.3. Inversion with trial kernels and splittings including
random errors

Finally, the third case used the trial kernels and rotational split-
tings with random noise added prior to inversion. The noise was
gaussian and several variance values were used corresponding
to the COROT specifications and assumed surface rotation rates
between 20 and 30 km s−1. The recovered rates for one typical
realization are shown in Fig. 6c. The retrieved rates based on
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Fig. 7. Histogram of the differences between the recovered and in-
put rotation rates at r/R∗ = 0.08, both rates were normalized to
the surface rotation rate. The full and dashed lines correspond to
Vsurface = 30 km s−1 and Vsurface = 20 km s−1, respectively. The ver-
tical line corresponds to zero bias. The bins were set to 0.1 Ωsurface.

the set of splittings with random noise generally differ by a few
percent from the retrieved rates based on noise-free splittings.

To test the efficiency of the inversion process in the pres-
ence of noise, we created 5000 realizations of noisy splittings
and inverted them. In Fig. 7 we plotted the histogram of the
difference between the recovered and the initial rates at a given
radius for several uncertainty levels.

We first checked the validity of the error bars on the rota-
tional rates retrieved by inversion shown in Fig. 6. These un-
certainties, expressed in Eq. (7), correspond to magnification
of the initial errors on the measured splittings through the in-
version process. If unbiased they should match the dispersion
of the 5000 recovered rates. We thus compared the standard
deviation of these rates to the propagated errors and found that
they matched extremely well at every radius. This shows that
the errors bars are estimated without bias.

Secondly, we calculated the averages of the recovered rates
at each radius over the 5000 realizations and compared them to
the input rates. If there were no bias, mean value of the differ-
ence between the retrieved and the input rotation rates would
be zero. There actually is a small nonzero difference at each in-
version radius, which is identical to the departure between the
input and the output rates when the inversion was processed
without random noise. This bias is due to the finite widths of
the inversion kernels, which set the ultimate limit in retrieving
the input rotation rate.

In Fig. 6c, the vertical error bars correspond to 1σ normal-
ized uncertainties on the rotation rate, which were computed

Fig. 8. Input and fitted rotational profiles. The full line curve stands for
the initial rotational profile. The dotted curves fit the retrieved points
of Fig. 6c. The middle one fits the central values, the two others fit the
extreme values of the error bars.

assuming uncertainties on the splittings presented in Sect. 4.4
for a star rotating with a surface velocity of Vsurface = 30 km s−1.
This σ value corresponds in Fig. 7 to the half-width of the dis-
tribution. In the best case -with full line (Vsurface = 30 km s−1)-
only a few percent of the random realizations in the tail of the
gaussian distribution give misleading rotation rates. In the sec-
ond case in Fig. 7 – dashed line – the 1σ normalized error
already corresponds to a large departure by the inverted rota-
tion rate compared to the true value. In the conservative case,
where we consider 3σ error bars, a rotation gradient can still
be measured – if large enough – in the best case in Fig. 7. This
is probably no longer possible in the the worst case where the
error bars strongly degrade our ability to estimate a rotational
gradient.

As a final step, we estimated how discriminating the inver-
sion is for reconstructing the rotational profile. We fitted the re-
trieved points with a decreasing exponential function. Figure 8
shows the mean and extreme profiles one could derive from
the rates recovered in Fig. 6c where a random noise had been
added to the splittings. We then computed the rotational split-
tings corresponding to these three profiles (mean and extreme).
In Fig. 9 we plotted the input splittings – noise included – with
black dots. The shaded area spans the values of the splittings
computed from the extreme fitted profiles in Fig. 8. The input
and the forward rotational splittings agree within the error bars.

This last step – i.e. computing the splittings from the re-
covered rotation rates – must be seen as a way to check the
reliability of the inversion results. Inverted rotational profiles
departing too much from the original will lead to computed
splittings that do not match the true ones.
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Fig. 9. Input and retrieved rotational splittings. The black dots rep-
resent the input splittings to which random noise was added, as in
Fig. 6c. The shaded zone represents the range in which the solutions
can be obtained by forward computation from the different fitted pro-
files in Fig. 8.

6. Discussion

As is well known, it is not possible to construct localized ker-
nels for rotation with mode sets limited to � = 1, 2 and con-
taining only pure p modes. Introducing � = 3 modes in the set
improves the quality of the inversion kernels but does not pro-
vide enough diversity in the shapes of the rotational kernels to
extract localized information at outer radii. However, we show
here that stars exist which can present solar-like oscillations
with a few mixed modes of detectable amplitudes. This pres-
ence in the mode set enables us to recover localized informa-
tion on the rotation rate at several radii close to the core, leading
to an estimate of the expected gradient.

As seen in Sect. 5.2, an important step is to model the ob-
served star so as to build rotational kernels as close as possible
to the real star. Combining the HR diagram and asteroseismic
information (large and small separations) strongly constrains
the model to be used to build the kernels. Accurate determina-
tion of stellar parameters, such as the luminosity and the effec-
tive temperature, is crucial at this step in the process.

We show that the inverse and forward procedures in stellar
conditions are complementary and should be used in parallel.
At low radii the inversion indeed provides localized and reli-
able information on the rotation rate and its evolution along
the radius. In the outer part of the star the redundance of the
pure p mode rotational kernels does not allow us to build local-
ized inversion kernels. Thus we derive the average rotation rate
in this region directly from the splittings. Besides, the forward
method can also be useful for checking the reliability of the
rates retrieved by inversion. From the recovered points one can
draw a rough rotational profile and use it to compute the split-
tings. By comparing the computed and the observed splittings
it is possible to discard spurious profiles.

In short, a successful inversion of the rotational profile re-
quires that the star fulfills several constraints. First, it has to
be relatively evolved in order to have a receding convective

core so that avoided crossing occurs in the proper frequency
range (roughly for Xcore ≤ 0.2). Secondly, the mass range,
which yields mixed modes with large enough amplitude to be
detected, spreads from �1.5 M� up to masses that place the
star in the instability strip of the HR-diagram, although study-
ing stars above this upper mass limit is beyond the scope of
this paper. For stars less massive than �1.5 M�, it is unlikely
that mixed modes are detectable within the stochastically ex-
cited frequency domain. One must see the present results as
prospecting. Some assumptions such as the adiabatic one – see
Sect. 4.2 – might be too optimistic, in this case mixed modes
will be detected in solar-like oscillations for stars with slightly
higher mass or at more evolved stages than the one presented
in this paper.

Finally, the surface rotation rate of the “ideal” target star
should not be too small so that the splittings can be deter-
mined with a good accuracy and that the relative errors on
the splittings remain small enough. We must add that impor-
tant physical effects have been neglected here. One will prob-
ably, for instance, have to consider the effects of rotation and
of the magnetic field on the large and small frequency spacings
(Dziembowski & Goupil 1998). Moreover for faster rotators
above Vsurf � 20−30 km s−1 higher order effects on the rota-
tional splittings will have to be considered.
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