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ABSTRACT

We calculate the “observed at infinity” image and spectrum of the accretion structure in Sgr A*, by modelling it as an optically thin,
constant angular momentum ion torus in hydrodynamic equilibrium. The physics we consider includes a two-temperature plasma, a
toroidal magnetic field, as well as radiative cooling by bremsstrahlung, synchrotron, and inverse Compton processes. Our relativistic
model has the virtue of being fully analytic and very simple, depending only on eight tunable parameters: the black hole spin and the
inclination of the spin axis to our line of sight, the torus angular momentum, the polytropic index, the magnetic to total pressure ratio,
the central values of density and electron temperature, and the ratio of electron to ion temperatures. The observed image and spectrum
are calculated numerically using the ray-tracing code GYOTO. Our results demonstrate that the ion torus model is able to account for
the main features of the accretion structure surrounding Sgr A*.

Key words. black hole physics – accretion, accretion disks – Galaxy: center

1. Introduction

The Galactic centre is one of the most interesting regions for
scientific investigation because it is the closest available galac-
tic nucleus, hence can be studied with resolutions that are
impossible to achieve with other galaxies. The radio source
Sagittarius A* (henceforth Sgr A*) is associated with a super-
massive black hole at the centre of our Galaxy. The black hole
mass, M = 4.3 ± 0.5 × 106 M�, has been determined in particu-
lar from the complete and highly eccentric orbit of the star S 2,
which passes Sgr A* at its pericentre in a mere 17 light-hours,
i.e. 1400 rS, where rS ≡ 2GM/c2 is the Schwarzschild (or gravi-
tational) radius (Schödel et al. 2002; Bower et al. 2004; Gillessen
et al. 2009). Given the Sgr A* distance of 8.3± 0.35 kpc, the
Schwarzschild radius corresponds to an angular size of around
10 μas in the sky, making the Galactic centre black hole an ideal
candidate for near-future microarcsecond interferometric tech-
nologies (Paumard et al. 2008; Eisenhauer et al. 2008; Eisner
et al. 2010; Broderick et al. 2011).

In this context, several authors have calculated images
of various theoretical models of accretion structures around
Sgr A*. Numerical simulations extend from three-dimensional
non-relativistic magnetohydrodynamics (MHD, Goldston et al.
2005; Huang et al. 2007) to two-dimensional general relativistic
magnetohydrodynamics (GRMHD, Mościbrodzka et al. 2009;
Hilburn et al. 2010) and three-dimensional GRMHD (Dexter
et al. 2010; Shcherbakov et al. 2012; Dibi et al. 2012). The size
and shape of the “black hole silhouette” cast by the black hole
onto the accretion structure, is determined by the photon orbit
and depends only on the black hole mass and spin. Therefore,
with knowledge of the black hole mass at the Galactic centre
the spin can be estimated by fitting the calculated size and shape

of the shadow to the size and shape observed. The appearance
(spatial extent, shape, brightness distribution, etc.) of the entire
image, however, depends not only on black hole mass and spin
but also on the details of the accretion structure around Sgr A*.
Most of them are uncertain, e.g., the chemical abundance, the
radiative processes, and the inclination. They have not yet been
sufficiently examined, and a wide range of the relevant parame-
ter space remains unexplored.

The accretion structure around Sgr A* is most probably
a radiatively inefficient advection dominated accretion flow
(ADAF), as Narayan et al. (1995) rather convincingly demon-
strated by means of spectral fitting. In the following, an ap-
proximate analytic torus model associated with the family of
Polish doughnuts introduced by Abramowicz et al. (1978) and
Jaroszynski et al. (1980) is constructed for a radiatively ineffi-
cient accretion flow to describe the accretion structure in Sgr A*.
The model depends on a few tunable parameters that can be
changed and adjusted so that they can cover the whole param-
eter space of the problem. The general model of the source and
the ray-tracing tailored especially for it, can be applied to spec-
tral calculations of other black hole candidates that are both op-
tically thin (ion tori that can be used to model e.g. some spectral
states in X-ray binaries) and optically thick (Polish doughnuts,
to model e.g. some luminous AGNs and ULXs).

Shapiro et al. (1976) designed a hot, two-temperature disc
model to describe the strong X-ray emission observed in
Cygnus X-1, which was too hot to be understood in terms of
the standard model. They found an optically and geometrically
thin solution branch in which ions and electrons are weakly cou-
pled, having different temperatures and being in energy balance.
This solution, however, is thermally unstable.
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Fig. 1. Meridional cut through a λ = 0.3 (black curve) and a λ = 0.7 torus (grey curve) around a black hole (the black semi-circle is the event
horizon). Left panel: Schwarzschild case. Right panel: Kerr case with a = 0.9 M, the long-dashed semi-circle marking the ergosphere.

Ion tori were proposed independently by Ichimaru (1977)
(though using different terminology) and Rees et al. (1982) to
model a gas flow that emits little detectable radiation but is at
the same time able to power radio jets, both in galactic sources
and microquasars. Ion tori are geometrically thick, gas (ion)
pressure-supported spheroidal structures, located in the inner
regions of accretion flows. They are extremely optically thin
and very radiatively inefficient. These ion tori consist of a fully
ionised plasma, hence their name, in which protons and electrons
are thermally decoupled (each following its own temperature
distribution) and not in local energy balance. They are assumed
to be low-α accretion flows threaded with magnetic fields, so
that the ordinary molecular viscosity is suppressed in favour of
magnetic/turbulent viscosity1. Owing to their vertically extended
shape, H/r � 1, ion tori naturally create a pair of funnels through
which magnetic flux can collimate and escape. Ion tori only ex-
ist in the sub-Eddington accretion regime, Ṁ < Ṁcrit < ṀEdd
(see e.g. Ichimaru 1977; Rees et al. 1982), where radiative cool-
ing is inefficient enough for ions to remain sufficiently hot (near
virial) during the whole inflow time, i.e., tdiff � taccr. Otherwise,
at higher mass-accretion rates, cooling causes the puffed-up in-
ner spheroidal region to gradually become opaque and deflate to
a standard thin disc. As a consequence of tdiff � taccr, the ions
carry most of the energy with them into the black hole. Instead
of “the ions are not cooling down fast enough”, one may also
and equivalently say that the disc is locally “advectively cooled”
because energy is carried away by ions. Therefore, this branch of
solutions was renamed to “advection dominated accretion flow”
(ADAF, see e.g. Narayan & Yi 1994, 1995; Abramowicz et al.
1995; Esin et al. 1997).

In this work, we model Sgr A* by ion tori very much
similar to these described by Rees et al. (1982). They
are based on the mathematical description introduced by
Paczyński and collaborators in their studies of Polish doughnuts

1 The α-prescription is also applied in this context.

Abramowicz et al. 1978; Jaroszynski et al. 1980. Although
Polish doughnuts share some of their important characteristics
that are completely the opposite of these of ion tori (they are
optically thick, radiation pressure supported, and correspond to
super-Eddington accretion rates, Ṁ � ṀEdd), both classes of
tori have the same equipotential structure and very similar dy-
namical properties. In particular, they both have a “Roche lobe”,
i.e. a critical equipotential that crosses itself along the “cusp”
at r = rcusp (see Fig. 1). Roche lobe overflow causes dynami-
cal mass loss from the torus to the black hole, with no need of
help from viscosity. Thus, the accretion flow at radii r ≤ rcusp
is regulated by the black hole strong gravity and not by viscous
processes. The cusp should be regarded as the inner edge of the
disc; for low accretion rates it corresponds to ISCO, whereas
for higher accretion rates the cusp is closer to the black hole.
Both ion tori and Polish doughnuts are dynamically unstable in
terms of the Papaloizou & Pringle (1984) instability. However,
as proven by Blaes (1987), this instability is suppressed by the
Roche lobe overflow (see also Narayan & Popham 1993).

These properties, which are shared by ion tori and Polish
doughnuts, are also genuine and robust for much more general
toroidal structures around black holes. In particular, they do not
depend on the angular momentum distribution inside the torus.
It is customary to assume that angular momentum is constant,
� = �0 = const., as this leads to remarkably simple final analytic
formulae. This is an assumption adopted here. With this, we do
not pretend to provide a realistic accretion scenario, but an easily
accessible yet powerful analytical analogy. In follow-up papers,
we will relax this assumption and calculate the observed proper-
ties of ion tori with � � const. Dynamical models for these tori
have been calculated e.g. by Qian et al. (2009).

The paper is structured as follows. In Sect. 2, we construct
the hydrodynamical torus and in Sects. 3 and 4 we discuss the
radiative properties. Section 5 shows the resulting spectra in re-
lation to broadband data of Sgr A* and a series of images. The
presented spectra are neither chi-squared fits nor best guesses,

A83, page 2 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201219209&pdf_id=1


O. Straub et al.: Imaging ion tori around Sgr A*

they merely illustrate the performance of the ion torus model.
Section 6 presents the conclusions.

2. The geometry of fat tori

2.1. Kerr metric

In Boyer-Lindquist spherical coordinates (t, r, θ, φ), geometrical
units c = 1 = G, and signature (−,+,+,+), the Kerr metric line
element has the form

ds2 = −
(
1 − 2Mr

Ξ

)
dt2 − 4Mra

Ξ
sin2 θ dt dφ +

Ξ

Δ
dr2

+Ξ dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

Ξ

)
sin2 θ dφ2, (1)

where M is the black hole mass, a ≡ J/M its reduced angular
momentum (J being the black hole angular momentum), Ξ ≡
r2 + a2 cos2 θ, and Δ ≡ r2 − 2Mr + a2.

Circular orbits in Kerr spacetime are obtained from the time-
like geodesics of the metric in Eq. (1) for which the four-velocity
takes the form uμ = (ut, 0, 0, uφ). The two constants of geodesic
motion, which are associated respectively with stationarity and
axisymmetry, are then expressible as

E = −ut = −ut (gtt + Ω gtφ), (2)

L = uφ = ut (gtφ + Ω gφφ), (3)

where

Ω ≡ uφ

ut
(4)

is the angular velocity with respect to a distant observer. The
specific angular momentum is defined by

� ≡ LE = −
uφ
ut
· (5)

At circular geodesic orbits, the angular momentum has its
“Keplerian” form (Bardeen et al. 1972):

�K(r, a) =
M1/2

(
r2 − 2aM1/2r1/2 + a2

)
r3/2 − 2Mr1/2 + aM1/2

· (6)

Here and in the remainder of the article, we consider M as a
fixed parameter, so that we can assume �K to be a function only
of (r, a).

Important circular orbits in the Kerr metric are the
marginally stable and marginally bound ones, corresponding to
values of r (Bardeen et al. 1972)

rms(a) = M
[
3 + z2 − ((3 − z1)(3 + z1 + 2z2))1/2

]
, (7)

rmb(a) = 2M − a + 2M1/2(M − a)1/2, (8)

where z1 ≡ 1+ (1−a2/M2)1/3
[
(1 + a/M)1/3 + (1 − a/M)1/3

]
and

z2 ≡ (3a2/M2 + z2
1)1/2. On these special orbits, the specific angu-

lar momentum takes the values

�ms(a) = �K(rms(a), a) and �mb(a) = �K(rmb(a), a). (9)

2.2. Fluid torus of constant specific angular momentum

We consider a fluid torus of negligible self-gravitation around a
Kerr black hole. Modelling the fluid as a perfect one, the stress-
energy tensor is

Tμν = (ε + P) uμuν + Pgμν, (10)

where P is the fluid pressure and ε the fluid proper energy
density. For a purely circular motion (uμ = ut(1, 0, 0,Ω)), it
can be shown that the energy-momentum conservation equation,
∇νT νμ = 0, takes the form

∇μP
ε + P

= −∇μ ln(−ut) +
Ω∇μ�
1 −Ω� , (11)

with � related to the fluid four-velocity components by Eq. (5).
Assuming that the fluid is barotropic, P = P(ε), we introduce the
enthalpy function

H ≡
∫ P

0

dP
ε + P

, (12)

so that the left-hand side of Eq. (11) becomes simply ∇μH.
Following Abramowicz et al. (1978), we consider models for
which � is constant within the entire torus (see also Sect. 1):

� = �0. (13)

Accordingly, the equation of motion in Eq. (11) reduces to
∇μH = −∇μ ln(−ut) yielding

H = W + const., (14)

where we have introduced the potential

W ≡ − ln(−ut). (15)

From the normalisation relation uμuμ = −1, we get

W(r, θ) =
1
2

ln

[
−gtt + 2Ωgtφ + Ω

2gφφ

(gtt + Ωgtφ)2

]
, (16)

where Ω should be considered as the function of (r, θ)

Ω(r, θ) = − gtφ + �0gtt

gφφ + �0gtφ
· (17)

This last relation is easily derived by combining Eqs. (2), (3)
and (5).

Abramowicz et al. (1978) proved that the cusp location
should be between the mariginaly stable and the mariginaly
bound orbit, which implies that �0 must obey

�ms(a) < �0 < �mb(a), (18)

with �ms(a) and �mb(a) given by Eq. (9). Recast in terms of the
dimensionless parameter

λ ≡ �0 − �ms(a)
�mb(a) − �ms(a)

, (19)

the condition in Eq. (18) is equivalent to

0 ≤ λ ≤ 1. (20)

Given the radial dependence in Eq. (6) of the Keplerian specific
angular momentum, which takes its minimum at r = rms(a), and
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the constraint of Eq. (18), there are two values of r, rin, and rc
say, for which �K(r, a) = �0. One has necessarily

rmb(a) < rin < rms(a) < rc. (21)

Since for r = rin or r = rc, the actual angular momentum �0
is equal to the Keplerian one, the gravity and centrifugal forces
balance each other, implying that ∇μW = 0. From the first in-
tegral in Eq. (14), we then have ∇μH = 0, or equivalently, via
Eq. (12), ∇μP = 0. A point where the gradient vanishes can be
called either a singular point (self-crossing of an equipotential)
or an extremum. In the present case, r = rin is the location where
one of the equipotentials of W, the so-called Roche lobe, self-
crosses, as shown in Fig. 1. This gives rise to a cusp at the torus
surface (Abramowicz et al. 1978). On the other side, r = rc cor-
responds to the maximum of P. The circle r = rc in the equatorial
plane is called the centre of the torus.

2.3. Torus solution for a polytropic equation of state

To go further, we assume a polytropic equation of state

P = Kε1+1/n, (22)

where K and n are two constants, n being the polytropic index
and K the polytropic constant. The total energy density ε = ρ+Π
is the sum of energy density ρ and internal energy Π, which in
the non-relativistic limit,Π � ρ, reduces to ε 	 ρ. Equation (12)
is then readily integrated, yielding

H = (n + 1) ln
(
1 + Kε1/n

)
. (23)

The surface of the torus is defined by P = 0. From Eq. (22), this
corresponds to ε = 0, and from Eq. (23) to H = 0. Therefore, we
may rewrite the first integral of motion in Eq. (14) as

H = W −Ws, (24)

where the constant Ws is the value of the potential W at the torus
surface. Denoting by Hc and Wc the values of H and W at the
torus centre, Eq. (24) implies that

Hc = Wc −Ws. (25)

We introduce the dimensionless potential

ω(r, θ) ≡ W(r, θ) −Ws

Wc −Ws
· (26)

From Eqs. (24) and (25), we have

H = Hcω. (27)

Substituting Eq. (23) for H, we get

ln
(
1 + Kε1/n

)
= ω ln

(
1 + Kε1/nc

)
,

where εc is the energy density at the torus centre. Solving for ε,
we obtain

ε =
1

Kn

[
(Kε1/nc + 1)ω − 1

]n
. (28)

At this stage, our torus model is determined by five parameters
(in addition to the black hole mass M): the Kerr spin parameter a,
the dimensionless specific angular momentum λ, the polytropic
index n, the polytropic constant K, and the central density εc.
From λ and a, we evaluate �0 via Eq. (19). The values of �0 and a
fully determine the potential W(r, θ) according to Eqs. (16), (17).

Since we are seeking a Roche-lobe filling torus, the value Ws of
the potential W at the torus surface must be set to the value at
the Roche lobe (cf. Sect. 2.2)

Ws = W(rin, π/2). (29)

Given Ws and Hc (deduced from εc in Eq. (23)), we determine
Wc using Eq. (25). We know then entirely the dimensionless po-
tential ω(r, θ) as given by Eq. (26). We can thus compute the
energy density everywhere in the torus using Eq. (28).

We note that, by construction (cf. Eq. (26)), ω is zero at the
surface of the torus and one at the centre. Between 0 ≤ ω(r, θ) ≤
1, the toroidal equipotentials extend from the largest possible
area, the torus surface, down to a single line, a circle at rc. Open
equipotential surfaces have ω(r, θ) < 0. The size of the Roche
lobe tori depends on the spin. The higher the spin, the narrower
the angular momentum distribution that sets the location of the
critical radii, hence the smaller the tori. For a fixed value of a,
the Roche torus is the largest, having an infinite outer radius rout,
when λ = 1, i.e., �0 = �mb(a).

3. Adding physics

In what follows, we set n = 3/2, which corresponds to the adia-
batic index γ = 1+1/n = 5/3 of a non-relativistic ideal gas with
no radiation pressure. This is consistent with the existence of a
very optically thin medium.

3.1. Thermodynamic quantities

In optically thin gas-pressure-supported ion tori, the radiation
pressure can be neglected. The total pressure P is expressed as
the sum of the magnetic and gas contributions, Pmag and Pgas

P = Pmag + Pgas. (30)

The magnetic and gas pressures are assumed to be some fixed
parts of the total pressure (an assumption that is often made in
analytic models of accretion structures)

Pmag =
B2

24π
= β P, Pgas = (1 − β) P, (31)

were B is the intensity of magnetic field. The gas is assumed to
be a two-temperature plasma, with μi, μe, Ti, and Te being the
mean molecular weights and temperatures of ions and electrons,
respectively. The gas pressure is then expressed as the sum of
the ion and electron contributions

Pgas = Pi + Pe =
kB

mu
ε

(
Ti

μi
+

Te

μe

)
, (32)

where kB is the Boltzmann constant and mu is the atomic mass
unit. We write the ion and electron temperatures as

Te = f (ω)μe
muPgas

kBε
, Ti = g(ω)μi

muPgas

kBε
, (33)

where f and g are linear functions of the equipotential func-
tion ω.

We note that the model does not consider heating and cooling
of the accretion structure, but assumes thermal equilibrium with
a given temperature distribution. While this may not represent
the real situation, it is still an adequate approximation supported
by MHD simulations that self-consistently include cooling and
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Fig. 2. Ion (dashed/dotted) and electron (solid/dot-dashed) temperature
distribution throughout a λ = 0.3 torus (black) and a λ = 0.7 torus
(grey) around a Schwarzschild black hole. We assume a central ion to
electron temperature ratio of ξ = 0.1. The thin black line marks Tvir.

heating in the dynamics. Dibi et al. (2012) found that these pro-
cesses are not dynamically important in the parameter range cor-
responding to Sgr A*. We assume here that the ion and electron
temperatures are equal at the surface: Ti = Te when ω = 0, and
that they are at some particular ratio ξ at the centre ξ Ti = Te
when ω = 1. This leads to

f (0) =
μi

μe + μi
≡ M, (34)

f (1) =
μiξ

μe + μiξ
≡ Mξ, (35)

and since Eq. (32) is fulfilled when f (ω) + g(ω) = 1, one eas-
ily finds values of g(0) and g(1) that allow us to write explicit
expressions for the two temperatures

Te =
[
(1 − ω)M + ωMξ

]
μe

(1 − β)muP
kBε

, (36)

Ti =

[
μe

μi
M + ω(M−Mξ)

]
μi

(1 − β)muP
kBε

· (37)

It is often practical to express equations in terms of the dimen-
sionless temperatures

θe =
kBTe

mec2
, and θi =

kBTi

mic2
, (38)

were me and mi are the electron and ion masses.
Figure 2 shows the temperature distribution in tori. It is dif-

ferent from the ADAF self-similar solution (e.g., Narayan & Yi
1995), which being self-similar must be a monotonic function
of radius. Here, the non-monotonicity of the temperature curves
has its roots in the existence of boundaries, the outer occurring
at the outer torus radius and the inner at the cusp. The ion and
electron temperatures have a maximal separation (given by ξ) at
the torus centre and converge towards either end of the torus. The
temperature in our model is obviously zero at these boundaries.
We note that in the torus interior our curves and those of Narayan
& Yi (1995) are clearly consistent. Using Eq. (32), one can now
derive the relation for the polytropic constant at the torus centre

K =
kTe,c

(1 − β)muε
2/3
c μeMξ

, (39)

where Te,c is the central electron temperature. The total pressure
is

P =
kBTe,c

(1 − β)μemuMξ
ε5/3

ε 2/3
c

, (40)

and the magnetic field

B =

[
24πβ

(1 − β)
kBTe,c

μemuMξ
ε5/3

ε 2/3
c

]1/2

· (41)

The thermodynamic relations between T , P, and ε require the
knowledge of the mean molecular weight μ, which is linked to
the ion and electron molecular weights by

μ =

[
1
μi
+

1
μe

]−1

≈ 2
1 + 3X + Y/2

(42)

with

μi =
ε

nimu
=

4
4X + Y

and μe =
ε

nemu
=

2
1 + Y

, (43)

where X and Y are the hydrogen and helium abundances, which
are assumed to be equal to X = 0.75 and Y = 0.25 as in Narayan
& Yi (1995). On the one hand, this implies that the effective
molecular weight for ions is μi = 1.23 and for electrons μe =
1.14, and on the other hand it defines the electron and ion number
densities, ne and ni, with respect to the energy density. In the
following, we provide general formulae in which the factor ni is
replaced by the sum over ion species,

n̄ =
∑

Z2
j n j, (44)

where Z j and n j are respectively the charge and number density
of the jth ion species.

3.2. Radiative processes

We have to complete the set of equations given in Sect. 3
by specifying the physical processes that are involved in
the radiative cooling. We consider a two-temperature plasma
cooled by synchrotron radiation, inverse Compton process, and
bremsstrahlung emission. A very convenient and general de-
scription of these cooling processes was presented by Narayan
& Yi (1995). We closely follow their approximations and pro-
cedures, and also use their formulae (correcting one typo). For
the reader’s convenience and completeness, we summarize these
author’s description here. Electron-positron pair creation and an-
nihilation is neglected but as shown by Björnsson et al. (1996)
and Kusunose & Mineshige (1996) this is justified in most cases
of interest.

In the following subsections, we determine the emission
and absorption coefficients inside the torus corresponding to
bremsstrahlung, synchrotron radiation, and Compton processes.
The emission coefficient respectively (resp.) absorption coeffi-
cient, jν (resp. αν), allows us to compute the increment (resp.
decrement) of specific intensity Iν when progressing through the
emitting medium by a small distance dl

dIν = jν dl,
dIν = −αν Iν dl. (45)

The cgs unit of jν is erg cm−3 s−1 ster−1 Hz−1, while αν is ex-
pressed in cm−1.
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3.2.1. Bremsstrahlung

The rate at which energy is lost due to bremsstrahlung,
f −br = dEbr/dt dV , includes emission from both ion-electron and
electron-electron collisions (Svensson 1982; Stepney & Guilbert
1983)

f −br = f −ei + f −ee. (46)

The ion-electron bremsstrahlung cooling rate is given by

f −ei = nen̄σTαfmec3Fei(θe), (47)

where αf = 1/137 is the fine structure constant and the function
Fei(θe) has the approximate form in units of [erg s−1cm−3]

Fei(θe) = 4

(
2 θe
π3

)1/2 (
1 + 1.781 θ 1.34

e

)
, θe < 1,

(48)

=
9 θe
2π

[ln(1.123 θe + 0.48) + 1.5] , θe > 1.

In the original formula quoted by Stepney & Guilbert (1983),
there is a number 0.42 instead of 0.48 (see Narayan & Yi 1995).

For the electron-electron bremsstrahlung cooling rate,
Svensson (1982) gives the following formula

f −ee = n2
er2

eαfmec3Fee(θe), (49)

where the function Fee(θe) is given in units of [erg s−1 cm−3] and
has the approximate form

Fee(θe) =
20

9π1/2

(
44 − 3π2

)
θ 3/2

e

×
(
1 + 1.1 θe + θ2e − 1.25 θ 5/2

e

)
, θe < 1,

(50)

= 24 θe
[
ln(2η θe) + 1.28

]
, θe > 1,

where re = e2/mec2 is the classical radius of electron and
the Euler number η = exp(−γE) = 0.5616 is given by the
Euler-Mascheroni constant, γE. And again, we replace in the
original formula 5/4 with 1.28 (see Narayan & Yi 1995).

With the bremsstrahlung cooling rate given above, one can
express the bremsstrahlung emission coefficient as

j br
ν = f −br

1
4π

h
kBTe

exp

(
− hν

kBTe

)
Ḡ, (51)

where h is the Planck constant, the 1/4π factor assumes isotropic
emission in the emitter’s frame and Ḡ is the velocity-averaged
Gaunt factor given by Rybicki & Lightman (1986)

Ḡ =

(
3
π

kBTe

hν

)1/2

,
kBTe

hν
< 1,

(52)

=

√
3
π

ln

(
4
γE

kBTe

hν

)
,

kBTe

hν
> 1.

3.2.2. Synchrotron cooling

The emission coefficient for synchrotron emission by a rela-
tivistic Maxwellian distribution of electrons is given by (see
Pacholczyk 1970)

j sy
ν =

1
4π

e2

c
√

3

4πneν

K2(1/θe)
M(xM), (53)

with a factor 1/4π again for isotropic emission in the emitter’s
frame and the fitting function,

M(xM) =
4.0505α

x1/6
M

⎛⎜⎜⎜⎜⎜⎝1 + 0.40β

x1/4
M

+
0.5316γ

x1/2
M

⎞⎟⎟⎟⎟⎟⎠ exp
(
−1.8899x1/3

M

)
,

(54)

where

xM =
2ν

3ν0 θ2e
, ν0 =

eB
2πmec

(55)

and the parameters α, β, and γ are tabulated for a range of tem-
peratures in Mahadevan et al. (1996). The fitting formula is valid
only for θe � 1, i.e. Te � 6 × 109 K, which is satisfied for appli-
cations to ion tori because the synchrotron emission that domi-
nates the central regions of a torus comes, as in other advective
flows, from relativistic electrons in the tail of the Maxwellian
distribution. At lower temperatures or in the outer torus regions,
the emission is dominated by bremsstrahlung. Below a critical
frequency, νc, the synchrotron spectrum becomes self-absorbed.
As the flow in ion tori is very much akin to a spherical flow, this
frequency can be obtained by equating the synchrotron emission
in a sphere of some radius, R [cm], to the Rayleigh-Jeans black-
body emission from the surface of that sphere and solving for
xM, which is then substituted into

νc =
3
2
ν0 θ

2
e xM. (56)

We assume that at low frequencies, ν < νc, the absorption is
locally given by Kirchhoff’s law, i.e., the low-frequency part of
the synchrotron emission behaves like a blackbody.

3.2.3. Compton cooling

The soft bremsstrahlung and synchrotron photons in an ion
torus filled with a thermal distribution of electrons are (inverse)
Compton scattered to higher energies. In the central regions of
the flow in particular, this can be an important cooling mecha-
nism. There is a probability P that a seed photon of some initial
energy, Ein = hν, is in optically thin material scattered to an
amplified energy Eout = AEin, where

P = 1 − exp (−τes), and A = 1 + 4θe + 16θ2e . (57)

Thus, the energy exchange between electrons and photons de-
pends only on the electron temperature θe and the probability
that a photon will interact with an electron, which is given by the
electron scattering optical depth τes =

∫
ne σT dl. Dermer et al.

(1991) and Esin et al. (1996) derived an approximate prescrip-
tion for the energy enhancement factor due to Compton scatter-
ing, which is defined as the average energy change of a seed
photon

η = 1 + η1 + η2

(
x
θe

)η3

, (58)

where

η1 =
P(A− 1)
1 − PA ,

η2 = 3−η3η1, (59)

η3 = −1 − lnP/ lnA.
The dimensionless energy is given by x = hν

mec2 . As the emerging
photons cannot gain more energy than the electrons they collide
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Fig. 3. Radiative cooling rates of a λ = 0.7 torus around a spin a = 0.9M
black hole. The contributions from bremsstrahlung (black, dashed),
synchrotron (black, solid), Comptonised bremsstrahlung (grey, dot-
dashed), and Comptonised synchrotron emission (grey, dotted) are
shown as a function of radius.

with have, there is an upper limit to the energy gained, x � 3 θe.
We note that in our simple ion torus scenario we apply, with-
out loss of generality, the Thomson cross-section rather than the
Klein-Nishina cross-section.

Comptonised emission is η − 1 times the seed photon distri-
bution. The part of the spectrum that can be Comptonised lies
between the critical synchrotron self-absorption edge, x = xc =
hνc/mec2, and x = 3 θe.

Comptonisation of bremsstrahlung emission is then given by

j br,C
ν = j br

ν 3η1 θe

⎧⎪⎪⎨⎪⎪⎩
(

1
3
− xc

3θe

)
− 1
η3 + 1

⎡⎢⎢⎢⎢⎢⎣
(

1
3

)η3+1

−
(

xc

3θe

)η3+1⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .
(60)

We note that the corresponding expression in Narayan & Yi
(1995) has a typo that we have corrected here.

Comptonisation of synchrotron radiation that is emitted
mostly at the self-absorption frequency, νc, is given by

j sy,C
ν = j sy

ν

[
η1 − η2 (xc/θe)η3

]
. (61)

We calculate Comptonisation to second order and assume that
photons that are up-scattered to θe form a Wien tail.

3.2.4. Total cooling

The total emission coefficient is the sum of all radiative contri-
butions

jν = jbr
ν + jbr,C

ν + jsy
ν + jsy,C

ν . (62)

For a medium in local thermodynamic equilibrium (LTE) at tem-
perature T , the emission coefficient given in Eq. (62) and the
absorption coefficient are related by means of Kirchhoff’s law

αν =
jν

Bν(T )
, (63)

where Bν is Planck’s law of blackbody radiation. For the typical
optical depth of ion tori, αν is negligible, thus the absorption can
be safely ignored.

Integration of jν over the whole frequency range gives the
total cooling rate q− at each point (r, θ) in the torus. Figure 3
shows the different contributions to the total cooling rate from
the equatorial plane, θ = π/2, of a λ = 0.3 torus.

Table 1. Parameters for our reference ion torus.

Parameter Value
a 0.5M
λ 0.3
β 0.1
n 3/2
εc [g cm−3] 10−17

ξ 0.1
Te,c 0.02 Tvir

i [ ◦] 80

Notes. Parameter i is the inclination angle of the black hole rotational
axis towards the line of sight. Tvir is the virial temperature.

Radiation that originates close to a black hole is influenced
by various relativistic effects, such as the gravitational bending
of light rays, gravitational redshift, and Doppler beaming. We
ray-trace the emission derived in Eq. (62) from each point (r, θ)
inside the Roche lobe equipotential back to the observer explic-
itly including all relativistic effects in light propagation. This is
described in the next two sections.

4. Ray-tracing

We use the General relativitY Orbit Tracer of the Observatory of
Paris2 (GYOTO), presented in Vincent et al. (2011), which per-
mits the integration of null and timelike geodesics in any analyt-
ical or numerical metric. It is optimised to compute geodesics in
the Kerr spacetime efficiently, and is able to integrate the radia-
tive transfer equation in optically thin media.

The required inputs for GYOTO are the values of the emis-
sion coefficient, jν, and absorption coefficient, αν, at any point
within the torus. These quantities, defined in Sect. 3.2, are known
analytically for the ion torus, so the integration is straightfor-
ward. In particular, the absorption coefficient is zero everywhere.

Photons are launched from the observer’s screen, which is
assumed to be spatially at rest at r = 100 M, in a given specified
solid angle. The null geodesics are integrated until the torus is
reached (or until the photon escapes too far from the torus) and
the specific intensity Iν is updated at each step inside the torus
by using Eq. (45). A map of specific intensity is thus obtained
for a given set of directions on sky. It is then straightforward to
compute the observed specific flux Fν by summing these values
of specific intensities over all directions of incidence.

Two kinds of GYOTO-computed quantities are presented be-
low. The spectra (Figs. 4–9) show the quantity ν Fν for different
values of frequencies. The images (Fig. 10) are maps of specific
intensity Iν.

We stress that the whole C++ code for the ion torus is now
included in the open source GYOTO code, which is available at
the above-mentioned URL.

5. The spectra and images of ion tori

This section presents the spectra and images of an ion torus sur-
rounding a Kerr black hole. Table 1 gives the reference values of
the parameters used for the computations. The value chosen for
the central density εc is standard for Sgr A* (see e.g. the values
in Yuan et al. 2003; Liu et al. 2004; Mościbrodzka et al. 2009;
Dodds-Eden et al. 2010). Various parameters are varied in the

2 Freely available at the URL http://gyoto.obspm.fr
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Fig. 4. Impact of spin on an ion torus spectrum: a = 0 (solid blue),
0.5M (dashed red), or 0.9M (dotted green). All other parameters are set
to their reference values listed in Table 1. The black observed data are
taken from Zhao et al. (2001), Zylka et al. (1995), Marrone et al. (2008)
for radio and sub-mm data, Telesco et al. (1996), Cotera et al. (1999),
Eckart et al. (2006), Schödel et al. (2007) for far- and mid-infrared data,
Genzel et al. (2003) for near-infrared data, and Baganoff et al. (2003)
for the X-ray bow tie. The downward pointing arrows refer to upper
values. Note that we do not present the fitted spectra here.
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Fig. 5. Impact of central temperature: T0/Tvir = 0.01 (solid blue), 0.015
(dashed red), or 0.02 (dotted green).

computations: the spin, a, the dimensionless angular momen-
tum, λ, the magnetic to total pressure ratio, β, the electron to ion
temperature ratio, ξ, the ratio of the central electron temperature
to the virial temperature, and the inclination, i.

Sections 5.1 and 5.2 describe the impact of these parameters
on the spectrum and image of the ion torus.
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Fig. 6. Impact of angular momentum: λ = 0.3 (solid blue), 0.45 (dashed
red), or 0.6 (dotted green).
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Fig. 7. Impact of pressure ratio: β = 0.01 (solid blue), 0.1 (dashed red),
or 0.2 (dotted green).

5.1. Torus spectra

Figures 4 to 9 show the impact of various parameters on the ob-
served spectrum of an ion torus. All parameters that have not
explicitly specified values are set according to Table 1. These
figures show that the ion torus model is able to account for the
general features of the observed data, by appropriately tuning
the various parameters. This includes the X-ray flare “bow tie”
which in the ion torus model may originate from soft photons
that are inverse Compton scattered by the same population of
hot electrons that is responsible for the synchrotron emission.
Only the flattening of the spectrum at low frequencies is never
matched, which is due to the absence of a non-thermal electron
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Fig. 8. Impact of temperature ratio: ξ = 0.08 (solid blue), 0.1 (dashed
red), or 0.2 (dotted green).

distribution in our model, as first pointed out by Mahadevan
(1998) and demonstrated by Özel et al. (2000) and Yuan et al.
(2003). A more evolved model taking into account this effect
will thus be developed in future work.

Figure 4 shows that varying the spin significantly alters the
emission. This is because at high black hole spins the accretion
torus shrinks and moves very close to the black hole. Therefore,
the flux is shifted to slightly higher energies. Increasing the spin
enhances the synchrotron flux, but softens bremsstrahlung.

Figure 5 shows that increasing the central temperature im-
plies that there is a displacement of the whole spectrum towards
higher fluxes. The same effect is obtained by increasing the di-
mensionless angular momentum λ (Fig. 6). This is because the
torus puffs up like a balloon as λ increases (see Fig. 1), thus pro-
viding more flux.

Figures 7 and 8 show that increasing either the pressure ra-
tio β or temperature ratio ξ has an opposite impact: a higher β
leads to higher synchrotron flux, while a higher ξ gives a smaller
flux. This is because increasing β increases the magnetic field
strength, while increasing ξ decreases B (see Eq. (41)).

Figure 9 shows that the inclination has little effect on the
spectrum. Although the number of illuminated pixels is smaller
at higher inclination, the beaming effect is more important.
These two phenomena have opposite effects, and the resulting
spectrum does not change much.

Future work will be devoted to constraining the various pa-
rameters, in particular Sgr A*’s spin, by fitting these spectra to
observed data.

5.2. Torus images

Each image is a superimposition of a first-order image (the thick
distorted ring) and higher-order images (the circles centred on
the black hole) produced by photons that swirl around the black
hole before reaching the observer. There is also a very fine cir-
cle of light in each image, that consists of photons originating
from a location just outside the photon orbit (see e.g. Bardeen
et al. 1972, for a definition). Photons that escape from the region
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Fig. 9. Impact of inclination: i = 40◦ (solid blue), 60◦ (dashed red),
or 80◦ (dotted green).

inside the photon orbit are so severely red-shifted that they cre-
ate an area of reduced intensity on the observer’s screen: this is
the so-called “black hole silhouette” (which is also known as the
black hole shadow; Falcke et al. 2000).

Our interest in these images is the following. Knowing the
particular extent and shape of the accreting region from obser-
vations allows us to constrain various parameters of the flow. In
particular, the location and shape of the photon orbit contains
information on the geometry of spacetime. Increasing spin dis-
places the thin photon ring in the image plane off centre and
a � 0.9M introduces in addition distortion. Black hole spin,
torus dimensionless angular momentum and inclination have
each a huge and characteristic impact on the observed image
of the torus as depicted in Fig. 10. This is also revealed in the
spectra Figs. 4 and 6. The inclination angle, however, does not
influence the spectra in a commensurate way (Fig. 9).

The required technique of measurement of the black hole
silhouette is already available thanks to recent progress in mil-
limetre Very Long Baseline Interferometry (mm-VLBI) (see
Doeleman et al. 2008). With the near-future sub-mm VLBI in-
struments direct observation of processes in the range between
5–40 Schwarzschild radii will become feasible and with it also
the potential to image radiation from an accretion structure and,
possibly, to deduce the existence of an event horizon.

6. Conclusions and perspectives

We have calculated electromagnetic spectra and images of ac-
cretion structures around the central black hole in Sgr A* us-
ing a simple analytic model of “ion tori” very similar to these
described in the well-known paper by Rees et al. (1982). Our
results depend on observationally unknown tunable parameters
of the model, particularly the black hole spin. The hope is that
fitting these analytic models to observations could practically
restrict the allowed parameter range, so that future sophisticated
MHD simulations of Sgr A* (which are similar to the more ad-
vanced ones of Dibi et al. 2012) will be more tightly constrained.
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Fig. 10. Upper left: image of the reference ion torus corresponding to the parameters listed in Table 1, as observed by an observer on Earth, in
inverted colours (the darker, the more luminous). The display is intentionally saturated for a better rendering of the less luminous parts of the
image. Upper right: same as in the upper left but with the spin parameter increased to a = 0.9M. Lower left: same as in the upper left but with
dimensionless angular momentum increased to λ = 0.6. Lower right: same as in the upper left but with the inclination angle decreased to i = 40◦.

One interesting question here is how accurate the simple an-
alytic models are compared with advanced MHD simulations.
We are working on a comparison of our spectra and images with
these calculated by Dibi et al. (2012). If the preliminary impres-
sion that these images and spectra are indeed very similar were
to be confirmed by the test, then it would be much easier to fit
theory to observations, and in particular to eventually measure
the black hole spin in Sgr A*.

We plan to expand our models of ion tori to include a
more complete coverage of the parameter space in connection
with a “general” angular momentum distribution (as in Qian
et al. 2009) and to include, directly and analytically, large-scale

magnetic fields (as in Komissarov 2006). We also plan to calcu-
late models of ion tori in a non-Kerr background (as advocated
by Psaltis and collaborators, e.g., Psaltis et al. 2008; Johannsen
& Psaltis 2010) to possibly constrain gravity in the strong-field
regime of alternative gravity theories to Einstein’s general rela-
tivity. In the context of flares it may also be interesting to exam-
ine non-stationary ion tori (as in Abramowicz et al. 1983).
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