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ABSTRACT

In stellar oscillations, the temporal variation in the amplitude of a given mode can yield some information about the interior of the
star. In what concerns the excitation mechanism, it has been shown that for oscillations that are excited and damped by a physical
process in stochastic equilibrium, the ratio of the standard deviation of the amplitude σA over the amplitude mean value µA is of the
order of 0.52. This “statistical signature” is a general property of stochastically excited oscillations, so it can be used with any type of
star – making it a powerful tool.
Although the method is simple, its reliability and robustness have yet to be proven. With the help of simulations, these points are
addressed in the present work, and the observational requirements for this method to work are more clearly defined. We show that
a number of amplitude measurements of about 102 are required to get a good estimate of σA/µA. The method is also tested against
the complication of having a time series crowded with many modes (unresolvable in short time series), and results show that the
theoretical relation of σA/µA still holds true.
Some of the motivation behind the new tests of the method involves applying it to γ Doradus stars. The open question of what drives
oscillations in these stars makes this statistical method very interesting when applied to γ Doradus stars. A test of the method is
performed using γ Doradus observations. As expected, the results are inconclusive and demonstrate how ground-based observations
of γ Doradus stars hardly fulfill the applicability requirements of the method. We show, however, how a possible scenario of stochastic
excitation in these stars could be detected with the COROT space mission.

Key words. methods: statistical – stars: statistics – stars: oscillations – stars: fundamental parameters

1. Introduction

The γ Doradus pulsating stars are typically early F-type stars
with luminosity class V or IV, displaying low visual amplitudes
of a few hundredths of magnitude whose periods range from 0.5d

to 3.0d. Some γ Doradus stars coexist with the δ Scuti variables
inside the instability strip, but the majority are located on and
outside the cool border. Close to the δ Scuti stars in the HR di-
agram, the γ Doradus stars are representative of intermediate-
mass stars. Kaye et al. (1999) classified them as multi-periodic
non-radial gravity mode oscillators, with low-degree and high-
radial order. An excellent work summarizing the evolution of the
research in the field stars can be found in Zerbi & Kaye (2002).

The majority of γ Doradus stars have been discovered by
accident. The relatively long periods and very low amplitudes
make any observational detection very difficult. Some were
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(“Instituto de Astrofísica de Andalucía”, CSIC), Granada, Spain.
�� Present address: RSAA, Mt. Stromlo Observatory, Cotter Rd.,
Weston, ACT 2611, Australia.
��� Associate researcher at institute (3).

detected while being used as comparison stars for differential
photometry in multi-site campaigns of previously known δ Scuti
variables. Since the list of 13 bona-fide γ Doradus stars pub-
lished by Kaye et al. (1999), a big effort has been made to find
new members of the class. Important systematic searching for
γ Doradus star candidates were performed in different databases
such as the Hipparcos Catalogue (ESA 1997) (Aerts et al. 1998;
Handler 1999) and Geneva photometric database (Eyer & Aerts
2000). In addition to this, systematic observations in open clus-
ters have significantly contributed to increasing the number of
possible γ Doradus candidates (see Martín & Rodríguez 2000;
Kim et al. 2001; Choo et al. 2003; Martín 2003; Arentoft et al.
2005). In order to confirm their pulsational nature, many of
these new candidates have been revisited (see Martín et al. 2003;
Henry & Fekel 2003; Henry et al. 2005, and references therein).
In the Henry et al. (2005), an updated list of the 54 confirmed
γ Doradus stars is reported.

Special mention should be made of the earliest works
attempting mode identification like, to name a few, Balona
et al. (1996) who apply the line profile variations technique
to γ Doradus stars, Aerts & Krisciunas (1996) who study the
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mode identification in the slowly pulsating F0V star 9 Aur, Zerbi
et al. (1999) who reported the results of a multisite campaign on
HR 8899, or Aerts & Kaye (2001) who made a spectroscopic
analysis of HD 207223.

Since the first theoretical instability of γ Doradus stars pro-
posed by Warner et al. (2003), significant improvements have
been recently achieved for these stars in the framework of aster-
oseismology. These improvements concern the identification and
the driving mechanism of their pulsation modes. To name a few
(the more recent), for the mode identification, Moya et al. (2005)
and Suárez et al. (2005) propose the frequency ratio method
(FRM), which simultaneously constrains the mode identification
and restricts the possible representative models. Furthermore,
the robustness of the method for moderately rotating γ Doradus
stars is also shown (Suárez et al. 2005).

The driving mechanism of the γ Doradus gravity modes has
been a matter of debate during the past decade. The theory de-
veloped by Guzik et al. (2000) ascribes the origin of pulsation
to convection. In particular, pulsations are considered as being
driven by a periodic flux blocking at the base of the convective
envelope. The balance between this flux-blocking driving and
the radiative damping in the g-mode cavity explains the location
of their instability strip. The authors used a frozen convection
(FC) treatment in their non-adiabatic modelling. This approxi-
mation holds true only in a very thin region near the bottom of
the convective zone, where the lifetime of the convective ele-
ments is longer than the pulsation periods. However, this is not
the case in the rest of the convective zone. This problem has
been recently solved by the time-dependent convection theory
developed by Gabriel (1996) and Grigahcène et al. (2005). The
new TDC models confirm the predictions proposed by Guzik
et al. (2000), i.e., the periodic flux blocking at the base of the
convective envelope as responsible for the driving of g modes.
Moreover, the balance between this flux and the radiative damp-
ing in the g-mode cavity explains the location of the instability
strip (Dupret et al. 2004, 2005) for these stars.

The aim of this work is to identify in which conditions the
signature of stochastic excitation can be detected in γ Doradus
stars, using the statistical method proposed by Pereira & Lopes
(2005), which relies on numerical simulations of stochastic exci-
tation with some improvements that are important to the specific
case of γ Doradus stars. Fundamental observational problems
inmediately arise when applying the statistical method to these
stars: the period and amplitude stability over a given duration,
which is necessary for the theory to be applied, and the time res-
olution to detect stochastic modes. Up to now, ground-based ob-
servations hardly fulfil such conditions. Aware of this, we illus-
trate the application of the method (its problems and results) to
ground-based γ Doradus star observations using the γ Doradus
star HD 22702, and we dicuss the results as a starting point for
future statistical analysis of space obsevartions.

The outline of this paper is as follows. In the next section
a brief description of the method used to identify stochastically
excited oscillations is given. In Sect. 3 we use simulations of
stochastic oscillators to test the amplitude distribution and the
effect of a crowded spectrum on the amplitude distribution. In
Sect. 4 we turn our attention to the applicability of the method
by testing how many values of amplitude (and how they are
sampled) are required for the statistical method to yield pre-
cise results. In Sect. 5 we discuss the application of the method
to γ Doradus stars, we make a test with ground-based observa-
tions, and then see how data from COROT might help. Finally,
we draw our conclusions in Sect. 6.

2. Identifying stochastically excited oscillations

2.1. The method

Based on the statistical properties of stochastically excited oscil-
lators, a simple diagnostic method can be established to probe
the oscillations driving mechanism (see Pereira & Lopes 2005).
We consider a single damped harmonic oscillator, whose am-
plitude is randomly excited. If one can measure the oscilla-
tor’s energy over time intervals much smaller than the damping
time, then the energy distribution naturally follows a Boltzmann
distribution (see Kumar et al. 1988):

p(E) =
1
〈E〉 exp

(
− E
〈E〉

)
, (1)

where 〈E〉 is the mean energy. To obtain the amplitude distribu-
tion, one has in mind that

p(E)dE = p(A)dA (2)

and that for an oscillator E is proportional to A2:

E =
1
2

kA2. (3)

Using (1)–(3) one obtains a Rayleigh-type distribution for the
amplitude distribution:

p(A) =
2A
〈A2〉 exp

(
− A2

〈A2〉
)
, (4)

where 〈A2〉 is a parameter connected with the mode energy. This
distribution has an interesting relationship between its mean 〈A〉
and its standard deviation σ(A):

σ(A) =

(
4
π
− 1

)1/2

〈A〉 ≈ 0.52 〈A〉. (5)

This simple relation holds true when an oscillator is in stochas-
tic equilibrium (Lopes 2006, in preparation). By computing the
statistic σ(A)/〈A〉, one can probe for the existence of stochas-
tic excitation in a given oscillator. This method is easily applied
to stellar oscillations, provided that one is able to observe and
identify a given mode over a set of nights.

One useful tool when probing the excitation mechanism in a
star is the so-called excitation diagram, a σ(A) vs. 〈A〉 plot. The
diagram is split in two regions, divided by the y ≈ 0.52x line,
which defines the stochastic equilibrium. The stochastically ex-
cited stellar oscillations are expected to be found around the
0.52 line, which is the most interesting zone of the diagram. The
upper and lower regions of the diagram are believed to represent
oscillations that are not in equilibrium. While most of the stellar
oscillations that are not stochastically excited are believed to lie
in the lower region (σ(A) < 0.52〈A〉) of the diagram (some ob-
servational results are given in Pereira & Lopes 2005), the upper
region corresponds to non-equilibrium stochastic oscillations –
that have yet to be observed.

In Pereira & Lopes (2005) a numerical study was made to
investigate the limitations of this method, in the framework of
a case study. We have refined this numerical study in order to
make more general conclusions and to include some ingredients
relevant to the study of γ Doradus stars.
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2.2. Numerical study and previous work

The previous numerical study was made in order to answer the
question: given that n measurements of a mode’s amplitude are
made, what is the probability that σ(A)/〈A〉 = 0.52 if the mode
is stochastically excited? This approach led to the construction
of the distributions of the sample σ(A)/〈A〉, the tools used to set
bounds on the expected σ(A)/〈A〉. The bounds set on σ(A)/〈A〉
depended naturally on the significance of this statistic. Although
the factors affecting the significance of the statistic were not
deeply analyzed, the previous results provided a basic answer
to the initial question.

In the strategy of using σ(A)/〈A〉 to detect stochastic excita-
tion, there are two basic issues at stake: a physical process (what
is the amplitude distribution?) and a statistical sampling pro-
cess (if the oscillator is stochastic, what is the sample σ(A)/〈A〉,
given that we make n measurements of A?). The previous ap-
proach entangled the two issues, making it harder to study each
issue individually, therefore an improved numerical study was
performed and the issues of the amplitude distribution (3) and
the sampling (4) have been studied independently.

3. Testing for the amplitude distribution

In purely theoretical terms of a single-mode oscillation, the am-
plitude distribution is well defined by Eq. (4). This result can be
confirmed with a simple simulation.

First, a large time series is generated, whose signal is gener-
ated as a stochastically excited damped harmonic oscillator. The
signal of the stochastic oscillator can be constructed in a similar
way as in Pereira & Lopes (2005)

S (t) = A1 sin(ωt) + A2 cos(ωt), (6)

where, at each sample time ∆t, the Ai are reset according to the
expression

Ai(t + ∆t) = exp(−η∆t)Ai(t) +N(0, ξ)δ, (7)

where η is the inverse of the damping time, andN(0, ξ) a random
number drawn from a normal distribution with zero mean and ξ
variance, and δ is the average excitation factor.

Second, the time series is divided into multiple sections,
“slices”, and the amplitude is determined in each slice. Since
each slice yields one amplitude value, by combining all the data
we have a set of amplitude values, which we refer to as “popu-
lation”. To infer something about the amplitude distribution, we
would simply compute a histogram of the population.

In the simple case of an oscillator with one frequency, we
generated a signal with the following parameters: ν = 1 mHz;
damping time of 2.5 days; ξ = 0.1; sampling time of 100 s; total
time span of 95 years (approx. 3 × 107 points) split in 106 sub-
sets (each with approximately 50 min, or three periods). With
the resulting amplitude population, a histogram was computed,
and the result is given in Fig. 1. From the figure one can see that,
as expected, the theoretical expression is a very good approxi-
mation.

Having confirmed the amplitude distribution, we can now
go one step forward to discuss an important issue when trying
to apply the method to γ Doradus stars. Models of these stars
(Moya et al. 2005; Suárez et al. 2005) show that they typically
have several long (usually many hours or a few days), closely-
spaced periods. These periods cause a complex beating effect, on
an even longer time scale than the periods. In terms of ground-
based observations, this presents two problems: (a) the long pe-
riods mean that one has to make several observations during a

Fig. 1. Normalized amplitude histogram, based on the amplitude values
determined in our simulation. The histogram comprises 106 points. The
solid line represents the amplitude distribution function from Eq. (4),
with a chosen 〈A2〉.

few nights in order to determine the amplitude of a mode and
(b) the resolution needed to resolve the closely-spaced periods is
very high, and very difficult to attain even with observations on
several nights. At this stage we address point (b).

In a practical scenario, the closely-spaced modes typical of
a γ Doradus star mean that each amplitude measurement (even
if only one mean value is determined in a set of nights) will be
affected by a beating effect. Thus, an important question to ask
when using the statistical method in these stars is what happens
to the amplitude distribution in this scenario. Accordingly, we
modified our simulation, accounting for this scenario. Instead of
just one frequency, the generated signal was a sum of several fre-
quencies. Originally at ν0 = 1 mHz, the new frequencies began
at ν0 and were incremented by 10 µHz1. This small separation
yielded a beating effect whose period was around 27 h, which
was unresolvable in each slice of 50 min. By keeping ξ the same
in each mode, the mean amplitudes were equal. In this way, our
simulation created an amplitude population in which each am-
plitude value was somehow influenced by the beating effect (i.e.,
the values were multiplied by a circular function).

Some results from simulations with more than one mode can
be seen in Fig. 2. It is clear from the figure that the width of
the distribution, proportional to 〈A2〉 increases with the number
of modes. The 〈A2〉, in turn, is proportional to 〈E〉, the mean
mode energy. Adjusting the parameter in Eq. (4) to the different
histograms, we found that 〈A2〉 ≈ k〈A2〉0, where k is the number

1 It should be noted that the chosen values for the frequencies, fre-
quency increments, damping time, sampling time, etc. are not very
important per se (in fact, these imply much shorter periods than in
γ Doradus stars, for instance) but only in their relative values. The fre-
quency increments were chosen so that they are 0.01 of the main fre-
quency (which is consistent with the γ Doradus case); the sampling
time was chosen so that the resolution was good; the damping time was
chosen so that it was much longer than the sampling time (condition
for a stable stochastic excitation); the frequency was chosen so that at
least three periods were present in each amplitude determination (for
the given sample time) and so that in the end one would have around
106 amplitude values in about 100 yr. The specific values do not influ-
ence the end result at all (only the relation between them), making it
true to any stochastically excited oscillation.
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Fig. 2. Normalized amplitude histograms, based on the amplitude
values determined in four simulations. Each histogram comprises
106 points. The histograms correspond to, respectively from the higher
to the lower peaks, one mode (gray triangles), two modes (black
squares), three modes (gray filled circles), and 10 modes (small black
open circles). For the histogram corresponding to 10 modes, a solid line
has been plotted, representing the amplitude distribution function from
Eq. (4), with a chosen 〈A2〉.

of modes and 〈A2〉0 the parameter for the simulation with just
one mode. As all the modes in the simulations had the same
mean energy, this result indicated that overall the mean energies
of each mode were being summed effectively. This means that,
when unable to resolve the closely spaced frequencies, a set of
amplitude measurements will yield a distribution whose 〈A2〉 is
the sum of the contributions of 〈A2〉i of each unresolved mode.

As a side note, it is worth mentioning that the distributions
from the simulations can slightly deviate from Eq. (4). Although
the agreement is generally very good, we found a slight deviation
from the Rayleigh distribution in the zone where the function
started to rise, just before the peak. For instance, this effect can
be seen, with a little effort, in Fig. 2, in the darkest histogram.
This is, nevertheless, a minor detail that did not interfere with
the statistic paramount to this work, σ(A)/〈A〉.

4. Testing for sampling effects

The statistical method outlined in Sect. 2.1 tells us that for a
stochastic oscillator, σ(A)/〈A〉 should be around 0.52. But when
observing, only a limited set of values (measurements) of A is
available. This limited number of values will determine if the
sample 〈A〉 and σ(A) are good estimators of the true values. An
important question should therefore be asked: how many ampli-
tude measurements n does one need to make a good measure-
ment of σ(A)/〈A〉? In other words: given that one measures n
values of A, how does that affect the sample σ(A)/〈A〉? It turns
out that not only is the number of measurements n important
for correctly determining the σ(A)/〈A〉 but also how these mea-
surements are made (sampling type), as explained in the next
paragraphs.

Suppose that we have a large population of amplitude values,
each one determined in contiguous sets of a large time series. To
simulate amplitude measurements (i.e., extracting A from obser-
vational time series), we pick n amplitude values from our pop-
ulation. Then the sample σ(A) and 〈A〉 are computed from the

Fig. 3. Superposition of four histograms representing the σ(A)/〈A〉 dis-
tribution. From left to right, the histograms correspond to sampling
of 2, 5, 100 and 1000 amplitude values. The points were linearly sam-
pled with separation 3 (explained in text). Each histogram comprises
2 × 104 points.

amplitude values. This, in turn, brings a sampling problem. To
maximize the significance of the statistic we should pick ampli-
tude values from time series that form an accurate sample of the
amplitude distribution.

To address this question, we used the previously generated
time series and amplitude values. Having generated a population
of amplitude values, we studied this problem by picking (“sam-
pling”) amplitude values from the population and computing
the sample σ(A)/〈A〉. To determine what the sample σ(A)/〈A〉
should be for different samplings, our procedure was to: (a)
choose a sampling method and pick n values of A from our pop-
ulation; (b) compute the sample σ(A)/〈A〉 and record it; (c) re-
peat the procedure many times (104 to 5 × 104) and compute the
histogram with all the values of σ(A)/〈A〉. This allows us to con-
struct the pdf of the sample σ(A)/〈A〉, and compare it for differ-
ent n values and different samplings. It should be noted that this
sample σ(A)/〈A〉 distribution has a completely different nature
from the amplitude distribution. This distribution is equivalent to
the σ(A)/〈A〉 distribution discussed in Pereira & Lopes (2005).

After several “experiments”, our results show that there are
two important factors to consider in the sampling in order to get a
correct estimate of the σ(A)/〈A〉 value: the number of amplitude
values n and the type of sampling.

4.1. Effect of the number of measurements

The number of measurements of A, n, is the most important
factor to consider when studying the significance of the statis-
tic σ(A)/〈A〉 (or, in other words, the distribution of the sample
σ(A)/〈A〉). Figure 3 illustrates the effect of the number of mea-
surements on the distribution of the sample σ(A)/〈A〉. There are
essentially two effects as we increase n: (a) the type of the distri-
bution starts by being almost exponential (for low values of n),
and progressively acquires a Gaussian-like shape, and its peak
converges to 0.52 as n increases; (b) the width of the distribution
(when the “Gaussian” form is acquired) decreases exponentially
with n. This can be seen in the figure, when n = 1000 the full
width at half maximum (FWHM) is somewhat narrower than
n = 100.
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In summary, the effect on the σ(A)/〈A〉 distribution when in-
creasing n is a quick convergence of the modal bin/mean to 0.52
and an exponential diminution of the width. This effect can be
seen in Fig. 4.

4.2. Effect of the sampling type

The number of measurements is the most important factor for
correctly estimating σ(A)/〈A〉. However, the statistic is also in-
fluenced by other factors, such as the type of sampling.

It is easier to explain the types of sampling by making a par-
allel between our sampling of amplitude values from the popula-
tion and the observational reality. Let us suppose that each time
series’ segment where the amplitudes were determined corre-
sponds to 6 h of continuous observation. Let us also suppose that
in a telescope a given star was observed for 6 h every night, in n
consecutive nights. Given that on 24 h there are 4 “segments”
of 6 h and that during one only could the star be observed, this
means that for all the possible amplitude values Ai , Ai+1, Ai+2,
Ai+3, Ai+4, . . . , AK , only the Ai, Ai+4, . . . , Ai+4(n−1) were observed.
In terms of our amplitude population, where each value was de-
termined in contiguous time series, this is equivalent to picking
the Ai, Ai+4, . . . , Ai+4(n−1) values from the population (starting
at given index i). We call this type of sampling linear sampling
with separation 4 (because of the “jumps” in 4 between each
value).

Linear sampling is the most realistic sampling type. Its effect
on the significance of σ(A)/〈A〉 was studied by experimenting
with different separations. For the sake of completeness, uniform
random sampling was also tested.

In the previous section it was noted that the effect of the
number of measurements n on the distribution of the sample
σ(A)/〈A〉 was two-fold: by increasing n the distribution’s modal
bin converges (rapidly) to 0.52, and its width converges (slowly)
to zero. This convergence to the “true result” is defined, in distri-
bution terms, as the convergence of the distribution of the sam-
ple σ(A)/〈A〉 to a Dirac Delta distribution centered in 0.52. One
can define a certain “speed of convergence” that specifies how
quickly the distribution of the sample σ(A)/〈A〉 converges to the
true result. The effect of the sampling type on the distribution
seems to be to slow down or increase these speeds of conver-
gence. A “better” sampling (i.e., measurements are well-spaced
in time) will result in a faster convergence of the modal bin
to 0.52 and of the width to zero.

With linear sampling, it was found that as one increases the
separation, the distribution generally seems to converge faster to
the true result, as one increases n. This holds true up to some lim-
iting speed of convergence. This result is not surprising, given
that, by increasing the separation, we are extracting amplitude
values that correspond to measurements with a larger temporal
separation between them – increasing the statistical significance
of the amplitude values. In addition, our testing of the uniform
random sampling tells us that this is in fact the best sampling
possible, defining the maximum speed of convergence – which
again is not surprising, because it affords the best statistical sig-
nificance to the amplitude values.

The effects of the number of measurements and the sampling
type have been quantified in Fig. 4, where the morphology of
the sample σ(A)/〈A〉 is analyzed by looking at its modal bin and
FWHM. The values of these two parameters of the distribution
are plotted in the top and bottom panels as a function of n and of
the sampling type. It can be seen that the random uniform sam-
pling sets the best theoretical limits on the sample σ(A)/〈A〉 dis-
tribution, where the modal bin converges faster to the 0.52 value

Fig. 4. Effect of the sampling type and number of measurements on the
sample σ(A)/〈A〉 distribution. Two parameters of the distribution are
represented: modal bin (top) and FWHM (bottom). Symbols represent
different types of sampling: linear sampling with separation 4 (squares);
linear sampling with separation 24 (triangles) and uniform random sam-
pling (circles).

and the width to zero. In terms of the linear sampling, it is clear
that there is a faster convergence as we increase the separation.

One not-so-positive aspect (to observers) that is reflected
in Fig. 4 is the high number of measurements needed to get a
good estimate of σ(A)/〈A〉. For instance, using linear sampling
with separation 24 only with 50 measurements is the expected
σ(A)/〈A〉 distribution to have a modal bin around 0.49 with a
width of 0.12, which is acceptable for providing an accurate
answer. But the number of possible amplitude measurements de-
pends on the time scale of the oscillations. To accurately deter-
mine one amplitude value, a reasonable demand is that we ob-
serve three periods (in fact, it can be less than that). If we are
considering oscillations like the solar 5 min oscillations, then
in one night (6–7 h) we can have around 25 sets of three pe-
riods, or 25 measurements of amplitudes. On the other end of
the scale, we have the γ Doradus stars, with periods of several
hours or even days that require multiple nights of observation
to determine one amplitude value, so the aspect of the number
of measurements when dealing with γ Doradus stars is a clear
disadvantage.

5. Application to γ Dor stars

5.1. Results for ground-based observations

As seen in Fig. 4, our results show that one needs around 100
measurements to get an accurate measurement of σ(A)/〈A〉.
While this would not be a problem for stars with periods on the
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Fig. 5. Differential data set comprising multi-site observations of the
γ Doradus star HD 22702. Points corresponding to the v-band. Only a
selected number of points were used in the analysis (see text).

order of minutes or hours, it is one in this case. For γ Doradus
stars, oscillation periods on the order of days means that one
would need very large time series, with at least 100 nights of
observations. This is a very ambitious target, even with large ob-
servational campaigns.

Despite the difficulties a priori, we have analyzed obser-
vational data from a γ Doradus star and tried the method on
these data – to see how far the method could be pushed with
ground-based observations. The chosen star was HD 22702, a
main-sequence star with V = 8m81 and spectral type A2 that
belongs to the Pleiades open cluster (29 in Trumpler 1921).
The observational data were taken from a photometric multi-
site campaign, from October 1998 to February 1999, in which
the γ Doradus nature of HD 22702 is confirmed (by SMR), us-
ing the 90-cm telescope at Sierra Nevada Observatory (Granada,
Spain), together with the 1.5-m telescope at San Pedro Mártir
Observatory (Mexico). The data, shown in Fig. 5, include 53 use-
ful nights, with a total span of 119 days. To get the ampli-
tude measurements from the data, a compromise solution be-
tween quality/number was to extract from the original time se-
ries 11 amplitude measurements (each extracted in a set with 3
or 4 consecutive nights).

Using standard sine-fitting techniques with the Period04
(Lenz & Breger 2005) software package, the light curve for the
Strömgren v band was analyzed, analyzing three periods in each
data subset. For each period, the statistics σ(A) and 〈A〉 were
computed over the 11 data sets. The results of the analysis could
not be conclusive – the error bars we obtained forσ(A)/〈A〉were
approximately 100% of the value. This result is likely to stem
from the fact that we only have 11 measurements of amplitude
(and, according to the simulations, 102 measurements are needed
for a theoretical error bar of 0.1 in σ(A)/〈A〉). However, it was
not obvious from the start (with a high quality time series) that
one would only be able to get 11 measurements of amplitude.
It might be possible to squeeze the data and get a few more,
but there is always a tradeoff between the quality of each mea-
surement (i.e., a measurement spanning many periods) and the
number of measurements. But in the end, the result would not
be very different: with this type of ground-based it is very dif-
ficult to apply the statistical method to detecting a signature of
stochastic excitation in γ Doradus stars.

Fig. 6. Normalized histogram for the sample σ(A)/〈A〉 distribution,
with 71 measurements of amplitude, linearly sampled with separation 1
(equiv. to 6 months of observations with COROT).

5.2. Predictions for the COROT space mission

While probing the excitation mechanism in γ Doradus stars via
this proposed method is very difficult with ground-based obser-
vations, satellite observations may shed some light on this issue.
With the advent of γ Doradus stars in the field of view of the
COROT space mission, six months of continuous data will be
available for stars of this type. With this in mind, we look at how
clearly defined the sample σ(A)/〈A〉 would be for space obser-
vations, assuming stochastic excitation.

Based on the expected total time of observation with
COROT, we can predict the distribution of the sample σ(A)/〈A〉
for those observations. We assume that the observable γ Doradus
stars will have periods comparable to HD 22702, the γ Doradus
we analyzed previously. First, the approximate number of ampli-
tude measurements is computed. In the HD 22702 case, the ma-
jor mode has a period of approx. 2.57d, meaning that there are
approx. 71 periods in 6 months – yielding 71 amplitude values
(if one value is determined per period). This was thus the num-
ber of amplitude values employed in our simulation (described
in Sect. 4), with a run for n = 71 and using linear sampling
with separation 1 (contiguous values). The results of this run are
plotted in Fig. 6.

For the equivalent of 6 months of COROT data, the expected
σ(A)/〈A〉 (modal bin) is around 0.5 with a FWHM of approxi-
mately 0.135. We can see the distribution in Fig. 6, where it is ev-
ident that, while not perfect, a precise measurement of σ(A)/〈A〉
can be made in the case of stochastic excitation. This means that,
if stochastic excitation is present in the γ Doradus star to be an-
alyzed, one will be able to find the signature of stochastic exci-
tation.

6. Conclusions

By analyzing the temporal variation of a mode’s amplitude we
can extract some information about the excitation mechanism.
In this work we proposed to better determine the applicability
conditions of the method used in Pereira & Lopes (2005) and to
look for its possible application to γ Doradus stars.

Important information can be gathered from our simula-
tions about the observational requirements of the method (given
in number of amplitude measurements and spacing between
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measurements), and also about the analysis of closely-spaced
modes. The simulations show that a considerable number of
measurements (on the order of 102) is needed to obtain a good er-
ror bar on the sample σ(A)/〈A〉. Our numerical results also show
that in the case of stochastic excitation, the amplitude distribu-
tion has the same properties when one measures the amplitude
of a group of closely-spaced (unresolvable) modes. While this
is very important in the case of γ Doradus stars, both results are
generally valid for any type of star.

An effort was made to test the method with observational
data (ground-based observations) of a γ Doradus star. However,
the limited number of amplitude measurements we were able to
gather did not allow for a conclusive result. According to the
simulations a lot more measurements are necessary for a precise
determination of σ(A)/〈A〉. In the case of γ Doradus stars this
is a hard thing to achieve, since their periods are very long. We
then turned our attention to the COROT space mission and the
data it will produce. For the star in our case study, HD 22702, we
show that the number of amplitude measurements determined
with the time span of COROT are sufficient for one to make
a good measurement of σ(A)/〈A〉 and to look for a stochastic
excitation signature.
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