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Abstract. We discuss the possibility that astrophysical accretion disks are dynamically unstable to non-axisymmetric distur-
bances with characteristic scales much smaller than the vertical scale height. The instability is studied using three methods: one
based on the energy integral, which allows the determination of a sufficient condition of stability, one using a WKB approach,
which allows the determination of the necessary and sufficient condition for instability and a last one by numerical solution.
This linear instability occurs in any inviscid stably stratified differential rotating fluid for rigid, stress-free or periodic boundary
conditions, provided the angular velocity Ω decreases outwards with radius r. At not too small stratification, its growth rate
is a fraction of Ω. The influence of viscous dissipation and thermal diffusivity on the instability is studied numerically, with
emphasis on the case when d lnΩ/d ln r = −3/2 (Keplerian case). Strong stratification and large diffusivity are found to have a
stabilizing effect. The corresponding critical stratification and Reynolds number for the onset of the instability in a typical disk
are derived. We propose that the spontaneous generation of these linear modes is the source of turbulence in disks, especially
in weakly ionized disks.
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1. Introduction

The simplest model of an accretion disk is that of a barotropic,
axisymmetric rotating shear flow in hydrostatic vertical equi-
librium, with a Keplerian velocity law. Realistic disks are also
subject to baroclinic effects (when the rotation departs from
cylindrical, i.e. when Ω varies also with the axial coordinate z)
and to a vertical stratification, induced either by the hydrostatic
state or via the illumination of the surface of the disk due to
the central object. If the stratification is unstable, it leads to
turbulence via convective instability. When the stratification is
stable, it is generally ignored or thought to be unimportant in
the stability analysis, under the rationale that it can only sta-
bilize the flow. Ignoring the stratification and baroclinic effects
makes the accretion disk look like a simple differentially ro-
tating shear flow, with an azimuthal keplerian angular velocity
profile Ω(r) ∝ r−3/2. Its linear stability with respect to axisym-
metric disturbances is governed by the Rayleigh criterion in the
inviscid limit:

d
(
r2Ω

)2

dr
> 0 for stability. (1)

Flows obeying this criterion are called centrifugally stable.
Keplerian flow, in which angular momentum increases out-
wards, falls into this category. Yet, there is observational

evidence that astrophysical (putatively Keplerian) disks are tur-
bulent (cf. Hersant et al. 2005), and thus that a source of insta-
bility exists in these flows.

Leaving aside baroclinic effects, various mechanisms have
been found able to destabilize centrifugally stable flows. They
may or may not apply to astrophysical disks.

i) Centrifugally stable flows can experience a globally sub-
critical bifurcation (Dauchot & Manneville 1997), in-
duced by finite amplitude disturbances involving non-
linear mechanisms not captured by the Rayleigh criterion
(Dubrulle 1993). The transition threshold in this case is re-
lated to the amplitude of the external disturbance, as typi-
cally observed in a plane shear flow (Dauchot & Daviaud
1994).
Taylor-Couette experiments, with fluid sheared between
two concentric rotating cylinders in the centrifugally sta-
ble regime, have revealed such transition. When the inner
cylinder is at rest, the data of Wendt (1933) and Taylor
(1936), re-analyzed by Richard & Zahn (1999), show that
for the typical amplitude of the intrinsic disturbances of
the experimental devices, turbulence subcritically sets in
as soon as R = Ud/ν > Rnl

c , where U is the relative veloc-
ity between the walls, d, the radial extent of the flow (the
gap) and ν the viscosity.
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For small curvature, the threshold is essentially indepen-
dent of the gap/radius ratio and in the limit of plane Couette
flow, Rnl

c � 1500, a value in agreement with the minimal
Reynolds number for which turbulence can be induced in
plane Couette flow. For large curvature, Rnl

c scales with the
square of the gap/radius ratio.
Finally, novel laboratory experiments were performed re-
cently (Richard 2001), to refine the present analysis and
to explore regimes with co-rotating cylinders. For the first
time, the hysteretic behavior of the transition with the inner
cylinder at rest has been described, a signature of subcriti-
cality and turbulent regimes were detected when the angu-
lar velocity decreases outward, in the centrifugally stable
region.

ii) Centrifugally stable flows can also be destabilized by
compressibility effects via non-axisymmetric instabilities
(Papaloizou & Pringle 1984). This instability occurs inde-
pendently of boundary conditions as long as d lnΩ/d ln r <
−√3 (Papaloizou & Pringle 1985; Glatzel 1987). However,
the existence of such an instability for Keplerian disks re-
quires the presence of at least one sharp edge (Goldreich &
Narayan 1985). This condition may be unrealistic in stan-
dard accretion disks.

iii) Centrifugally stable flows can be further destabilized by
adding another restoring force, which acts as a catalyzer.
A first example is a vertical magnetic field (Velikhov 1959;
Chandrasekhar 1960), which renders such flows unstable
provided they are anticyclonic, i.e. if d(Ω)2/dr < 0. The
application of this mechanism to disks was first discussed
by Balbus & Hawley (1991); they showed that the strat-
ification of the disk does not modify the result, and that
the maximal growth rate of instability in that case is of
the order of the angular rotation velocity in the inviscid
limit. The instability of a rotating flow subject to vertical
magnetic field includes a surprising paradox: experimen-
tally, it was found that in liquid metals, in the centrifu-
gally unstable case, the magnetic field inhibits instabili-
ties, and thus, has a stabilizing influence (Chandrasekhar
1960). In the centrifugally stable case, it creates an insta-
bility. Summarizing, it appears that a stabilizing factor acts
upon a stable flow so as to generate instability.

iv) A similar behavior was observed in rotating flows subject
to a vertical stable stratification (Whithjack & Chen 1974;
Boubnov & Hopfinger 1995). In the centrifugally unsta-
ble case, the stratification enhances the stability of the flow
and tends to increase the critical Reynolds number of the
inner cylinder (Fig. 1). In the centrifugally stable regime,
the experimental stability curve crosses the critical line for
the Rayleigh criterion, and turbulence sets in via a non-
axisymmetric mechanism. This instability is present in the
small gap and wide gap regime, showing that curvature ef-
fect do not play a role in the instability mechanism. A pos-
sible theoretical explanation for this instability has been
given recently by Molemaker et al. (2001) and Yavneh
et al. (2001). They performed an analytical and numeri-
cal stability analysis of a rotating flow in the presence of
a stable vertical temperature gradient, and discovered the
existence of a linear non-axisymmetric instability for all
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Fig. 1. Neutral-stability curves in a stratified Taylor-Couette flow ex-
periment for different stratifications, in the domain (R2,R1) where R2

and R1 are the Reynolds numbers based on the gap size and the ve-
locity at the outer or inner cylinder. a) In the wide gap limit (ratio of
inner cylinder to outer cylinder equal to 0.2), experiment of Whithjack
& Chen (1974): N = 1.5 s−1 (circles), N = 1.25 s−1 (diamonds) and
N = 0.88 s−1 (triangles); b) in the small gap limit (ratio of inner
cylinder to outer cylinder equal to 0.8), experiment of Boubnov &
Hopfinger (1995) N = 1.21 s−1 (circles), N = 0.89 s−1 (diamonds),
N = 0.54 s−1 (triangles) and N = 0 s−1 (crosses). The continuous
line is the neutral-stability line for centrifugal instability computed
by Snyder (1968) in an un-stratified Taylor-Couette experiment. In
the centrifugally unstable case, one sees that the stratification en-
hances stability. In the centrifugally stable case, stratification favors
instability.

anticyclonically sheared flows. In their work, they inter-
pret this instability as being caused by the interaction of
two edge modes through a mechanism of arrest and phase
locking along the boundaries by the mean shear flow.

We note that in astrophysical context, the stability of plane
rotating shear flow has often been tackled through the so-
called shearing sheet transformation introduced by Goldreich
& Lynden-Bell (1965). In this approximation, the disk struc-
ture is equivalent to a rotating plane Couette flow, with shear
being −3/2 of the rotation. The advantage of this kind of anal-
ysis is the possibility to investigate stability, by using a spe-
cial class of disturbances for which the stability analysis of this
flow can be reduced to study of ordinary differential equations.
These modes, first introduced by Lord Kelvin in 1887, have the
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shape u(x, y, z, t, k, β, kz) = u(t) exp(i(k − S βt)x + iβy + ikzz).
Here S is the Couette shear rate, with the flow velocity in the
y-direction varying with x. Individual non-axisymmetric such
modes have been found to exhibit algebraic transient growth
under various conditions, such as compressibility (Dubrulle &
Knobloch 1992) or vertical stable and unstable stratification
(Knobloch 1984; Korycansky 1992). However, any amount of
dissipation causes ultimate decay of these modes, due to shear
winding of the azimuthal wave-numbers. From a theoretical
point of view, it can be shown that these modes are associated
with the non-normality of the operator governing the pertur-
bation dynamics. They may be the basis of a noise amplifi-
cation mechanism, resulting in significant angular momentum
flux (Ioannou & Kakouris 2001). However, these modes do not
form a complete basis (for example, they cannot describe per-
turbations with periodic boundary conditions in x), and their
study alone is not sufficient to determine the stability proper-
ties of the flow, as recognized by Korycansky (1992). A com-
plete stability analysis requires solving the “initial condition”
problem, looking at the stability properties of an infinite su-
perposition of sheared modes, moving with the flow. However,
even in the case of non-stratified rotating shear flow, this prob-
lem is difficult to handle analytically and calls for a numer-
ical solution (Cambon et al. 1994). Therefore, the shearing-
sheet/sheared mode method provides only a partial answer to
the stability problem.

In the present paper, we resort to other approaches, in which
boundary conditions must be fixed a priori, but which allow for
a complete treatment of the instability. Our approach is comple-
mentary to the usual sheared mode approximation. We use two
classical, analytically tractable approaches to reexamine the in-
stability of a stratified astrophysical disk: one based on the en-
ergy method, the second based on the WKB approximation.
The energy method is valid for a wide class of boundary con-
ditions, namely rigid (vanishing velocity at the domain bound-
ary), stress free (vanishing velocity derivative at the domain
boundary) or periodic boundary conditions in the shear direc-
tion. Therefore, it does not apply to individual sheared modes,
which satisfy none of these requirements. This method leads to
a sufficient condition for stability valid in the inviscid limit, and
for perturbations with a characteristic scale much smaller than
the vertical scale height (Sect. 2.1). The influence of curvature
on this instability is discussed in Sect. 2.2. In Sect. 3, we use a
method based on the WKB approximation to derive an explicit
solution of the stability problem and exhibit unstable modes in
the parameter space covering the sufficient condition for stabil-
ity. This shows that the sufficient condition for stability is prob-
ably necessary. This theoretical study is completed in Sect. 4 by
a numerical study, probing instability regimes and the influence
of dissipative processes on the instability. This study enlarges
the numerical study of Yavneh et al. (2001) towards conditions
more typical of astrophysical disks, namely Keplerian velocity
profile and finite Prandtl number. In Sect. 5, we discuss the im-
portance of this mechanism for turbulence generation in disks,
and the similarity between this instability and the instability
generated by a vertical magnetic field. Our conclusions follow
in Sect. 6, where the interplay between the present shear insta-
bility and its baroclinic counterpart is discussed.

2. Theoretical study

We consider a differentially rotating compressible stratified
disk. In the following, we focus on perturbations with typical
radial scales small compared with the vertical scale height of
the disk. This limit provides two simplifications: first, it allows
us to consider only the barotropic case, in which all vertical
dependence of the equilibrium quantities is ignored. Then it
allows elimination of acoustic waves and we can work in the
Boussinesq approximation (Korycansky 1992). The dynamical
equations ruling the perturbation u take then the simple form

∇ · u = 0,

Dtu + u · ∇U + 2Ωez × u + ∇p − hg = ν∆u,

Dth + u · ∇H =
ν

Pr
∆h, (2)

in a frame rotating with the constant angular velocity Ω (to be
chosen later). Here Dt = ∂t+U ·∇ is the total derivative, ν is the
viscosity, Pr is the Prandtl number, g = ∇P/ρ the local effec-
tive gravity, H the basic stratification, and h is the stratification
perturbation in the Boussinesq approximation.

The instability we are interested in is present both in rotat-
ing Couette flow (Kushner et al. 1998), i.e. for plane geome-
try, or in Taylor-Couette flow (Molemaker et al. 2001; Yavneh
et al. 2001) i.e. for circular geometry. This suggests that cur-
vature effects do not play a role in the instability. To clarify
the presentation, we first deal with the simpler, plane case in
Sect. 2.1. In the astrophysical context, this case is equivalent
to the so-called shearing sheet approximation of Goldreich &
Lynden-Bell (1972). It is also the small gap limit of the Taylor-
Couette flow, and is relevant to many laboratory experiments.
After discussion of this simple, illustrative case, we come back
to the large gap limit (relevant to disks) in Sect. 2.2, where cur-
vature effects are included. For simplicity, we also consider in
this section only the inviscid limit ν = 0, keeping the general
case of finite viscosity for numerical exploration (Sect. 3).

2.1. The plane Couette case

In this case, we assume Cartesian geometry x, y, z. The basic
flow is a combination of a pure shear flow

U = S xey, (3)

with a constant rotation Ω along the z axis.
We expand the perturbation into normal modes: (u, h) =

(û, ĥ)(x) exp[i(βy+ kzz−ωt)]. Plugging this into (2) and noting
the velocity perturbation û = (u, v, w) and the rescaled entropy
perturbation γĥ = θ∂zH, we obtain the following system:

−iσu − 2Ωv = −Dp

−iσv + Zu = −iβp

−iσw + N2θ = −ikz p,

−iσθ = w,

Du + iβv + ikzw = 0. (4)
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Here, we have introduced the x-derivative D and the
Doppler-shifted frequency σ = ω − βS x. The equation also in-
volves the frequency Z = 2Ω+S and the squared Brunt-Väisälä
frequency in the axial direction:

N2 = −1
γ
gz ∂zH, (5)

which is positive in the case of stable stratification. The system
of Eqs. (4) also describes a Keplerian disk in the shearing sheet
approximation, provided Ω is the local Keplerian rotation and
Z = Ω/2.

The system (4) is a coupled differential system. To investi-
gate the basic mechanism of instability, we use Eq. (4) to elim-
inate three components in order to get a single differential sys-
tem for one component, say u. For this, we first eliminate the
pressure by using the three last equations of Eq. (4) to get:

p = −i
N2 − σ2

k2
zσ

(Du + iβv) . (6)

We then substitute this expression into the second equation
of Eq. (4) to obtain v as a function of u. This expression can
be used in the first equation of Eq. (4) to obtain a closed equa-
tion for u. After simplification and rearrangements, we obtain
finally:

D
(K
G

Du
)
+
βZ
σ

uD
(K
G

)
+ 2k2

z
ΩZ
G

u − u = 0, (7)

where K = σ2 − N2 and G = (k2
z + β

2)σ2 − β2N2. It is easy
to check that this equation is the zero-curvature limit of that
derived by Yavneh et al. (2001). Note that both K and G depend
on x through σ.

Equation (7) is a classical generalized eigen-value problem
(corresponding to a linear differential operator) which can be
solved once the boundary conditions have been specified. The
instability occurs for values of the eigen-values such that ω,
and therefore σ has a positive imaginary part.

To derive stability conditions, we use an integral method
adapted from Chandrasekhar (1960). We first reset Eq. (7) into

a standard shape by the change of function u = û
(

K
G

)−1/2
to

obtain:

D2û − Eû = 0,

E =
a2

4
+

Da
2
− aβZ

σ
− 2k2

z
ΩZ
K
+

G
K

(8)

where a = D(ln(K/G). We then multiply Eq. (8) by the com-
plex conjugate û∗ and integrate over the whole domain. We ob-
tain an integral equation, valid for both rigid (û = 0 at bound-
aries), free-slip (Du = 0 at boundaries) or periodic boundary
conditions:∫

dx |Dû|2 +
∫

dx E |û|2 = 0. (9)

Both |Dû|2, and |û|2 are positive continuous real function over
the integration domain. The function E is a complex function
of x (through σ) whose real and imaginary part Er and Ei

are continuous over the integration domain. By continuity (in-
termediate value theorem), there exist two points x1 and x2

such that:∫
dx |Dû|2 + Er(x1)

∫
dx |û|2 ≡ I1 + Er(x1) I0 = 0,

Ei(x2)
∫

dx |û|2 = 0. (10)

In principle, a stability condition may then be found by impos-
ing that there exist no solutions with positive ωi for any value
of x2 and x1. In practise, the algebraic equation is of order eight
in ωi, and we were not able to derive simple explicit stabil-
ity conditions. We therefore restrict ourselves to the instability
condition in the limit of weak non-axisymmetry, by using the
fact that ωi vanishes in the limit β = 0 and that the instability
is non-oscillatory ωr = 0 (see Molemaker et al. 2001). Then,
since σ = −βS x + iωi, we can set σ = βσ̃ and expand E as a
function of β. To first order in β, we find:

E
k2

z
= 2
ΩZ
N2
− 4

SΩ
k2

z σ̃
2 − N2

+ 3

(
S N

k2
z σ̃

2 − N2

)2

· (11)

To obtain an analytical condition, we set ρeiψ = k2
z σ̃

2 − N2

and note that finding positive ωi as a function of x2 − x1 is
equivalent to finding ρ as a function of ψ. In these variables,
the first Eq. (10) becomes to first order in β:
(

I1

k2
z I0

N2

4Ω2
+

S
2Ω

)
ρ2 +

(
ρ − S N2

2Ω
cosψ

)2

+

( S
2Ω

)2 (
5 cos2 ψ − 3

)
N4 = 0. (12)

In the limit of vanishing stratification, the last term of the l.h.s.
of Eq. (12) is negligible. The second term of the l.h.s. is always
positive. So a (sufficient) condition which guarantees the ab-
sence of unstable solutions is that the first term of the l.h.s. is
positive, i.e.:

S
2Ω

> −1
4

I1

k2
z I0

N2

Ω2
STABILITY. (13)

Using the energy method, we have derived a sufficient criterion
for stability for periodic, stress-free or rigid boundary condi-
tions. Therefore, it does not prove that flows with S/2Ω < 0
are unstable. However, in the WKB approximation of Sect. 3
and numerical stability analysis performed in Sect. 4, we found
that all flows with S/2Ω < 0 are unstable. This shows that con-
dition (13) is also a necessary condition for stability for these
boundary conditions.

In the limit of vanishing stratification, we find S/2Ω > 0 as
a criterion for stability, instead of the S/2Ω > −1 criterion for
centrifugal stability. The stratification thus enlarges the domain
of instability. However, this criterion is non-axisymmetric; for
β = 0, the only non-trivial modes are stable, with the epicyclic
frequency σ2 = (2ΩZ)k2

z . Note that our criterion is in agree-
ment with the criterion derived by Molemaker et al. (2001) and
Yavneh et al. (2002), which was S/2Ω < 0 for instability. Note
also that as the stratification increases, it becomes increasingly
easy to satisfy (13). So, while a weak stratification destabi-
lizes the flow, a large stratification re-stabilizes it. We show in
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Sect. 2.6 that when the stratification is replaced by a vertical
magnetic field, a similar phenomenon occurs: weak fields are
destabilizing, while very large fields are stabilizing.

2.2. Influence of curvature

We now explore how curvature effects modify the instability.
For this, we assume cylindrical coordinates r, φ, z and consider
the stability of a general rotating shear flow

U = rΩ(r)eφ, (14)

thus, the rotation frequency is noted Ω, and the shear rate S =
r∂rΩ. The normal-mode decomposition is

(u, h) = (û, ĥ)(x)ei(lφ+kzz−ωt). (15)

The analog of Eq. (7) in this general case is derived in Yavneh
et al. (2001). It is:

D
(K
G

rD (ru)
)
+

(
l
σ

D
(KZ

G

)
+ 2rk2

z
ΩZ
G
− 1

r

)
(ru) = 0, (16)

where Z = 2Ω + S , K = σ2 − N2, G = (r2k2
z + l2)σ2 − l2N2,

σ = ω − lΩ and D is the derivative with respect to r.
Following a method proposed by Dubrulle & Graner

(1994), we now perform the change of variable x = ln(r/r0),
where r0 is any characteristic radius, and the change of func-
tion ũ = ru. Setting k̃z = kzr0 exp 2x, we may then write (16) as:

Dx

(K
G

Dxũ
)
+

l
σ

ũD
(KZ

G

)
+ 2k̃2

z
ΩZ
G

ũ − ũ = 0, (17)

similar to Eq. (7), the equation for the plane case. The main
difference here is that k̃z, Z, Ω and S are now functions of x.
Keeping this in mind, we then repeat the same steps as in
Sect. 2.1 until we get the equivalent of Eq. (10) with the first
order expansion of E given by:

E = 1 + 2k̃2
z
ΩZ
N2
− DZ

σ̃

+
N2+k̃2

z (σ̃DS −2σ̃S −4SΩ)

k̃2
z σ̃

2 − N2
+ 3k̃2

z

 (σ̃ − S )N

k̃2
z σ̃

2 − N2


2

· (18)

From Eq. (18), we see that the only effects of curvature occur at
small k̃z. Indeed, for large k̃z, σ̃k̃z = O(1), we can expand (18)
and get to first order in k̃z:

E = 2k2
z
ΩZ
N2
− 4k2

z
SΩ

N2
(
k2

z σ̃
2
0 − 1

) + 3k2
z

 S N(
k2

z σ̃
2
0 − 1

)
N2


2

, (19)

which exactly matches the expression obtained in the plane
Couette (11). We thus conclude that a condition for stability
at large k̃z is (13). Note that in astrophysical thin disks k̃z ∼
(R/H) exp x, and so the curvature effects are likely to be small
everywhere except in the innermost part of the disk. In that
region, however, many other physical processes may play an
important role (like stellar magnetic field, general relativity ef-
fects, radiative processes,..) so that we do not think it very im-
portant to explore this peculiar effect.

3. WKB approximation

3.1. Method

In the previous section, we derived stability conditions inde-
pendent of the explicit shape of the solutions. In this section,
we derive analytical solutions using a WKB approximation
(Bender & Orszag 1987; Nayfeh 1978). This allows us to ex-
hibit explicit examples of unstable cases with S/2Ω < 0. The
WKB approximation requires a small parameter. In the follow-
ing, it will be convenient to choose ε = S/Ω and let ε → 0.
We introduce the slow horizontal variable X = εx. In the spirit
of WKB approximations, the solutions for u and p will be split
into a fast varying complex phase Θ(X)/ε and slowly varying
functions U(X) and P(X) according to

(u(x), p(x)) = (U(X), P(X)) exp(iΘ(X)/ε). (20)

As a result, the derivative of u and p are replaced by Du =
iΘXU + εUX and Dp = iΘX P + εPX (with fX = ∂X f . This
development must be plugged into the equations of motion (4).
For this, we rewrite them as a second order differential system
for the velocity component u and the pressure p alone(
2ΩZ − σ2

)
u = −2iβΩp + iσDp (21)(

N2 − σ2
)

(σDu + βZu) = i
[
σ2k2

z − β2
(
N2 − σ2

)]
p. (22)

For non vanishing azimuthal wavenumbers β � 0 the quan-
tity σ depends on the x-coordinate. We take advantage of the
particular scaling for the growth rate: ω = βΩω̄ leading to
σ = βΩσ̄ with σ̄ = ω̄− εx. After insertion into Eqs. (21)–(22),
we obtain:

Ω
(
2(2 + ε) − β2σ̄2

)
U = −2iβP + βσ̄ (iεPX − ΘXP) (23)

Ω
(
1 − Fr2β2σ̄2

)
(εσ̄UX + (2 + ε + iσ̄ΘX) U) = iβḠP, (24)

where Ḡ = α2Fr2σ̄2−1 with α2 = k2
z +β

2, and the Froude num-
ber being Fr = Ω/N. The slowly varying functions U(X), P(X)
are then expanded as

U = U0 + εU1 + ... and P = P0 + εP1 + ... (25)

Upon substituting (25) into the governing Eqs. (23)–(24) one is
led to a set of successive problems for (U0, P0), (U1, P1), etc.

At the leading order, the governing equations for U0, P0 are

Ω
(
4 − β2σ̄2

)
U0 = −β (2i + σ̄ΘX) P0 (26)

Ω
(
1 − Fr2β2σ̄2

)
(2i − σ̄ΘX) U0 = −βḠP0. (27)

The above system admits non-trivial solutions provided thatΘX

is given by

Θ2
X = −

(
4k2

z Fr2 + β2 − σ̄2Fr2α2β2
)

(
1 − β2Fr2σ̄2

) · (28)

OnceΘ is known the slowly varying functions U0(X) and P0(X)
are determined by the condition that there are non-trivial solu-
tions for U1(X) and P1(X). At the order ε the governing equa-
tions are

Ω
(
4 − β2σ̄2

)
U1 + β (2i + σ̄ΘX) P1 = iβσ̄P0X − 2ΩU0 (29)

Ω
(
1 − Fr2β2σ̄2

)
(2i − σ̄ΘX) U1 + βḠP1 =

−i
(
1 − Fr2β2σ̄2

)
(σ̄U0X + U0) . (30)
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The existence condition is thus

(iβσ̄P0X − 2ΩU0) Ḡ + i
(
1 − Fr2β2σ̄2

)
(σ̄U0X + U0) (2i + σ̄ΘX) = 0. (31)

The following identities

P0 = −Ω
(
4 − β2σ̄2

)
β (2i + σ̄ΘX)

U0 ≡ −HU0

and
Ḡ(

1 − Fr2β2σ̄2
) ≡ (2i − σ̄ΘX)

H
(32)

are used to transform (31) in an equation for U0 alone

2
U0X

U0
+

HX

H
+

1
σ
+

2i(σ̄ΘX)X

σ̄ΘX(2i + σ̄ΘX)

+
2i
ΘX

 k2
z Fr2(

1 − Fr2β2σ̄2
) − 2β2(

4 − β2σ̄2
)
 = 0. (33)

Equation (33) is a closed differential equation providing the
analytical shape of the modes. Solutions corresponding to σ̄
having a positive imaginary part provide the unstable modes.
This requires the a priori knowledge of Θ(X). This expression
is independent of X in a few cases discussed below. These cases
provide analytical expression of unstable modes, as we now
show.

3.2. Exponential solutions

In this Section, we investigate the exponential solution, ob-
tained when Θ is purely imaginary. This case is readily ob-
tained in at least two cases. For the particular value of the
Froude number Fr = 1/2, one may check that Θ2

X = −α2. Also,
in the limit: β → 0 and Fr ≈ O(1), considered previously by
Yavneh et al. one gets Θ2

X = −4k2
z Fr2. These two cases being

formally identical, we focus on the last one, which has been
intensively studied by Yavneh et al. Taking into account the
constancy of ΘX , the Eq. (33) is readily integrated to give the
result

U0 = C (1 ± kzFrσ̄) exp(∓kzFrX) (34)

where C is a constant of integration. Upon substituting the
above expression in Eq. (20) one recovers the edge modes of
Yavneh et al.

U = (1 ± kzFrσ̄) exp
[∓2kzFr (1 + ε/2) x

]
(35)

written here in the asymptotic limit (1+ ε)1/2 → 1+ ε/2. From
their work, we thus get that unstable solutions exist for all an-
ticyclonic flows S/2Ω < 0, while no unstable solution exist
in this limit for S/2Ω ≥ 0. This shows that the criterion for
stability derived in Sect. 2 is also necessary in this limit.

3.3. Oscillating solutions

The oscillatory situation will correspond to Θ real values lead-
ing to solutions in Eq. (20) which are oscillating in space. They

occur for example when β is large while Fr → 0 and βFr is of
order unity so expression (28) is approximated by

Θ2
X = −β2

1 − k2
z Fr2σ̄2(

1 − β2Fr2σ̄2
)
 . (36)

According to the prescribed limit the second term in the r.h.s.
of Eq. (36) has a small denominator and a numerator of order
unity so it is dominant and ΘX can be written

ΘX = ± βkzFrσ̄(
1 − β2Fr2σ̄2

)1/2
, (37)

and after integration one gets

Θ = ± kz

βFr

(
1 − β2Fr2σ̄2

)1/2
. (38)

Upon substitution of expression (37) for ΘX in Eq. (33), one
obtains

∂

∂X
log

∣∣∣∣∣∣
U2

0 HΘX

(2i + σ̄ΘX)

∣∣∣∣∣∣ ±
2i

βkzFr


k2

z Fr2

σ̄
(
1 − Fr2β2σ̄2

)1/2

+
2
(
1 − Fr2β2σ̄2

)1/2

σ̄3

 = 0. (39)

The identity

2
(
1 − Fr2β2σ̄2

)1/2

σ̄3
≡ ∂

∂X


(
1 − Fr2β2σ̄2

)1/2

σ̄2


− β2Fr2

σ̄
(
1 − Fr2β2σ̄2

)1/2
(40)

is used to rearrange the terms between the brackets in Eq. (39).
The only term which remains non-integrated is proportional
to (k2

z − β2)Fr2 and can be neglected when the axial and
azimuthal wavenumbers have the same order of magnitude
and Fr→ 0. Under these simplifications

U0=C
σ̄1/2

(
1 − Fr2β2σ̄2

)1/4
exp

( ∓2i
βkzFrσ̄2

(
1 − Fr2β2σ̄2

)1/2
)
. (41)

Under our approximations the exponential factor in (41) can be
set equal to unity. Introducing the notations Q = 1 − Fr2β2σ̄2

and γ = kz/εβFr, the velocity component U is expressed as

U =
σ̄1/2

Q1/4

[
A exp

(
iγQ1/2

)
+ B exp

(
−iγQ1/2

)]
. (42)

The unknown coefficients A and B will be determined by sat-
isfying the boundary conditions at x = ±1. Since in the limit
β 
 1 with βFr ∼ O(1), we have P = Q1/2U one can indif-
ferently impose U = 0 or P = 0 at the boundaries, which is of
some importance in the astrophysical context where it is usu-
ally considered as more realistic to impose boundary conditions
on the pressure. We shall define the a priori complex quantities

Q1 ≡ Q(x = 1) = 1 − β2Fr2(ω̄ − ε)2 (43)

Q2 ≡ Q(x = −1) = 1 − β2Fr2(ω̄ + ε)2 (44)
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with ω̄ = ω̄r + iω̄i. The algebraic system for A and B resulting
from the boundary conditions U = 0 or P = 0 has non-trivial
solutions only if the following relation is satisfied

sin γ
(
Q1/2

1 − Q1/2
2

)
= 0 (45)

which implies that its real and imaginary parts vanish simulta-
neously. We were not able to find simple general expressions
for unstable modes, but we can exhibit analytical solutions cor-
responding to the neutral modes (ω̄i = 0) so that Q1 and Q2

are both real quantities. Moreover, we shall focus on a particu-
lar solution characterized by a fixed value of the frequency ω̄r

chosen so that either Q1 = 0 or Q2 = 0. In the former case
we have

βFrω̄r = βFrε ± 1. (46)

When Q1 = 0, the condition U(1) = 0 implies that A + B = 0,
and the condition U(−1) = 0 reduces to

sin
(
γQ1/2

2

)
= 0, or γQ1/2

2 = Nπ (47)

where N is an integer and Q2 = −4εω̄rβ
2Fr2 has to be positive

for its square root to be real. Substituting the expression (46) in
the condition (47) gives the relationship

b ≡ βFrε =
±4(

4 + (Nπ/kz)2
) (48)

between the combination b = βFrε and the axial wavenum-
ber kz for a solution U to exist in the form

U =
σ̄1/2

Q1/4
sin

[
(kz/b)Q1/2

]
(49)

with Q = −b(1 − x)[2 + b(1 − x)] when −1 < b < 0. Such
solutions have been plotted in Figs. 1a and 1b for b = −1/5
obtained with the value Nπ/kz = 4. Thus varying the value
of N allows us to change the value of kz = N(π/4) and as a
consequence the number of zeros of U. Figures 2 and 3 corre-
sponds to N = 6 and N = 10 respectively, and as expected the
number of zeros is proportional to N. Figures 4 and 5 drawn
for b = −1/10 obtained with the value Nπ/kz = 6, correspond
respectively to N = 6 and N = 10. It must be noticed that
when the instability occurs via a Hopf bifurcation (ωr � 0) the
eigenfunctions break the symmetry about x = 0, the amplitude
being larger near one side of the interval, here x = −1. This has
already been discussed by Knobloch (1996) who showed that
system with O(2) symmetry can exhibit either a steady state
bifurcation or a Hopf bifurcation.

4. Numerical study

4.1. Method

The condition for stability derived in Sect. 2 is valid for a
wide class of boundary conditions, but only in the inviscid
limit. The influence of viscosity has been studied numerically
by Molemaker et al. (2001) and by Yavneh et al. (2001), in
the limit Pr → ∞. They found that a small viscosity essen-
tially does not change the results, and only introduces a critical

0.0 0.5 1.0 1.5 2.0
x

−3.0

−1.0

1.0

3.0

U

b=−1/10, N=10

Fig. 2. Neutral mode in the WKB approximation in the limit Fr =
Ω/N → 0 and β→ ∞ for βFrS/Ω = −1/5 and kz = 3π/2.

0.0 0.5 1.0 1.5 2.0
x

−4.0

−2.0

0.0

2.0

U

b=−1/10, N=6

Fig. 3. Neutral mode in the WKB approximation in the limit Fr → 0
and β→ ∞ for βFrS/Ω = −1/5 and kz = 5π/2.

0.0 0.5 1.0 1.5 2.0
x

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

U

b=−1/5, N=6

Fig. 4. Neutral mode in the WKB approximation in the limit Fr → 0
and β→ ∞ for βFrS/Ω = −1/10 and kz = π.

Reynolds number, above which the flow is unstable. For ex-
ample, at Ω/N = 0.01, S/2Ω = −2/3, the critical Reynolds
number is of order 4800, for rigid boundary conditions. In
a Keplerian disk, S/2Ω = −3/4 and Pr is finite, so that the
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1.0

2.0

3.0

U

b=−1/5, N=10

Fig. 5. Neutral mode in the WKB approximation in the limit Fr → 0
and β→ ∞ for βFrS/Ω = −1/10 and kz = 5π/3.

results of Yavneh et al. do not apply. We thus performed a nu-
merical study of Eq. (4) in the plane case to investigate the
range of parameters of astrophysical interest. The stability anal-
ysis was set into a classical eigenvalue problem via Fourier
transform in the y and z direction, and discretization of the
equation over collocation points of the Chebyshev polynomi-
als in the x-direction, over a domain −d/2 ≤ x ≤ d/2. The
precision of the solution is governed by the number of collo-
cation points used in the computation. We used typically 25
to 50 collocation points to get satisfactory precision: doubling
the resolution did not alter the results. Spurious normal modes
were eliminated via interpolation, then cross-checked, at dou-
ble resolution. In the following, we present results obtained us-
ing stress-free boundary conditions in y and z (the case of rigid
boundary conditions is discussed in Yavneh et al. 2001.)

Dimensional analysis of Eq. (4) shows that the stability
problem is controlled by four non-dimensional parameters: the
rotation number Ro = 2Ω/S , the Ekman number Ek = ν/2Ωd2,
the Froude number Fr = Ω/N and the Prandtl number Pr. From
these numbers, one can also build another non-dimensional
number of interest, the Reynolds number, defined as: Re =
|S |d2/ν = Ek−1|Ro−1|. Using the gap d (equivalent to the typical
scale of our perturbation, in the disk case, see Sect. 2) and 1/2Ω
as unit of length and time, we may then write (4) as:

−iσ∗u − v = −Dp + Ek
(
∂2

x − k2
)

u

−iσ∗v + (1 + 1/Ro)u = −iβp + Ek
(
∂2

x − k2
)
v

−iσ∗w +
Fr−2

4
θ = −ikz p + Ek

(
∂2

x − k2
)
w,

−iσ∗θ = w +
Ek
Pr

(
∂2

x − k2
)
θ,

Du + iβv + ikzw = 0, (50)

where σ∗ = σ/2Ω.
Our numerical study was focused on the determination of

maximal growth rate and wavenumber, for a given value of
the four parameters. Due to the large number of independent
parameters, it is difficult to completely explore the instability
phase space. Moreover, we found out that for Ro < −2, the

search for maximal growth rate was increasingly time consum-
ing due to the exponential narrowing of the instability branch
around the maximal value. This phenomenon had been de-
scribed in Molemaker et al. (2001). We thus mainly focused
our analysis on the case Ro > −2, with special emphasis on the
case Ro = −4/3 corresponding to the Keplerian case.

4.2. Reminder

A few results regarding special values of the parameters can
already be drawn from previous studies: in the unstratified
case Fr → ∞, Lezius & Johnson (1971) found that the neu-
tral stability curve is given by

Re2Ro(Ro + 1) = −1706, Fr = ∞. (51)

In the inviscid case Ek = 0, Molemaker et al. (2001) found that
for Fr < 1, the maximal growth rate and vertical wavenumber
scale as:

ωi

2Ω
= −2Ro−1βd exp(2Ro),

kzd =
1

2Fr
Ro√

Ro(Ro + 1)
· (52)

In the case Fr > 1, Ek = 0 they found that both kzd and ωi/2Ω
decay linearly with 1/Fr.

4.3. Influence of viscosity

To study the influence of viscosity on the instability, we set
Pr = ∞ and vary the Ekman number, for different rotation num-
ber and stratifications. In Fig. 6, we show the non-dimensional
optimal growth rate, vertical and azimuthal wavenumber as a
function of the rotation number, at Ek = 10−4, for two dif-
ferent stratifications Fr = 3.1623 and Fr = 0.1. The invis-
cid result (52) is also displayed for comparison. One sees that
viscosity tends to decrease optimal growth rate and wavenum-
bers. Moreover, it induces a finite critical value of the rotation
number below which the optimal growth rate becomes neg-
ative. This critical rotation number depends on the stratifica-
tion (Fig. 7). It decreases from −1.3 at Fr = 0.02 up to −2.85
at Fr = 3.1623. We note on the figure a tendency towards level-
ing at the value Ro = −3, which may indicate a critical rotation
number of −3 for Ek = 10−4, below which there is no instabil-
ity, whatever the stratification.

In Fig. 8, we show the optimal growth rate and wavenum-
bers as functions of stratification, at Ro = −4/3, for dif-
ferent values of Ek. For comparison, the results obtained by
Molemaker et al. (2001) at Ro = −3/2 and Ek = 0 (for different
boundary condition!) are also displayed. The growth rate tends
to be proportional to N for large Froude numbers, but becomes
a fraction of the dynamical frequency Ω for Fr > 1. One sees
that the viscosity (and boundary conditions) has little influence
on the vertical wavenumber, which scales as 1/Fr, while it in-
troduces a sharp cut-off at small Froude numbers in both ωi

and β. This cut-off is pushed towards larger stratification with
increasing viscosity. The cut-off defines a viscosity-dependent
critical Froude number, below which no instability is present.
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Fig. 6. Maximal growth rate (2a), corresponding vertical wavenum-
ber (2b) and azimuthal wavenumber (2c) as a function of the rotation
number 2Ω/S at Ek = 10−4, Pr = ∞ and for different stratifications.
The line is the result of Molemaker et al. (2001), obtained at Ek = 0.
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Fig. 7. Critical rotation number vs. Froude number (Ω/N),
at Ek = 10−4.

Its dependence on the Reynolds number is approximately a
power law Frc ∼ Re−1/2, as shown in Fig. 9.

The variation with stratification indicates that at small strat-
ification, the growth rate is proportional to N, while at large
stratification, it is proportional to Ω, i.e. independent of the
stratification.
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Fig. 8. Maximal growth rate (4a), corresponding vertical wavenum-
ber (4b) and azimuthal wavenumber (4c) as a function of the inverse
Froude number at Ro = −4/3, Pr = ∞ and for different viscosity.
The filled symbols correspond to the optimal eigen mode; the open
symbols correspond to a member of the “large β family”, computed
at Ek = 10−5. The lines refer to the theoretical formulae proposed by
Molemaker et al. (2001) for the optimal mode: ωi/2Ω = βde2Ro and
kzd = Ro/2Fr

√
1 + Ro.

4.4. Influence of Prandtl number

For finite Prandtl number, the stratification agent (for example
the temperature) undergoes a diffusive process, which can have
a stabilizing influence. To study this effect, we fix Ro = −4/3
and Ek = 10−4, and decrease the Prandtl number from Pr = ∞
to Pr = 0.1. The resulting optimal growth rate and wavenum-
bers are shown in Fig. 10. One sees that decreasing the Prandtl
number at fixed Ekman number provides qualitatively the same
effects as when increasing the Ekman number (previous sec-
tion): as Pr is decreased, the critical Froude number is shifted
towards higher values. We have checked that this similarity of
behavior also extends to optimal wavenumbers: no incidence
on vertical wavenumber, varying cut-off for β. The variation of
the critical Froude number with Prandtl number is shown in
Fig. 9. The variation of Frc with Pr is less steep than for Re,
namely Frc ∼ Pr−1/4.

For illustration we also display in Fig. 11 a typical eigen-
mode solution for the radial velocity and entropy perturbation
for Ro = −4/3, Ek = 10−4, Fr = 0.5 and two values of
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Fig. 10. Maximal growth rate as a function of the inverse Froude num-
ber at Ro = −4/3, Ek = 10−4 and for different Prandtl numbers. The
line is the result at Pr = ∞, drawn for comparison.

the Prandtl number. One sees that these eigenfunctions vary
smoothly over the channel width and that the change with
Prandtl number is rather smooth and unimportant.

4.5. Influence of azimuthal wavenumber

Up to now, we have focused only on optimal modes (those
with highest growthrate). These modes are characterized by a
low azimuthal wavenumber. In the application to astrophysical
disks, it may be interesting to look for modes with larger az-
imuthal wavenumber, which may be more realistic for very thin
disks (for which βd ∼ r/H 
 1). Finding such modes is very
time consuming using our numerical procedure (which is opti-
mized for the detection of optimal growth rate). So, we focused
on the case Ro = −4/3 and only explored the case Ek = 10−5,
Pr = ∞. In that case, we were able to capture one member of
the large β family whose characteristics are shown in Fig. 8 for
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Fig. 11. Real (continuous line) and imaginary (dotted line) part of
the optimal eigenfunction for the radial velocity u (Fig. 7a) and
for the scaled entropy fluctuation θ (Fig. 7b), as a function of the
x-coordinate, at Ro = −4/3, Fr = 0.5, Ek = 10−4, and for Pr = 0.1
(thin line) and 10 (thick line).
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Fig. 12. Real (continuous line) and imaginary (dotted line) part of a
“large β” eigenfunction for the radial velocity u, as a function of the
x-coordinate, at Ro = −4/3, Fr = 200, Ek = 10−5, βd = 3.3, kzd = 41,
ωi/2Ω = 0.0013 and for infinite Prandtl number.

easier comparison with the optimal mode. The azimuthal and
vertical wavenumber of this mode are roughly twice those of
the optimal family. Its growth rate is about 10 times smaller.
The corresponding velocity profile shows a double oscillation
within the channel, see Fig. 12. The mode seems to exist only
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at rather large stratification Fr > 1. All these features are rem-
iniscent of the “large β mode” found in the Taylor-Couette
configuration by Molemaker et al. (2001). These modes are
characterized by a “radial” wave number k > 2, thereby pro-
ducing k oscillations of the eigenmode in the radial direction.
The wavenumber roughly follows k2 = β2k2

z . Their growth rate,
in the inviscid limit, scales as |Ω|k−1/4e3Ro. With k = 2, this
gives ωi/2Ω = 0.008 in rather good agreement with our find-
ing. This strongly suggests that these “large β -modes” also
exist in the plane Couette case. Since their growthrate is still
a significant fraction of the rotation period, these modes are
probably also quite relevant for astrophysical disks.

4.6. Comparison with experiments

It is interesting to compare our results with experimental data
obtained in the same conditions (small gap limit) by Boubnov
& Hopfinger (1995). We note that in this experiment the bound-
ary conditions are probably rigid (in contrast with our nu-
merical analysis). This comparison can then be used to probe
the influence of boundary conditions. A difficulty arises be-
cause the experiments only provide data on the critical line,
on which Ro, Fr and Re vary simultaneously. We thus an-
alyze the three possible planes, in Fig. 13. In panel a), we
observe a confirmation of the stabilizing role played by strat-
ification: weak stratification tends to increase the range of in-
stability, while large stratification (small Froude number) tends
to restrict the domain of instability. The experimental points
do not overlap with our numerical points, since the latter are
performed at constant, and slightly smaller Ekman number. In
panel b), we do not observe any clear dependence of the rota-
tion number on Reynolds number (different instability branches
may be present). At Ro = −4/3, the Keplerian value, the
critical Reynolds number seems to be between 4000 and 104,
well below typical Reynolds number of e.g. circumstellar disks
(Hersant et al. 2005). In panel c) one sees the dependence of the
critical Reynolds number as a function of the stratification. At
small Froude numbers, the experimental data seem to confirm
the Fr−2 scaling obtained numerically. At large Froude num-
ber, we observe another, linear scaling, of the Reynolds num-
ber with the Froude number, Rec ∼ 2000Fr. This number will
be used below in our discussion.

5. Application to astrophysics

5.1. Stratification in disks

In previous sections, we have shown that all flows with S/2Ω <
0 are linearly unstable with respect to non-axisymmetric pertur-
bations in the presence of vertical stable stratification.

To decide whether an astrophysical disk is stably stratified,
on has to solve for the vertical structure of the disk, which itself
depends on how turbulent kinetic energy is transformed into
heat through viscous friction. Most prescriptions for this heat
release lead to stable stratifications.

One exception may be the central part of disks around
black holes, where radiation pressure exceeds gas pressure,
and where for this reason entropy decreases with distance
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Fig. 13. Neutral-stability curves (ωi = 0) in the stratified
Taylor-Couette flow experiment of Boubnov & Hopfinger (1995) in
the small gap limit, in parameter space; a): in the plane Ro,Fr; b) in
the plane Ro,Re; c) in the plane Re,Fr. The filled circles are the ex-
perimental data. The open circles are the numerical data obtained in
the present paper.

from the equatorial plane, triggering thermal convection
(Bisnovatyi-Kogan & Blinnikov 1977). But this does not take
into account the illumination of the disk by hard X-rays,
which is observed. The presence of thermal convection has also
been suggested in disks around young stellar objects (Lin &
Papaloizou 1980). However, here again a natural process lead-
ing to stable vertical stratification is the disk illumination by
the central object (Chiang & Goldreich 1997).

A rough estimate of the Brunt-Väisälä frequency in stably
stratified disks may be obtained in the thin disk approximation:

N2 =
g

HP
[∇ad − ∇] = Ω2

( z
H

)2
[∇ad − ∇] (53)

where the actual temperature gradient d ln T/d ln P is deter-
mined by the opacity law; the adiabatic gradient ∇ad =

(∂ ln T/∂ ln P)ad takes the value 0.4 for perfect atomic or ion-
ized gas. Typically [∇ad − ∇] ≈ 0.1, and thus N/Ω ∼ 0.3. This
value is confirmed by detailed calculations.

Radiative numerical simulations of protostellar disk
(D’Alessio et al. 1998) reveal that at r = 0.5 a.u. the tempera-
ture is of the order of 1000 K at the disk scale height and 300 K
in the midplane, leading to N/Ω ∼ 0.3. In this regime, the crit-
ical Reynolds number is of the order of 1000, the growthrate is
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about one percent of the rotation frequency and the typical ver-
tical and azimuthal wavenumbers are about 0.1/d. The largest
allowed d in this case is 0.1H leading to vertical scale and az-
imuthal wavenumber of the order of unity. The typical instabil-
ity should then take the form of a spiral mode.

We can thus conclude that, in astrophysical disks, stable
stratification is the rule rather than the exception. If this were
not the case, one would invoke thermal convection as the obvi-
ous cause for the turbulence which ensures the accretion on the
central object.

5.2. Magnetic field vs. stratification

Our findings are reminiscent of what occurs in the presence of
an axial magnetic field. It is therefore interesting to examine the
degree of similarity between the two instability mechanisms
using the same tools. For this, we recall the results obtained by
Chandrasekhar (1960). First, unlike the hydrodynamical insta-
bility in stratified disks, the magneto-rotational instability has
axisymmetric unstable modes. For these modes, the sufficient
stability condition is:

S/2Ω > −1
4

I1

k2
z I0

Ω2
A

Ω2
, STABILITY (54)

where ΩA =

√
k2

zµB2
z/4πρ is the Alfvèn frequency. Comparing

this condition with Eq. (13), we see strong similarities with
the stratified case, the Brunt-Väissälä frequency being just re-
placed by the Alfvèn frequency. For example, strong magnetic
fields tend to inhibit instability, in the same way as strong
stratification, whereas in the limit of the weak magnetic field
S/2Ω > 0 is a condition for stability, as for stratified, rotating
shear flows. Keplerian flows, having S/2Ω = −3/4 do not sat-
isfy this stability criterion, and are therefore liable to both type
of instabilities.

In a recent detailed numerical study of the magneto-
rotational instability, Willis & Barenghi (2002) found that the
critical Reynolds number at infinite Prandtl number is of
the order of 20, that is one order of magnitude less than for the
strato-rotational instability discussed here. They also noted that
the variation of the critical Reynolds number with magnetic
Prandtl number is Rec ∼ 100/

√
Pm, similar to the law found in

Fig. 5 for stratification. However, in a typical disk, the magnetic
Prandtl number is much lower than the Prandtl number. For ex-
ample, in a protoplanetary disk, it is less than 10−5 (Rüdiger
& Zhang 2001). This means that a typical critical Reynolds
number for the magneto-rotational instability will be greater
than 30 000, hence larger than the critical Reynolds number for
strato-rotational instability.

5.3. Barotropic vs baroclinic instability?

In the present paper, we only focused on perturbations with
typical radial scale small compared to the vertical scale height,
leading to a barotropic description. An opposite limit would be
to consider perturbations with small vertical scale, leading to
a situation where only the vertical dependence is considered
so that Ω varies with the axial coordinate z. In this situation,

one may expect new instabilities to arise, due to the vertical
shear. More generally, when the rotation departs from cylindri-
cal, it may induce an axisymmetric baroclinic instability which
has been described earlier in stellar interiors by Goldreich &
Schubert (1967) and Fricke (1968). The application of this in-
stability to disks has been recently done by Urpin (2003), who
showed that the instability is linear, and that it proceeds on a
thermal time-scale. More generally, baroclinic instabilities oc-
cur when there is an inclination between the density and pres-
sure term, breaking the vorticity conservation. As discussed
by Klahr & Bodenheimer (2003), this effect is likely to occur
in any realistic disk. This means that in general, astrophysi-
cal disks are subject to both barotropic (as shown in this pa-
per) and baroclinic instabilities. The interplay between these
two instabilities is a fascinating subject, and has been widely
studied in the oceanographic context. For upwelling flows it
was found for example that barotropic instabilities are impor-
tant in the early stages of the dynamics, while baroclinic modes
dominate the late stages. The growthrate and wavenumbers are
in between the growthrate and wavenumber of each instability
(Tadepalli & Fertziger 1998). Clearly, a similar study would be
welcome in the astrophysical context.

6. Conclusion

In this paper, we have used analytical and numerical methods
to study the instability of Keplerian-like flow in the presence of
a stable vertical stratification, for perturbations obeying rigid,
stress-free or periodic boundary conditions in the radial coor-
dinates that lie less than one scale height apart so as to jus-
tify an incompressibility approximation. This instability is non-
axisymmetric. Its growth-rate is a fraction of the rotation rate at
small stratification. This “strato-rotational” instability is purely
hydrodynamical and does not require the presence of any mag-
netic field, whatever small. Therefore, it is especially relevant
in the context of weakly ionized disks, such as the primitive
solar nebula. It is of course also relevant in other Keplerian
disks, since the critical Reynolds number to trigger this in-
stability is of the order of 103, which is less than the critical
Reynolds number for both the magneto-rotational instability
and the finite-amplitude hydrodynamic instability. It may also
interplay with baroclinic instabilities, resulting in mixed insta-
bilities similar to those observed in oceans. However the ques-
tion of which instability occurs first has little relevance, partly
because we do not know the initial conditions, but mainly be-
cause there is no reason why the instability which has the
fastest linear growth will dominate in the fully nonlinear state.
What one should rather ask is what kind of turbulence exists
at the high Reynolds numbers which characterize astrophys-
ical disks. A partial answer to this question may already be
found from Taylor-Couette laboratory measurements (Dubrulle
et al. 2004), which provide information about the hydrody-
namical regime of rotating shear flow, as well as the influence
of magnetic field or stratification on the transport properties.
When applied to circumstellar disks, this provides parameter
free-predictions about accretion rates and fluctuations which
are in good agreement with observations (Hersant et al. 2005).
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For the influence of processes more specific to astrophysics
(radiative transport, etc.) one will probably have to wait until
the numerical simulations are able to reach Reynolds numbers
of order 106 or more.
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