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Abstract. We use very precise information concerning the physical properties of the asteroid Eros 433, obtained by the NEAR
probe mission, to analytically compute the modifications of its rotation on a short time scale, with a precision never reached be-
fore for an asteroid. Two kinds of components are investigated here: the free rotation and the forced one, due to the gravitational
torque exerted by the Sun. Coefficients of the short periodic part of Eros’ forced nutation are rather large, due to the fact that
the asteroid has a significant triaxial shape. They are calculated with the same relative accuracy as the moments of inertia of the
asteroid. Our results are compared with those obtained through numerical integration (Miller et al. 2002, Icarus, 155, 3), which
show high frequency oscillations of the position of Eros’ axis of figure in space. Some important differences are discussed.
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1. Introduction

Using the very accurate database coming from the NEAR probe
mission (Miller et al. 2002; Konopliv et al. 2002) we investi-
gate here the changes of the rotation of the asteroid Eros 433
on a short time scale. As a first step, the two components of the
rotation, i.e. the free motion and the forced one, are studied in-
dependantly. Then we combine them. The forced motion is due
to the gravitational torque exerted principally by the Sun (we
neglect in this paper the influence of the planets) and its ampli-
tude depends strongly on the triaxial shape of the asteroid. Its
main component, the nutation, i.e. the small oscillations of the
axis of figure with respect to an inertial reference frame, can
be modelled very accurately, both for the amplitudes and the
frequencies of the series that characterize it. By contrast,
the free motion depends directly on a free parameter which is
the amplitude of the polar motion, that is to say the relative mo-
tion of the axis of rotation (or the axis of angular momentum)
with respect to the axis of figure. This last axis is rigidly tied to
the asteroid, and it corresponds classically to the axis of maxi-
mum moment of inertia. Unfortunately, the amplitude of Eros’
polar motion is unknown. It is presumably very small, as is the
case on Earth where its amplitude, of the order of a few 0.1′′
is measured daily with a sub-milliarcsecond accuracy, and on
Mars, where it has never been detected. Miller et al. (2002)
have proposed a value of 0.′′036 for the amplitude of Eros’
free precession, from the data obtained by the NEAR space-
craft, and in our following calculations we choose this value as
a reference for the polar motion itself. The reason is that the

amplitude of the free precession in space is the same as that of
the polar motion phenomena with respect to a body-tied ref-
erence frame. As a consequence, if the amplitude of the polar
motion cancels, then it is also the case of the free precession.

Precise modeling of Eros’forced rotation, generated by the
gravitational action of the Sun, can be obtained with precision
once two kinds of data are themselves known accurately. The
first one concerns the orbital elements of the asteroid. The sec-
ond one concerns its physical parameters, that is to say its mass,
its moments of inertia, its angular speed of rotation, and the
orientation of its axis of figure with respect to space at a given
date. On the other hand, the analytical modeling of free motion
requires only the second kind of data.

In Table 1, we present the various parameters needed to
carry out our calculations in this paper. They are taken from
Miller et al. (2002), Souchay et al. (2003a), and from the
MPCORB database for minor planets. The great advantage of
Eros with respect to other asteroids is the relatively high ac-
curacy of these parameters, due to the long time span during
which the NEAR probe could orbit around Eros. Notice for in-
stance that the speed of rotation has been determined with a
10 digit precision, whereas the moments of inertia A, B and C
(in increasing order), which are fundamental to our calcula-
tions, are obtained with a 4 digit precision (Miller et al. 2002).
A remarkable fact is the very large value of the mean obliquity,
ε0 = 89.◦008 (Souchay et al. 2003a), very close to 90◦. As a
consequence, Eros’ axis of figure and axis of rotation are al-
most aligned along the orbital plane in a type of configuration
similar to that of Uranus.
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Table 1. Eros physical and orbital data obtained from Miller et al.
(2002), Souchay et al. (2003a) and from the MPCORB.

Physical data obtained from Miller et al. (2002)
and Souchay et al. (2003a)

Mass: 6.6904 ± 0.003 × 1015 kg

Volume: 2503 ± 25 km3

Mass per volume unit: 2.67 g/cm3

Large axis a = 34.6 km

Middle axis b = 19.3 km

Small axis c = 16.3 km

Moments of inertia Ixx = A (normalized): 17.09 km2

Moments of inertia Iyy = B (normalized): 71.79 km2

Moments of inertia Izz = C (normalized): 74.49 km2

Dynamical ellipticity: Hd =
2C−(A+B)

2C = 0.40341

Rotation period: 5.27025547 h

Orbital data obtained from MPCORB

Reference epoch t0: June 5th, 2002

Mean anomaly at t0: 176.◦51285

Argument of perihelion at t0: 178.◦64487

Ω at t0: 304.◦40542

i = 10.◦83019

e = 0.2228487

n = Ṁ = 3.5677539 rd/y

a = 1.4583145 UA

2. Eros’ free motion

The analytical solution for the free rotational motion of a ce-
lestial body has been studied extensively in the framework of
Hamiltonian dynamics by Kinoshita (1972, 1991). It has been
applied in the case of Eros by Souchay et al. (2003a) in the
framework of a general comparison between the free motion
of the Earth, Mars and Eros. In this last study, results obtained
by numerical integration were compared with analytical mod-
eling, showing a quasi perfect agreement. In parallel, the cor-
respondence between the solutions given with the intermediary
of two different sets of variables, i.e. Andoyer canonical vari-
ables (l, g, h) which give the positioning of the axis of angular
momentum, and Euler’s angles (ψ, θ and φ) which give the po-
sitioning of the axis of figure, was checked by using Euler’s
kinematical equations. An agreement was reached at the level
of a relative 10−10. The highly elliptical aspect of Eros’ polar
motion (or polhodie) was shown, which is due both to the near
equality of the moments B and C, and a large difference in A
from B or C. One of the more fundamental results is the pre-
cise determination of the linear trend of the Andoyer variables
l and g (Kinoshita 1991): the first one, nl̃ = −10.16937 rd/d
is the frequency of Euler’s motion, that is to say the polhodie
of Eros’ angular momentum axis when considering the aster-
oid as a rigid body, the minus sign indicating that this motion
is retrograde. ng̃ = 38.782104 rd/d is defined such that nl̃ + ng̃
represents exacltly the frequency ω̇ = 28.612732 rd/d of Eros’
proper rotation, which corresponds to a complete rotation in

Fig. 1. Curve of short periodic Eros nutation ∆ψf
free (in full line) and

∆εf
free (dashed line) when considering an amplitude of 0.′′036 for the

polar motion.

5h16mn13s, as was determined from the NEAR probe obser-
vations (Miller et al. 2002).

At first we concentrate on the motion of Eros’ axis of fig-
ure with respect to space. Then we calculate the oscillations of
the two angles ∆ψf

free and ∆εf
free which represent the free nu-

tations of this axis respectively in longitude and in obliquity.
Notice that in the case of a free motion, the terminology of free
nutation which implies oscillations around a position of equi-
librium seems more appropriate than the terminology of free
precession used by several authors, such as Miller et al. (2002).
Indeed, precession often refers to linear trends in longitude due
to the forced rotational motion.

In the case of Eros, the values of the moments of inertia lead

to a very large value of the parameter e =
1
2 (1/B−1/A)

1/C− 1
2 (1/A+1/B)

which

depends on the triaxial shape of the asteroid: here, e = 0.97785.
Then we follow exactly the same type of numerical integration
as that described in detail in Souchay et al. (2003a).

Motions of the axis of figure in space

Figure 1 gives the curves described both by ∆ψf
free and

∆εf
free with respect to time. We notice that in both cases the

signal is clearly dominated by an oscillation with a frequency
of roughly 6 cycles/d and whose amplitude varies significantly,
certainly due to the combination with a secondary oscillation.

In order to interpret this behaviour analytically, we denote
ψf

free and ψa.m.
free the precession angle in longitude respectively

for the axis of figure and the axis of angular momentum. In
a similar manner, we denote εf

free and εa.m.
free the corresponding

angles of obliquity of these two axes.
These angles are related by the classical kinematical equa-

tions (Kinoshita 1977)

ψf
free = ψa.m.

free +
J

sin I
sin g (1)

εf
free = εa.m.

free + J cos g + O(J2). (2)

J is the angle, supposed to be very small, between the axis of
figure and the axis of angular momentum, and g is defined as
the angle between two points (Kinoshita 1977): the first one is
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the node N between the plane perpendicular to the angular mo-
mentum axis (Eqa.m.), and the equatorial plane, perpendicular
to the figure axis. The other one is the node γ between the plane
(Eqa.m.) and a fixed plane, namely the plane of Eros’orbit at a
given epoch (J2000.0). ψa.m.

free is the angle of precession, indi-
cating the displacement of (Eqa.m.) along the fixed Eros orbital
plane.

As we only consider free motion here, no external torque is
supposed to be exerted on Eros, the angular momentum vector
is constant and so we can assert that : ψa.m.

free = cte = 0 and
εf

free = cte = ε0.
Therefore after derivation of the Eqs. (1) and (2) we can

write:

dψ
dt
=

1
sin I0

(
dJ
dt

sin g + J cos g
dg
dt

)
(3)

dε
dt
=

(
dJ
dt

cos g − J sin g
dg
dt

)
· (4)

Kinoshita (1992) gave an exhaustive study, with the help of
Hamiltonian theory and canonical variables, of the analytical
expansions of torque-free rotational motions for long and short
axis modes.

Folgueira and Souchay (2005) extended this last work,
studying the polhodie (or polar motion) for an axisymmetric
and elastic body (not a rigid one) in the Hamiltonian formalism.
They modified slightly Kinoshita’s expressions of the deriva-
tives dJ/dt and dg/dt, by using other parameters, i.e. Ā and ρ̄
which have the following meanings:

Ā =
A + B

2
ρ̄ =

B − A
A + B

·
When considering Eros as a rigid body, which seems to be
acceptable to a first approximation, these expressions become
simple and they can be written as follows:

dJ
dt
=

ρ̄G

Ā
sin J sin 2l (5)

dg
dt
=

G

Ā
− ρ̄G

Ā
cos 2l (6)

where l is the angle defining the polar motion of the axis of
angular momentum in polar coordinates (Kinoshita 1977), G is
the amplitude of the angular momentum set as a constant in the
present case.

By combining these expressions with (3) and (4) and taking
into account the fact that sin J ≈ J, J being very small, we
finally get:

dψ
dt
≈ Jω′

sin I0

[
cos g − ρ̄ cos(2l + g)

]
(7)

and:

dε
dt
≈ Jω′

[
− sin g + +ρ̄ sin(2l + g)

]
(8)

with: ω′ = G/Ā. And after integration of these last equations:

∆ψf
free ≈

Jω′

sin I0

[
sin g
ġ
− ρ̄ sin(2l + g)

(2l̇ + ġ)

]
(9)

and:

∆εf
free ≈ Jω′

[
cos g
ġ
− ρ̄cos(2l + g)

(2l̇ + ġ)

]
· (10)

These expressions could have been found directly by applying
analytical formulae using the variables l̃ and g̃ and the con-
stant e of Kinoshita (1992). After use of relationships between
Andoyer variables, related to the angular momentum axis, and
Euler angles, related to the figure axis (Kinoshita 1977), these
formulae should lead to the following expressions, equivalent
to (9) and (10):

∆ψf
free ≈

J̃
sin I0

[
sin g̃ +

1
2

e sin(2l̃ + g̃)

]
(11)

and:

∆εf
free ≈

J̃
sin I0

[
cos g̃ +

1
2

e sin(2l̃ + g̃)

]
· (12)

These expressions explain why at the first order, ∆ψf
free and

∆εf
free are a combination of two waves with frequency respec-

tively ġ and 2l̇ + ġ, thus leading to the features of the curve
shown in Fig. 1. These frequencies correspond precisely to
6.1724 cycles/d and 2.9354 cycles/d respectively. The ratio of
the second wave with respect to the first one is ρ̄ ġ

2l̇+ġ
. With the

values of l̇ = nl̃ and ġ = ng̃ given at the beginning of this sec-
tion, and with the values of A and B shown in Table 1, we get
ρ̄ = 0.61543 and we have a 1.2941 ratio between the ampli-
tudes of the two waves.

Polar motion and variations of the speed of rotation

(ω1, ω2, ω3) being the coordinates of Eros’ rotation vector
with respect to a body-fixed frame, the polar motion as well as
the variations of the angular speed of rotation of Eros caused by
its non axi-symmetrical shape,can be expressed in a simple way
when the condition J � 1, which is equivalent to ω1 � ω3 and
ω2 � ω3 is satisfied, as is shown by Souchay et al. (2003b). In
this case the angular speed of rotation ω is quasi equivalent to
ω3, and is subject to the following variations:

ω ≈ ω3 ≈ ω0
3 +

γβ

4
√
λµω0

3

(B − A
C

)
cos(2

√
λµω0

3)t (13)

where ω0
3 is a constant term, and where λ and µ are coefficients

dependent on the moments of inertia:

λ =
C − B

A
and µ =

C − A
B

, (14)

here, γ and β are the semi-major and the semi-minor axis of
the quasi-elliptical polar motion of the axis of rotation, i.e., the
relative motion of the axis of rotation with respect to the axis
of figure:

ω1 = β sin(
√
λµω0

3t) ω2 = γ cos(
√
λµω0

3t). (15)

Notice that γ and β are dependent parameters:

γ = −
√
µ

λ
× β. (16)
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Moreover, the period of Eros’ polar motion is given by the re-
lationships:

T =
2π√
λµω0

3

· (17)

Notice that this expression is the same as that found by Black
et al. (1999) who studied a possible rotation state of Eros.

The only parameter which remains to be determined is the
amplitude β (or γ) of the polar motion, which is a free param-
eter, and whose value is very close to J, the axis of angular
momentum and axis of rotation being very close to each other.

According to a previous remark, and as can be shown by
Eqs. (9) and (10), the amplitude of J is roughly the same as
the amplitude of the free nutation (or free precession according
to the following authors), which was presumed to be 0.′′036 by
Miller et al. (2002). We chose this same value for the amplitude
of J in the equations above.

By using the physical characteristics of Eros from Table 1,
we find that the eccentricity epm of the ellipse of polar motion
deduced from the ratio γ/β in (16) is very high, that is to say
epm = 0.8952, and the period of the polar motion, given by (17),
is 0.6178 d. In contrast to the Earth, for which the polar motion
is much slower than the proper rotation (by a factor of more
than 300), in the case of Eros it is of the same order, that is to
say 14.6 hours. Lastly, because of the very small values of γ
and β in the numerator of the expression on the right-hand side
of Eq. (13), it can be easily shown that the variations of ω are
negligible.

3. High frequency Eros rotational variations due
to the disturbing solar potential

Eros’ disturbing potential due to the Sun can be represented
by expansions in spherical harmonics, in the following manner
(Tisserand 1895; Kinoshita 1977):

U =
κ2MS

r3
×
[(

2C − A − B
2

)
P2

0(sin δ) (18)

+

(
A − B

4

)
P2

2(sin δ) cos 2α

]

+

∞∑
n=3

κ2mEMSan
E

rn+1

[
JnP0

n(sin δ)

−
n∑

m=1

Pm
n (sin δ)(Cn,m cos mα + S n,m sin mα)

]
.

In this formula, Pm
n are Legendre polynomials, A, B, C stand

for Eros’ principal moments of inertia, in increasing order of
amplitude. mE and MS are respectively the mass of Eros and
the mass of the Sun. Jn, Cn,m and S n,m are the coefficients of
Eros potential which have been determined with remarkable
accuracy for the first time in the case of an asteroid (Miller
et al. 2002). r represents the distance between Eros’ center of
mass and the Sun, and aE is the mean value of Eros radius.
α and δ represent the coordinates of the perturbing body, i.e.,
the Sun, in a reference frame based on the Eros equator and
principal axes: δ is the latitude of the Sun with respect to the

Eros equator, and α the longitude of the Sun counted from the
prime meridian which crosses the axis of minimum moment of
inertia A.

The influence of the first term of the potential on the
right-hand side of Eq. (18), depending on Eros flattening and
dynamical ellipticity Hd =

2C−A−B
2C has been studied in detail

recently (Souchay et al. 2003a). It generates long periodic nu-
tations which reach about 55′′ peak to peak, with much larger
amplitudes in obliquity ∆ε as in longitude ∆ψ, because of the
very high value of the obliquity (ε ≈ 89◦). The analytical de-
velopments of these nutations (Souchay et al. 2003a) have been
given at the 4th order of the eccentricity, as a function of Eros
mean motion M. The rate of precession has been fixed at the
value 2.′′84/y.

In this paper, we study the specific influence of Eros’ triax-
iality on the potential exerted by the Sun, which is represented
by the second term on the right hand side of Eq. (18), depend-
ing on the coefficient (A − B)/4. The terms at higher order of
the potential, with n � 3, which also generate very short peri-
odic oscillations of the axis of figure, can be totally neglected
because of the scaling factor ( aE

r )(n−2) with respect to leading
terms depending on the flattening, aE being roughly 5 × 10−6

smaller than the distance r. As a result, we limit our study to
the following part of the potential:

Utriax =
κ2MS

r3
×
[(A − B

4

)
P2

2(sin δ) cos 2α

]
· (19)

The variations at high frequency coming from this component
are due to the presence of the argument 2α in the potential,
which is twice the sidereal angle of Eros’ rotation. Considering
that this rotation is accomplished in about 5.270 h (Miller et al.
2002), and considering that P2

2(sin δ) varies slowly with respect
to time, its combination with cos 2α will result in Fourier’s se-
ries with terms with a period close to half the period of rotation
of Eros, that is to say roughly 2.635 h.

The procedure used to calculate Eros’ nutation due to the
triaxiality starting from Eq. (17) and using canonical equations
is fully explained by Kinoshita (1977). As we are adopting
exactly the same procedure, we only summarize the principal
steps here. First, the determining function associated with the
triaxiality is obtained by the integration of the periodic part of
Utriax:

Wtriax =
κ2 MS

a3
×
[

A − B
4

] ∫ [(a
r

3)
P2

2(sin δ) cos 2α

]
per.

dt

(20)

P2
2(sin δ) cos 2α can be expressed as a function of the coordi-

nates λ and β of the perturbing body, i.e. the Sun, with respect
to a given fixed plane, through the intermediary of the mod-
ified Jacobi polynomials (Kinoshita et al. 1974). λ and β are
respectively the longitude and the latitude of the Sun. In order
to follow the same kind of parametrization as for the Earth and
for Mars, we choose as a reference plane Eros’ orbital plane, so
that the value of β can be set to β = 0, whereas λ is determined
starting from the ascending node of Eros’orbit with respect to
Eros’equator which can be considered as Eros’equinox.
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We calculate the following expressions as a sum of sinu-
soids with coefficients Aν and Bν, and with argument Θν:

1
2

[
a
r

]3
=
∑

A0
ν cosΘν (21)

[
a
r

]3
sin β cos β sin λ =

∑
A1
ν cosΘν = 0 (22)

[
a
r

]3
cos2 β cos 2λ =

∑
A2
ν cosΘν. (23)

Souchay et al. (2003a) have shown that the two expres-
sions (21) and (23) above can be developed as a function of
Eros’ mean anomaly M, Eros’ eccentricity e and of two terms C
and S which can be taken as constants for a relatively long time
span. The reason is that they involve only long periodic mo-
tions. The definitions of C and S are given by Souchay et al.
(2003a). Their numerical values at J2000.0 are: C = 0.85777
and S = 0.51409.

In Tables 2 and 3 we gather the analytical expressions re-
spectively of the coefficients A0

ν and A2
ν as a function of the

constant terms C and S , together with their numerical value for
J2000.0 and the corresponding Θν expressed as a function of
Eros’mean anomaly M.

Then, the determining function Wtriax of Eq. (18) can be
transformed in the following way (Kinoshita 1977):

Wtriax =
3
2

sin2 JW0
triax +

∑
ρ=±1

sin J(1 + ρ cos J)W1
triax

+
1
4

∑
ρ=±1

(1 + ρ cos J)2W2
triax. (24)

With the following expressions:

W0
triax =

3κ2MS(B − A)
2a3

∑
ν

∑
µ=±1

Bν

2nl − µNν

× sin(2ρµΘν) (25)

W1
triax =

3κ2MS(B − A)
2a3

(26)

×
∑
ν

∑
µ=±1

Cν(µ)
ng + 2ρnl − µNν

sin(g + 2ρl − µΘν)

W2
triax =

3κ2MS(B − A)
2a3

(27)

×
∑
ν

∑
µ=±1

Dν(µ)
2ng + 2ρnl − µNν

sin(2g + 2ρl − µΘν).

We have the following notations (Kinoshita 1977), taking into
account the fact that the coefficients A1

ν are equal to 0:

Bν = −1
6

(3 cos2 ε0 − 1)A0
ν −

1
4

sin2 ε0A2
ν (28)

Cν(µ) =
1
4

sin ε0A0
ν −

1
4
µ sin ε0(1 + µ cos ε0)A2

ν (29)

Dν(µ) = −1
2

sin2 ε0A0
ν −

1
4

(1 + µ cos ε0)2A2
ν. (30)

Recall that the angle J stands for the angular offset between the

Table 2. Expression and numerical value of the coefficients A0
ν in

Eqs. (19)–(21) together with the corresponding angle Θν.

Angle Θν Expression of the coefficient A0
ν Value

0 1
2 +

3
4 e2 + 15

16 e4 0.53955828

M 3
2 e + 27

16 e3 0.35294863

2M 9
4 e2 + 7

4 e4 0.11605444

3M 53
16 e3 0.03665947

4M 77
16 e4 0.01186891

Table 3. Expression and numerical value of the coefficients A2
ν in

Eq. (21) together with the corresponding angle Θν.

Angle Θν Expression of the coefficient A2
ν Value

M C
[
− e

2 +
e3

12

]
−0.09447812

M − π
2 S

[
e
2 − e3

24

]
0.05704579

2M C
[
1 − 5

2 e2 + 41
48 e4
]

0.75304852

2M − π
2 S

[
−1 + 5

2 e2 − 37
48 e4
]
−0.45124669

3M C
[

7e
2 − 123

16 e4
]

0.59603207

3M − π
2 C

[
− 7e

2 +
123
16 e4
]
−0.35724190

4M C
[

17
2 e2 − 115

6 e4
]

0.32152353

4M − π
2 S

[
− 17

2 e2 + 115
6 e4
]
−0.19271056

5M C 845
48 e4 0.16710813

5M − π
2 −S 845

48 e4 −0.10015908

6M C 533
16 e4 0.07046922

6M − π
2 −S 845

48 e4 −0.04223692

axis of figure and the axis of angular momentum. As it is the
case for the Earth, where this angle does not exceed 1′′, as well
as for the other planets, we can assume that this angle is very
close to 0. We have explained above that it roughly corresponds
to the amplitude of Eros’ free precession in space which might
be 0.′′036 (Miller et al. 2002). Therefore the terms containing
sin J and sin2 J in (22) can be neglected, and cos J ≈ 1. So,
to a first approximation, Wtriax can be noticeably simplified and
rewritten in the following way:

Wtriax ≈ W2
triax ≈

3κ2MS

2a3
(B − A)

×
∑
ν

∑
µ=±1

Dν(µ)
2ng + 2nl − µNν

sin(2g + 2l − µΘν)

(31)

which can be also written as:

Wtriax ≈ 3κ2MS

2a3
(B − A) (32)

×
∑
ν

∑
µ=±1

[
−1

2
sin2 ε0A0

ν −
1
4

(1 + µ cos ε0)2A2
ν

]
(33)

× sin(2g + 2l − µΘν)
2nl + 2ng − µNν

· (34)
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By applying canonical equations, we find the expressions of the
nutation of Eros’ axis of angular momentum (Kinoshita 1977):

[∆ψ]a.m.
forced = −

B − A
2C − A − B

k
sin ε0

×
∑
ν

∑
µ=±1

Cν(µ)
2nl + 2ng − µNν

sin(2g + 2l − µΘν)

=
B − A

2C − A − B
k

sin ε0

×
∑
ν

∑
µ=±1

[
−1

4
sin 2ε0A0

ν+
1
4
µ sin ε0(1+µ cosε0)A2

ν

]

× sin(2g + 2l − µΘν)
2nl + 2ng − µNν

(35)

and:

[∆ε]a.m.
forced = −

B − A
2C − A − B

k
∑
ν

∑
µ=±1

Cν(µ)
2nl + 2ng − µNν

× cos(2g + 2l − µΘν)
=

B − A
2C − A − B

k

×
∑
ν

∑
µ=±1

[
−1

4
sin 2ε0A0

ν+
1
4
µ sin ε0(1+cosε0)A2

ν

]

×cos(2g + 2l − µΘν)
2nl + 2ng − µNν

· (36)

Then we can calculate the high frequency nutations of the axis
of figure due to the triaxiality with the help of the kinematic
formula linking the position angles of the figure axis ψf and εf

to the respective positions of the angular momentum axis ψA.M.

and εA.M., with the intermediary of the Andoyer variables:

ψf − ψa.m. =
J

sin ε0
sin g (37)

εf − εa.m. = −J cos g. (38)

Notice that the displacements of Eros’ axis of figure have been
calculated by Souchay et al. (2003a) with respect to those of
the axis of angular momentum using same formula, by the in-
termediary of what is classically named Oppolzer terms. Now,
we can link the nutations of the two axes:

∆ψf
forced = ∆ψ

a.m.
forced + ∆(

J
sin ε0

sin g) (39)

∆εf
forced = ∆ε

a.m.
forced − ∆(J cos g). (40)

We still get the expressions of ∆(J sin g) and ∆(J cos g) from
Kinoshita (1977). They lead to the final formulations for the
nutation of the figure axis:

[∆ψ]f
forced =

B − A
2C − A − B

k
sin ε0

(41)

×
∑
ν

∑
µ=±1

[
−1

4
sin 2ε0A0

ν +
1
4
µ sin ε0(1 + µ cos ε0)A2

ν

]

×
[

1
2nl + 2ng − µNν

− 1
2nl + 2ng − µNν

]
sin(2g + 2l − µΘν)

Fig. 2. Curve of Eros forced nutation ∆ψf
triax due to the gravitational

torque exerted by the Sun on the triaxial shape of the asteroid.

[∆ε]f
forced =

B − A
2C − A − B

k (42)

×
∑
ν

∑
µ=±1

[
−1

4
sin 2ε0A0

ν +
1
4
µ sin ε0(1 + µ cos ε0)A2

ν

]

×
[

1
2nl + 2ng − µNν

− 1
2nl + 2ng − µNν

]
cos(2g + 2l − µΘν).

In Tables 4 and 5 we gather the coefficients of the high fre-
quency nutations ∆ψf

forced and ∆εf
forced, due to the triaxial shape

of the asteroid. As we have explained previously, the period
of each sinusoidal term is very closed to 2h38mn06s, which
corresponds to half the period of Eros’rotation. Therefore the
curve of the total amount for both nutations, shown for ∆ψf

forced
in Fig. 2, is a beating characterized by large variations of the
maximum amplitude, sometimes cancelling, sometimes reach-
ing a 0.′′035 peak-to-peak amplitude. Notice that the ampli-
tude undergoes variations with a very stable and characteristic
feature according to a cycle of roughly 650 days. The curve
for ∆εf

forced is quite similar, because the equations for ∆ψf
forced

and ∆εf
forced differ only by a scaling factor sin ε0 very close

to 1 (ε0 = 89.◦008), and a phase equal to π/2. Thus ∆εf
forced

is slightly shifted with respect to ∆ψf
forced (a π/2 phase of the

proper rotation corresponds to roughly a 1.3 h shift).

4. Combined effects of free and forced nutations

In the two previous sections, we calculated the short periodic
parts both of Eros’ free nutation (∆ψf

free, ∆εf
free) and forced nu-

tation (∆ψf
forced, ∆ε f

forced) due to the gravitational forcing ex-
erted by the Sun. Below, we shall investigate the general fea-
tures of the path described by Eros’ pole of figure with respect
to an inertial frame.

In Fig. 3 we illustrate (on the same graphs) the variations,
for J2000.0, of ∆ψf

forced (in dashed line) and ∆ψf
free (in bold and

slightly dotted line). Their combination is given by the thin
full line curve. Notice that we have again chosen the value
of J = 0.′′036 for the maximal amplitude of the polar motion
which gives the same amplitude for the free nutation, as has
been already explained and shown in Fig. 1. This last value
corresponds to a maximum threshold taken from Miller et al.
(2002), and might be subject to variations according to time,
as is the case for the Earth, due to the action of dissipative
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Table 4. Coefficients of the high-frequency forced nutation in longi-
tude ∆ψf

forced of Eros. ω is the argument for the sidereal rotation of
Eros, and M is Eros’ mean anomaly.

Angle Sine (0.′′001) Cosine (0.′′001) Period (h)

2ω 0.0846 0.0000 2h38mn06s

2ω − M 0.4890 −0.2610 2h38mn08s

2ω + M −0.4182 −0.2517 2h38mn05s

2ω − 2M −3.4287 2.0655 2h38mn10s

2ω + 2M 3.3211 1.9900 2h38mn03s

2ω − 3M −2.7241 1.6361 2h38mn11s

2ω + 3M 2.6271 1.5746 2h38mn02s

2ω − 4M −1.4715 0.8831 2h38mn13s

2ω + 4M 1.4636 0.8489 2h38mn00s

2ω − 5M −0.7662 0.4592 2h38mn15s

2ω + 5M 0.7357 0.4409 2h37mn58s

2ω − 6M −0.3236 0.1937 2h38mn16s

2ω + 6M 0.3100 0.1858 2h37mn57s

Table 5. Coefficients of the high-frequency forced nutation in obliq-
uity ∆εf

forced of Eros. ω is the argument for the sidereal Eros’rotation,
and M is Eros’ mean anomaly.

Angle Sine (0.′′001) Cosine (0.′′001) Period (h)

2ω 0.0846 0.0000 2h38mn06s

2ω − M −0.4889 −0.2609 2h38mn08s

2ω + M 0.4182 −0.2517 2h38mn05s

2ω − 2M 3.4287 2.0655 2h38mn10s

2ω + 2M −3.3205 1.9900 2h38mn03s

2ω − 3M 2.7241 1.6361 2h38mn11s

2ω + 3M −2.6271 1.5746 2h38mn02s

2ω − 4M 1.4715 0.8831 2h38mn13s

2ω + 4M −1.4636 0.8489 2h38mn00s

2ω − 5M 0.4592 −0.7357 2h38mn15s

2ω + 5M −0.7357 0.4409 2h37mn58s

2ω − 6M 0.3233 0.1937 2h38mn16s

2ω + 6M −0.3100 0.1858 2h37mn57s

internal mechanisms. We must emphasize the fact that its
choice is subject to some uncertainty, as it has been identified
with what was named by Miller et al. as Eros’ free precession.
Moreover some precisions concerning the definition of this free
precession and the way in which it could be determined from
the NEAR mission has not been clearly explained (Miller et al.
2002). However the amplitude of J does not influence the as-
pect of the curve described by the figure axis with respect to
space, but only its scale.

In Fig. 4 we show the two dimensional trajectories de-
scribed by Eros’ pole of figure when undergoing the free and
forced motions separately. The first one (∆ψf

free, ∆εf
free) can be

considered as a curve made of a simple loop pattern reproduced
indefinitely after being shifted by rotation, whereas the second

Fig. 3. Curve of the free nutation (in bold dotted line) ∆ψf
free and the

forced one ∆ψf
triax (in dashed line). The two curves are summed (in full

thin line).

Fig. 4. Curve representing the free nutation loop of the figure axis
∆εfree as a function of ∆ψfree

triax, together with the forced high fequency
nutation loop (circular) ∆εfree

triax as a function of ∆ψf
triax.

Fig. 5. Curve representing the short periodic motion of the pole of
Eros’ figure axis for a short time span.

one, (∆ψf
forced, ∆εf

forced) is a quasi-circular curve, with a radius
varying according to time, as was shown in Fig. 2. Figures 5.1
and 5.2 show respectively for a long and a short time span the
motion of the axis of figure undergoing the two motions com-
bined. The path is included inside a triangular boundary, the
amplitude of each side of the triangle being about 0.′′08. Notice
the regularity of the curve and its symmetry after rotation.
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Fig. 6. Curve representing the short periodic motion of the pole of
Eros’ figure axis for a long time span.

The representation of Eros pole of figure in a bi-
dimensional α,δ coordinate curve, when considering all the ef-
fects of the precession, the long periodic nutations and the short
periodic ones, can also be carried out once the necessary trans-
formations from the reference frame relating to Eros to that
relating to the Earth’s equator and equinox have been done.
These transformations were used by Souchay et al. (2003a)
when studying the long periodic motions of Eros’ pole. The
values of the precession and of the long periodic nutations were
also taken from this last paper. The curve is shown in Fig. 6:
the linear trend is due to the long-periodic nutations in obliq-
uity whose effects for a small time span are far greater than
the long-periodic nutations in longitude and the precession in
longitude itself, as was demonstrated analytically by Souchay
et al. (2003a). The effects of the short-periodic nutations are
clearly visible: they consist of loops with aspect and amplitude
varying in a noticeable manner, characterized in particular by
retrogradations due to the sinusoidal variations of the obliquity
calculated in the preceding sections.

We can compare this last curve with that presented by
Miller et al. (2002), probably obtained by numerical integra-
tion. In this last study, although high frequency oscillations of
the pole exist, the high frequency loops obtained in Fig. 6 are
not present: this should indicate that only the high-frequency
variations of Eros’ pole in longitude, not in obliquity, have been
taken into account. This hypothesis is confirmed by an exper-
imental study performed by us, consisting of only taking into
account the terms of free nutation in longitude, not in obliquity:
with that intentional omission the curve becomes quite similar
to that of the authors above.

On the contrary, notice that Souchay et al. (2003a) found
an excellent agreement between their calculations and those of
Miller et al. (2002) concerning the long-periodic behaviour of
the motion of Eros’ pole, including both forced precession and
forced long-periodic nutation.

5. Conclusion

As is the case for the Earth, the variations of rotation of
Eros can be divided into several components: one is the dis-
placement of the axis of figure in space, split itself in two
parts, i.e. the secular motion of precession and the periodic

Fig. 7. Curve representing the (α, δ) variations of the equatorial coor-
dinates of Eros’ figure axis, all nutations and precession contributions
being included, according to this paper and Souchay et al. (2003a).

oscillations characterizing the nutation. Another component is
the polar motion, or polhody, that is to say the relative motion
of the axis of rotation (or possibly the axis of angular momen-
tum), with respect to the axis of figure. Also we must mention
the variations of the angular speed of rotation.

In this paper, we have achieved an exhaustive study of
Eros’ rotation in a fully analytical manner, thus completing a
previous study (Souchay et al. 2003a) which dealt only with
forced precession and forced long periodic nutations. Thanks to
very accurate and high-precision data obtained from the NEAR
probe orbiting around the asteroid Eros, it was possible in this
paper to model with exceptional precision the high frequency
components of the free rotation, as well as the forced one due
to the gravitational torque exerted by the Sun.

We have shown that the free rotation generates for the axis
of figure, both for ∆ψf

free and ∆εf
free two leading oscillations,

with a frequency of 6.17 cycles/day and 2.93 cycles/day and
close amplitudes. These amplitudes depend on the amplitude
of the polar motion, which is a free parameter. We have cho-
sen the value of 0.′′036 (Miller et al. 2002), which gives a free
precession with this same amount.

We have also computed up to the 4th digit of precision the
coefficients of high-frequency nutations of the figure axis of the
asteroid, coming from its triaxial shape. Contrary to the free
motion, no free parameter is introduced in these computations,
amplitudes and frequencies of the sinusoidal oscillations being
completely determined once the orbital parameters of Eros are
known, thus enabling us to calculate the solar torque. Thus we
have a set of coefficients of nutations ∆ψf

forced and ∆εf
forced, with

periods very close to each other, and to half the period of ro-
tation of the asteroid, that is to say 2.635 h. As a consequence
the combination of these oscillations results in a beating char-
acterized by a single sinusoidal wave with varying amplitude,
ranging between 0′′ and 0.′′04 peak to peak, and with a period
of 2.635 h.

We then juxtaposed the contributions above to obtain the
high frequency variations of Eros’ pole of figure. They are char-
acterized by a quasi triangular loop whose aspect slightly varies
after each cycle.

Finally, we gathered all the contributions to Eros’ ro-
tation obtained analytically both in this paper and by
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Souchay et al. (2003a) to compute the two dimensional vari-
ations (α, δ) of Eros’ equatorial coordinates of the pole of fig-
ure. Whereas the long periodic part of these variations due to
forced precession and nutation perfectly match those obtained
by Miller et al. (2002) from numerical integration, it is not the
case of the short periodic variations. We showed that a possi-
ble cause might be the omission in this last paper of the free
rotation in obliquity.

Lastly, we have shown that Eros’ polar motion is character-
ized by an ellipse with very large eccentricity (e = 0.8952)and
a very fast period (T = 0.6178 d) We have also explained ana-
lytically why the variations of Eros’ angular speed of rotation
are negligible.

Notice that the amplitudes of the free nutattion and of the
force nutations due to the triaxiality investigated here, although
modelled with very good precision, are of the order of a few cm
on the surface of Eros.

We plan to complete the present study of Eros’ rotation by
extending it to a very long time scale in order to determine the
secular variations of the obliquity and the general precession in
longitude, which should be caused by the perturbing influence
of the planets. All the computations made in the present paper
will be useful for that topic.
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