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ABSTRACT
An elementary but revealing analysis of the dispersion relation of the magnetorotational
instability (MRI) in the Ralyeigh-unstable regime is described. The defining properties
of the MRI – its maximum growth rate and the direction of the associated eigenvector
displacement – remain unchanged as the Rayleigh discriminant passes from positive to neg-
ative values. At sufficiently negative discriminant values, however, the spectrum of unstable
modes becomes dominated by zero wavenumber disturbances, and the problem loses its local
character. These results may be relevant to understanding the level of turbulent fluid stress
near the innermost stable circular orbit (ISCO) in an accretion disc around a black hole, since
the Rayleigh discriminant changes sign at this location. Our conclusions are consistent with
numerical simulations that find finite stress at the ISCO, some dependence of the stress magni-
tude with scale height, and a plunging region much closer to the event horizon than the ISCO
radius.
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1 IN T RO D U C T I O N

Determining the mass and spin of a black hole now falls, at least in
principle, within the realm of observation. In practice, this requires
reliable modelling of the accreting gas in the disc that generally
surrounds the black hole. The behaviour of the gas in the vicin-
ity of the innermost stable circular orbit (ISCO) of a Kerr black
hole is very important. In the classical α disc model developed
by Novikov & Thorne (1973), for example, the ISCO separates
the outer region in the disc in which circular orbits were stable,
from the interior region in which circular orbits were unstable (by
the Rayleigh criterion), with the consequence that the unstable gas
plunged into the hole. The ‘plunging region’, it was argued, can nei-
ther support nor maintain the greatly enhanced viscous-like stress
that characterizes the gas dynamics of the outer region. Therefore,
Novikov & Thorne adopted the boundary condition that the stress
must vanish at the ISCO. This boundary condition dominates the
local gas dynamics, forcing the surface density to drop rapidly to
zero at the ISCO. The disc emissivity is then strongly dominated
by the ISCO-neighbourhood gas, and it is possible to use this prop-
erty to determine the location of the ISCO and hence the intrinsic
properties of the black hole itself.

The Novikov–Thorne model was developed in an era in which
there was profound ignorance of the nature of the enhanced torques
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needed for accretion discs to operate. Such torques were (and still
are) thought to be turbulent in origin, and as with most analytic
models of turbulence, the Novikov–Thorne approach was heuristic.
In fact, the model was not even really self-consistent. If turbulent
in origin, the stress presumably had to arise from some kind of an
instability, yet the only region in the disc that was demonstrably
unstable (i.e. the gas interior to the ISCO) was precisely the region
in which the turbulent stress supposedly vanished! If pressed on
this point, early investigators would probably have argued that the
turbulent stress was actually a consequence of a non-linear insta-
bility, whereas inside the ISCO the gas was by definition linearly
unstable. The non-linear instability would be vigorous enough to
produce a greatly enhanced turbulent stress, but gentle enough not
to completely disrupt the circular orbits. The linear Rayleigh insta-
bility that took hold inside the ISCO would be, by way of contrast,
catastrophic.

This scenario has survived, more or less intact to the present day,
almost 40 years on. One major development that has occurred in
the ensuing decades is that there is now good reason to believe that
the origin of accretion disc turbulence, if not its ultimate resolution,
is reasonably well understood. If any subthermal magnetic field
is present in the disc, the magnetorotational instability (MRI) will
destabilize circular orbits, and the outcome of all numerical simula-
tions indicates that the result will be a level of enhanced non-linear
turbulent stress that leaves the Keplerian disc structure intact but
allows vigorous accretion to occur.

Much can be learned from the linear MRI dispersion relation
alone. The most unstable displacements, for example, produce
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strong correlated growth in the radial and azimuthal magnetic field
components, a result that endures into the non-linear turbulent
regime. However, with only a handful of exceptions (e.g. Abramow-
icz, Brandenburg & Lasota 1996; Hawley, Balbus & Winters 1999),
detailed analyses of the MRI dispersion relation have understand-
ably focused on Keplerian and galactic discs, in which case the
angular momentum gradient is strongly positive. Virtually nothing
has been done by way of analysis for the regime that is relevant to
the gas interior to the ISCO of a black hole accretion disc.

We are motivated, therefore, to study the behaviour of linear dis-
turbances in a weakly magnetized, Rayleigh-unstable gas. In par-
ticular, is there evidence in the dispersion relation for a profound
change in the most unstable eigenvectors when the angular momen-
tum gradient changes sign? We will show that there is no profound
behavioural change evident in linear theory to distinguish gas inte-
rior and exterior to the ISCO, certainly nothing to warrant the notion
of a discontinuous changes in the disc properties. The maximum
growth rate remains the Oort A-value, the maximally unstable dis-
placement eigenvector is associated with local wavenumbers and
generates strongly correlated radial and azimuthal fields, and the
one unstable branch of the dispersion relation (there is always only
one such branch, with or without violation of the Rayleigh criterion)
changes smoothly as the ISCO is passed. If the turbulent stress van-
ishes along the lines of Novikov & Thorne models, it is not evident
from any changes in the dispersion relation of a weakly magnetized
rotating gas. The stress could, in principle, vanish if the disc thick-
ness within the ISCO became too thin to support MRI modes, but
it is not obvious why this should be expected to occur.

The calculation is quite elementary, and the purpose of this
Letter is simply to draw attention to certain dynamical behaviour
that deserves to be more widely known among investigators mod-
elling black hole discs. In Section 2, we present an analysis of
the dispersion relation in question, and calculate the maximum
growth rate and most unstable eigenvectors under very general cir-
cumstances. In Section 3, we discuss some of the astrophysical
consequences of our results.

2 A NA LY SIS

The dispersion relation for incompressible disturbances in a weakly
magnetized rotating gas is by now well known (e.g. Balbus &
Hawley 1998). We consider displacements in the plane of the disc.
The cylindrical radius is denoted R, the azimuthal angle φ. The
wavenumber must then have only a vertical (z) component, de-
noted k. The corresponding angular frequency is ω. Linear distur-
bances with a dependence on space and time of the plane wave form
exp (ikz − iωt) satisfy the dispersion relation

ω4 −
(
κ2 + 2k2v2

A

)
ω2 + k2v2

A

(
k2v2

A + d�2/d ln R
)

= 0. (1)

Here, the angular rotation rate of the disc � depends only upon R,
and κ is the disc epicyclic frequency. It is given by

κ2 = 4�2 + d�2

d ln R
. (2)

(In older fluid texts, the term ‘Rayleigh discriminant’ is used for
κ2.) Do not be misled by the fact that this is a squared quantity; the
focus here is on the case κ2 < 0. As usual, vA is an Alfvén velocity.
If B is the z component of the magnetic field (the only one that
enters into the dispersion relation), then

v2
A = B2

4πρ
, (3)

where ρ is the gas density. Since we will regard k2v2
A as a variable,

we will henceforth denote it simply as x, always a positive quantity.
The solution to the dispersion relation (1) is

ω2 = κ2

2
+ x ±

√
κ4

4
+ 4�2x. (4)

We distinguish three cases, κ2 > 0, κ2 = 0 and κ2 < 0. (When
numbers are used, the unit of frequency is �.)

(i) κ2 > 0. This, of course, is the standard case. Taking the plus
(+) branch, for x � 1,

ω2 � κ2 +
(

1 + 4�2/κ2
)
x + · · · , (5)

while for x � 1,

ω2 � x. (6)

These are clearly the epicyclic and Alfvén limits. For the minus (−)
branch, the x � 1 limit is

ω2 � x

κ2

d�2

d ln R
, (7)

the MRI mode. The x � 1 limit is the same as the + branch,
ω2 � x. A typical case is plotted in Fig. 1.

(ii) κ2 = 0. This corresponds to the neighbourhood of the ISCO.
For x � 1, the + and − branches are given by

ω2 � ±2�
√

x, (8)

while the x � 1 limit remains, as above, ω2 � x. Fig. 2 shows a
typical case.

(iii) κ2 < 0. This applies to the disc region inside the ISCO. For
the + branch, the x � 1 limit is

ω2 � x(1 + 4�2/|κ2|), (9)

while the − branch in this limit is

ω2 � −|κ2| + x(1 − 4�2/|κ2|). (10)

Note that the slope at x = 0 changes from negative to positive as
|κ2| passes from less than to larger than 4�2.

On both branches, the x � 1 limit is, as always, ω2 � x. Figs 3
and 4 show this case for the subcases |κ2| < 4�2 and |κ2| > 4�2,
respectively.

Regarded as a function of x, −ω2 is maximized when the
wavenumber satisfies dω2/dx = 0. This is a straightforward calcu-
lation and yields

xmax = −κ2 + 4�2

16�2

d�2

d ln R
. (11)

When κ2 < 0, it is necessary that κ2 + 4�2 > 0 for the existence
of xmax. This is the very same requirement that ω2 be a decreasing
function of x when x � 1. When this requirement is not fulfilled,
ω2(x) is everywhere an increasing function of x (on either the + or
− branch), and has no extremum. When this requirement is fulfilled,
the value for xmax is identical to that found for the standard κ2 > 0
MRI. The associated maximum growth rate is given by

|ωmax| = −1

2

d�

d ln R
(12)

and is also identical to the standard κ2 > 0 MRI. This is a rather
remarkable result. The onset of the Rayleigh instability does not
change the character of the instability. Both the wavenumber of
maximum growth and the maximum growth rate itself are identical
to those found by Balbus & Hawley (1992) for the standard MRI.
It is only when the magnitude of κ2 exceeds 4�2 that the existence
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Figure 1. ω2 versus (kvA)2 from equation (4) for the case κ2 = 1. Frequency unit is �. The upper branch corresponds to the + sign, the lower branch to the
− sign. The lower curve is the standard MRI.

Figure 2. ω2 versus (kvA)2 from equation (4) for the case κ2 = 0. Frequency unit is �. The upper branch corresponds to the + sign, the lower branch to the
− sign. The lower curve is very similar in its properties to the standard MRI.

of a local maximum in the growth rate at a particular value of x
disappears.

Finally, we may ask what the eigenvector of the most rapidly
growing mode looks like, and what is the Maxwell–Reynolds stress
associated with it. To this end, we adopt equation (2.3d) from Balbus
& Hawley (1991). Instead of the angular frequency ω, it is more
convenient to use the growth rate σ ≡ −iω. In terms of σ , the
Eulerian perturbed azimuthal velocity δvφ is related to the Eulerian

perturbed radial velocity δvR by

δvφ = − δvR

σ

(
κ2

2�
+ x

σ 2

d�

d ln R

) (
1 + x

σ 2

)−1
. (13)

Using equations (11) and (12) in (13), after some expansion and
simplification we find the result

δvφ = δvR, (14)
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Figure 3. ω2 versus (kvA)2 from equation (4) for the case κ2 = −0.5. Frequency unit is �. The upper branch corresponds to the + sign, the lower branch to
the − sign. Once again, the lower curve is very similar in its properties to the standard MRI, but with a finite growth rate at x = 0.

which is identical to the standard MRI eigenvector. Obviously, the
Reynolds stress δvφδvR is finite and positive. To follow the path
of a fluid element, we require the Lagrangian perturbed velocity.
If ξ is the Lagrangian displacement vector of a fluid element, then
the perturbed Lagrangian velocity for the eigenvector of maximum
growth is

ξ̇φ = δvφ + ξR

d�

d ln R
= δvφ + δvR

σ

d�

d ln R

= δvR

(
1 + 2d�/d ln R

|d�/d ln R|
)

= −δvR. (15)

Once again, this Lagrangian displacement is exactly the same as
that found in the standard MRI (Balbus & Hawley 1992).

3 D ISCUSSION

It is clear from the analysis of Section 2 that the onset of Rayleigh
instability does not mark the ISCO as a very special location. In
particular, the ISCO is not, in fact, the ‘innermost stable circular
orbit’. The bulk of the disc is unstable, which is of course why it
is turbulent. The one new feature of a WKB analysis within the
ISCO is that k = 0 modes become unstable, a hint of the begin-
ning of the breakdown of local physics. (This is a pattern similar
to that seen in convectively unstable discs, in which the longest
wavelength modes are dominated by hydrodynamics, whereas the
local modes remain magnetohydrodynamica in character; Balbus &
Hawley 2002; Narayan et al. 2002.) The fastest growing modes are
still locally triggered upon entering the region interior to the ISCO,
however. Were it not for the slowly growing k = 0 modes, the radius
0.9 (in ISCO units) would be indistinguishable in its formal stability
properties from the radius 1.1.

If there is a location that marks the onset of qualitatively differ-
ent behaviour and merits its own moniker, it is the radius at which
κ2 = −4�2. As Fig. 4 makes clear, inside this location, the

most rapidly growing eigenmodes are associated with global wave-
lengths, and it makes no sense at all to think of the flow stability
as a local phenomenon. However, this location is very near to the
event horizon itself.

Numerical simulations designed to measure the stress near the
ISCO have been underway for several years now (Krolik, Hawley &
Hirose 2005). The calculation is difficult, and as a consequence, the
interpretation of the results is controversial. If we somewhat boldly
extrapolate from the linear analysis presented here, the following
predictions seem natural.

No feature in the flow should be identifiable with the ISCO.
The reasons for this have been discussed above. Simply put, the
MRI stability properties and the associated stress generation change
seamlessly as one passes the radius marking the onset of Rayleigh
instability.

There should be no particularly sensitivity to H/R beyond a mini-
mum value. As long as a reasonably broad range of unstable vertical
wavenumbers fit inside the disc, the Rφ component of the stress ten-
sor will vigorously develop.

Below a certain threshold, there should be a sensitivity to H/R.
If H/R allows a very limited range of unstable wavenumbers, the
level of saturated Rφ stress could be affected: mixing to smaller
wavenumbers effectively kills the growth. Obviously, at small
enough H/R, the MRI is completely suppressed.

There should be a plunging region only very near the horizon.
This is associated (in the pseudo-Newtonian formalism) with the
radius at which κ2 = −4�2, at which point the zero wavenumber
disturbances dominate the instability – a true Rayleigh regime.

Magnetic field geometry should influence the level of the stress.
This is not a very startling conclusion: this feature has been noted
in MRI simulations since the very early days of the subject.

The behaviour described above is consistent with the findings
of the studies of Reynolds & Fabian (2008) and Noble, Krolik &
Hawley (2010). These are both global disc simulations. Studies
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Figure 4. ω2 versus (kvA)2 from equation (4) for the case κ2 = −4.5. Frequency unit is �. Only the unstable ‘minus’ branch is shown. The behaviour is now
significantly different, since the maximum growth rate is no longer at a finite value of x, but at x = 0. The instability is likely to be dominated by global modes.

of local shearing boxes for which κ2 < 0 would be a revealing
numerical laboratory, since there is greater control of the external
parameters in such systems. On the other hand, the evolution of the
unstable k = 0 mode may be pathological in shearing box geometry,
so that care must be taken with its interpretation. We will report on
the findings of such a study in a future publication.
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