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Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton
with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast
roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave
equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary
perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering
data and observables is established. Implementing methods from scattering theory we prove that this
attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power
spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the
effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a
total number of e-folds Ntot � 59, there is a 10%–20% suppression of the CMB quadrupole and about
2%– 4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off
as 1=l2. The suppression is much smaller for Ntot > 59, therefore if the observable suppression originates
in the fast roll stage, there is the upper bound Ntot � 59.

DOI: 10.1103/PhysRevD.74.123007 PACS numbers: 98.70.Vc, 03.65.Nk, 11.10.�z, 98.80.Cq

I. INTRODUCTION

Scalar curvature and tensor (gravitational wave) quan-
tum fluctuations generated during the inflationary stage
determine the power spectrum of the anisotropies in the
cosmic microwave background (CMB) providing the seeds
for large scale structure (LSS) formation. Curvature and
tensor fluctuations obey a wave equation, and the choice of
a particular solution entails a choice of initial conditions
[1–9]. The power spectra of these fluctuations depend in
general on the initial conditions that define the particular
solutions. These are usually chosen as Bunch-Davies [10]
initial conditions, which select positive frequency modes
asymptotically with respect to conformal time. The quan-
tum states in the Fock representation associated with these
initial conditions are known as Bunch-Davies states, the
vacuum state being invariant under the maximal symmetry
group O�4; 1� of de Sitter space-time. In earlier studies
alternative initial conditions were also considered [11].
The requirement that the energy momentum tensor be
renormalizable constrains the UV asymptotic behavior of
the Bogoliubov coefficients that encode different initial
conditions [12]. The availability of high precision cosmo-
logical data motivated a substantial effort to study the
effect of different initial conditions upon the angular power
spectrum of CMB anisotropies, focusing primarily in the
high-l region near the acoustic peaks [13]. However, the
exhaustive analysis of the 3 yr WMAP data [14–16] render

much less statistical significance to possible effects on
small angular scales from alternative initial conditions.

Although there are no statistically significant departures
from the slow roll inflationary scenario at small angular
scales (l * 100), the third year WMAP data again confirms
the surprisingly low quadrupole C2 [14–16] and suggests
that it cannot be completely explained by galactic fore-
ground contamination. The low value of the quadrupole
has been an intriguing feature on large angular scales since
first observed by COBE/DMR [17], and confirmed by the
WMAP data [14–22].

In a companion article [23], we reported on our study of
the effect of general initial conditions on the power spectra
of curvature and gravitational wave perturbations. General
initial conditions are related to the Bunch-Davies initial
conditions by a Bogoliubov transformation and their effect
on the power spectra is encoded in a transfer function D�k�
whose large wave vector behavior is constrained by renor-
malizability and small backreaction [23]. The rapid falloff
ofD�k� & O�1=k2� for large k entail that observable effects
from initial conditions are more pronounced for low multi-
poles, namely, in the region of the angular power spectra
corresponding to the Sachs-Wolfe plateau.

In Ref. [23] we formulate the problem of initial con-
ditions established at the beginning of slow roll, in terms of
a scattering by a potential in the wave equations for the
mode functions of curvature and tensor perturbations. Such
potential is localized in conformal time prior to slow roll
and determines the initial conditions for the mode func-
tions. Implementing methods from potential scattering
allowed us to establish that such potential yields a transfer
function D�k� that automatically satisfies the stringent
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constraints from renormalizability and backreaction. The
results of this previous study reveal that an attractive
potential localized just prior to the onset of slow roll and
with a scale determined by the energy scale during slow
roll inflation yield a suppression of the quadrupole for
curvature perturbations consistent with the data
�10%–20% and predicts a small quadrupole suppression
for tensor perturbations.

In this article we discuss the origin of this attractive
potential within the effective field theory of inflation. We
argue that such potential is a generic feature of a brief fast
roll stage that merges smoothly with slow roll inflation.
This stage is a consequence of an initial condition for the
classical inflaton dynamics in which the kinetic and poten-
tial energy of the inflaton are of the same order, namely, the
energy scale of slow roll inflation. During the early fast roll
stage the inflaton evolves rapidly during a brief period, but
slows down by the cosmological expansion settling in the
slow roll stage in which the kinetic energy of the inflaton is
much smaller than its potential energy. The scale of the
attractive potential is determined by the energy scale dur-
ing the slow roll stage, which in the effective field theory
description [24,25] is of the order of the grand unification
scale, M� 1016 GeV, well below the Planck scale MPl �
1019 GeV, and no other energy scales are involved. Hence,
we emphasize that there is no need to advocate trans-
planckian physics in this context.

Brief summary of results

In this article we combine the dynamical origin of the
potential within the effective field theory of inflation, with
the results obtained in Ref. [23] and show that the early fast
roll stage leads to a suppression of the CMB quadrupole.

Our main results are the following:
(i) Within the effective field theory of inflation with the

same inflaton potentials that fulfill the slow roll
conditions, we find that an initial state of the inflaton
with almost equipartition between kinetic and poten-
tial inflaton energies yields an attractive potential for
the mode functions of the fluctuations. This potential
emerges from a brief stage in which the inflaton rolls
fast, hence we call this the fast roll stage. This early
stage only lasts approximately one e-fold and merges
smoothly with the slow roll stage. This fast roll stage
prior to slow roll is a generic feature of an initial
condition for cosmological dynamics in which there
is an approximate equipartition between the kinetic
and potential energy of the inflaton. The initial con-
ditions for the fluctuations prior to the fast roll stage
are chosen to be the usual Bunch-Davies conditions.
However, the potential that results from the fast roll
dynamics of the inflaton leads to non-Bunch-Davies
conditions for the curvature and tensor perturbations
at the beginning of the slow roll stage. The
Bogoliubov coefficients and transfer function D�k�

automatically satisfy the constraints from renorma-
lizability and small backreaction.

(ii) We have investigated a large variety of inflationary
models with initial inflaton dynamics featuring an
approximate equipartition between inflaton kinetic
and potential energies. This study leads us to con-
clude quite generally that the scale of the potential
during fast roll is completely determined by the
Hubble scale during the subsequent slow roll stage.
The effect of this potential during the fast roll evo-
lution of the scale factor leads to modifications of the
primordial power spectrum. This potential is attrac-
tive both for curvature and tensor fluctuations, and
leads to a suppression of their primordial power
spectra on large scales.

(iii) From a comprehensive numerical study of different
inflationary scenarios within the effective field the-
ory approach, we find a 10%–20% suppression of
the CMB quadrupole and about a 2%–4% suppres-
sion of the B-mode quadrupole (tensor fluctuations).
This CMB quadrupole corresponds to the wave vec-
tor kQ whose physical wavelength is of the order of
the Hubble radius today and exits the horizon during
slow roll inflation just 1–2 e-folds after the brief fast
roll stage. The suppression on higher l-multipoles
reduces considerably following a 1=l2 law.

(iv) The attractive potential resulting from the fast roll
stage accounts for the observed suppression of the
CMB quadrupole if the wave vector kQ whose wave-
length corresponds to the Hubble radius today exits
2–3 e-folds after the end of the fast roll stage, which
lasts � 1 e-fold. The quadrupole corresponds to the
wave vector kQ that exits the horizon NQ � 55 e-
folds before the end of inflation, hence our results
successfully explain the CMB quadrupole suppres-
sion within the effective field theory if inflation lasts
at most Ntot & NQ � 4 � 59 e-folds. This result es-
tablishes an upper bound to the number of e-folds
during inflation.

II. INITIAL CONDITIONS OF INFLATIONARY
FLUCTUATIONS FROM THE SCATTERING BY A

POTENTIAL

In the companion article [23] we have systematically
analyzed the consequences of generic initial conditions
different from Bunch-Davies, under the conditions that
these are UV allowed and yield small backreaction effects.
Here we address the origin of these initial conditions,
beginning by gathering relevant ingredients from [23].

As shown in [23] in a cosmological space-time geometry

 ds2 � dt2 � a2�t��d~x�2 � C2����d�2 � �d~x�2	;

where t and � stand for cosmic and conformal time,
respectively, the wave equations for the mode functions
of Gaussian curvature and tensor perturbations are of the
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form of the Schrödinger equation in one dimension

 

�
d2

d�2 � k
2 �W���

�
S�k;�� � 0 (2.1)

with � the coordinate, k2 the energy, and W��� a potential
that depends on the coordinate �. In the cases under
consideration

 W��� �
�
WR��� � z00=zfor curvature perturbations
WT��� � C00=Cfor tensor perturbations

;

(2.2)

where prime stands for derivative with respect to the
conformal time and

 z � a�t�
_�

H
; (2.3)

_� stands for the derivative of the inflaton field � with
respect to the cosmic time t.

It is convenient to explicitly separate the behavior of
W��� during the slow roll stage by writing

 W��� �V ��� �
�2 � 1

4

�2 ; (2.4)

where

 � �

8>>>><>>>>:

�R �
3
2� 3�v � �v

�O

�
1
N2

�
for curvature perturbations

�T �
3
2� �v �O

�
1
N2

�
for tensor perturbations

:

(2.5)

Here �v and �v stand for the slow roll parameters
 

�v �
_�2

2M2
PlH

2 �
M2
Pl

2

�
V 0���
V���

�
2
�O

�
1

N2

�
� O

�
1

N

�
;

�v � M2
Pl

V00���
V���

� O

�
1

N

�
; (2.6)

and N � 55 stands for the number of e-folds from horizon
exit until the end of inflation [24].

The slow roll dynamics acts through the term ���2 �
1=4�=��2�	 which is a repulsive centrifugal barrier.

We anticipate that the potential V ��� is localized in the
fast roll stage prior to slow roll (during which cosmolog-
ically relevant modes cross out of the Hubble radius) where
V ��� vanishes. Including the potential V ��� the equa-
tions for the quantum fluctuations are

 

�
d2

d�2 � k
2 �

�2 � 1
4

�2 �V ���
�
S�k;�� � 0: (2.7)

During the slow roll stage V ��� � 0 and the mode equa-
tions simplify to

 

�
d2

d�2 � k
2 �

�2 � 1
4

�2

�
S�k; �� � 0: (2.8)

To leading order in slow roll, � is constant and for general
initial conditions the solution is

 S�k;�� � A�k�g��k;�� � B�k�f��k;��; (2.9)

where two linearly independent solutions of Eq. (2.8) are

 g��k;�� � 1
2i
���1=2� ������������

���
p

H�1�� ��k��; (2.10)

 f��k;�� � �g��k;��	
; (2.11)

H�1�� �z� are Hankel functions. These solutions are normal-
ized so that their Wronskian is given by

 W�g��k;��; f��k;��	 � g0��k;��f��k;��

� g��k;��f0��k;��

� �i: (2.12)

The mode functions and coefficients A�k�, B�k�will feature
a subscript index R, T for curvature or tensor perturba-
tions, respectively.

For wave vectors deep inside the Hubble radius jk�j �
1, the mode functions have the Bunch-Davies asymptotic
behavior

 g��k;�� �
�!�1 1�����

2k
p e�ik�; f��k;�� �

�!�1 1�����
2k
p eik�;

(2.13)

and for �! 0�, the mode functions behave as:

 g��k;�� �
�!0� �������������

2�k
p

�
2

ik�

�
���1=2�

: (2.14)

The complex conjugate formula holds for f��k;��.
In particular, in the scale invariant case � � 3

2 which is
the leading order in the slow roll expansion, the mode
functions equations (2.10) simplify to

 g3=2�k;�� �
e�ik������

2k
p

�
1�

i
k�

�
: (2.15)

The mode equation (2.7) can be written as an integral
equation,

 S�k;�� � g��k;�� � ig��k;��

�
Z �

�1
g
��k;�0�V ��0�S�k;�0�d�0 � ig
��k;��

�
Z �

�1
g��k;�0�V ��0�S�k;�0�d�0:

(2.16)

This solution has the Bunch-Davies asymptotic condition

 S�k;�! �1� �
e�ik������

2k
p : (2.17)
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We formally consider here the conformal time starting at
� � �1. However, it is natural to consider that the infla-
tionary evolution of the Universe starts at some negative
value �i < ��, where �� is the conformal time when fast roll
ends and slow roll begins.

Since V ��� vanishes for �> ��, the mode functions
S�k;�� can be written for �> �� as linear combinations
of the mode functions g��k;�� and g
��k;��,

 S�k;�� � A�k�g��k;�� � B�k�g
��k;��; � > ��;

(2.18)

where the coefficients A�k� and B�k� can be read from
Eq. (2.16),

 A�k� � 1� i
Z 0

�1
g
��k;��V ���S�k;��d�;

B�k� � �i
Z 0

�1
g��k;��V ���S�k;��d�:

(2.19)

The coefficients A�k� and B�k� are therefore calculated
from the dynamics before slow roll [recall that V ��� �
0 for �> �� during slow roll.]

The constancy of the Wronskian W�g����; g
����	 � �i
and Eq. (2.18) imply the constraint

 jA�k�j2 � jB�k�j2 � 1 :

This relation permits to represent the coefficients A�k�;
B�k� as [23]

 A�k� �
�������������������
1� N�k�

p
ei�A�k�; B�k� �

����������
N�k�

p
ei�B�k�;

(2.20)

where N�k�, �A;B�k� are real.
Starting with Bunch-Davies initial conditions for �!

�1, the action of the potential generates a mixture of the
two linearly independent mode functions that result in the
mode functions equation (2.18) for �> �� when the poten-
tial vanishes. This is clearly equivalent to starting the
evolution of the fluctuations at the beginning of slow roll
� � �� with initial conditions defined by the Bogoliubov
coefficients A�k� and B�k� given by Eq. (2.19).

As shown in Ref. [23] the power spectrum of curvature
and tensor perturbations for the general fluctuations equa-
tion (2.18) takes the form

 PR�k� �
�!0� k3

2�2

��������SR�k;��
z

��������2
� PsrR�k��1�DR�k�	;

PT�k� �
�!0� k3

2�2

��������ST�k;��
C���

��������2
� PsrT �k��1�DT�k�	;

(2.21)

where DR�k� and DT�k� are the transfer functions for the
initial conditions of curvature and tensor perturbations
introduced in Ref. [23]:

 

DR�k� � 2jBR�k�j
2 � 2 Re�AR�k�B



R�k�i

2�R�3	

� 2NR�k� � 2
���������������������������������������
NR�k��1� NR�k�	

q
� cos��Rk � ���R �

3
2�	;

DT�k� � 2jBT�k�j
2 � 2 Re�AT�k�B



T�k�i

2�T�3	

� 2NT�k� � 2
�������������������������������������
NT�k��1� NT�k�	

q
� cos��Tk � ���T �

3
2�	; (2.22)

where �k  �B�k� � �A�k�. The standard slow roll power
spectrum is given by [3,7]:
 

PsrR�k� �
�
k

2k0

�
ns�1 �2���

�3

H2

2�vM
2
Pl

A2
R

�
k
k0

�
ns�1

;

PsrT �k� �A2
T

�
k
k0

�
nT
; nT � �2�v;

A2
T

A2
R

� r � 16�v:

(2.23)

As shown in Ref. [23], the relative change in the C0ls for the
general fluctuations equation (2.18) with respect to the
standard slow roll result is given by

 Cl  Csrl � �Cl;
�Cl
Cl
�

R
1
0 D��x�fl�x�dxR
1
0 fl�x�dx

; (2.24)

where x � k=� and

 �  a0H0=3:3: (2.25)

D��x� is the transfer function of initial conditions for the
corresponding perturbation

 fl�x� � xns�2�jl�x�	2 (2.26)

and the jl�x� are spherical Bessel functions [26]. We de-
rived in Ref. [23] an estimate of the corrections, for the
maximal asymptotic decay of the occupation numbers

 Nk � N�

�
�
k

�
4��

; 0< �� 1 (2.27)

with the result

 

�Cl
Cl
� �

4

3

�������
N�

q �
3:3�
a0H0

�
2 cos�
�l� 1��l� 2�

; (2.28)

where we have taken � � 3=2 and cos�k � cos� (see
Ref. [23] for details). The �1=l2 behavior is a result of
the 1=k2 falloff of D�k�, a consequence of the renormaliz-
ability condition on the occupation number. For the quad-
rupole, the relevant wave vectors correspond to x� 2,
namely kQ � a0H0. It is convenient to write

 kQ � asrHi � a0H0; (2.29)

where asr and Hi are the scale factor and the Hubble
parameter during the slow roll stage of inflation when the
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wavelength corresponding to today’s Hubble radius exits
the horizon.

III. THE ORIGIN OF THE POTENTIAL V ���: A
FAST ROLL STAGE BEFORE SLOW ROLL

INFLATION

The mode functions of perturbations obey the general
evolution equation (2.1) where W��� is given by Eq. (2.2)
and the slow roll part is explicitly separated in Eq. (2.4). A
full expression for W��� and therefore for the potential
V ��� is obtained from the Friedmann equation and the
evolution equation of the inflaton

 H2 �
1

3M2
PL

�
1

2
_�2 � V���

�
; (3.1)

 

��� 3H _�� V0��� � 0: (3.2)

The exact potential is obtained by using the Eqs. (3.1) and
(3.2). For this purpose it is convenient to introduce a
dimensionless variable y2 as

 y2 
_�2

2M2
PlH

2 � 3
�

1�
V���

3M2
PlH

2

�
; 0 � y2 � 3;

(3.3)

in terms of which the equations of motion (3.1) and (3.2)
are written in the simple form

 

_� � sign� _��MPlH
���
2
p
jyj;

_H

H2 � �y
2: (3.4)

In particular, during the slow roll stage: y2 � �v [see
Eq. (2.6)], but in general, in a stage in which the slow
roll approximation is not valid, the kinetic term of the
inflaton is not small. The slow roll parameters given by
Eqs. (2.6) are �v � 1, �v � 1 to correctly describe the
slow roll stage. But, besides the slow roll stage, in which
y2 � 1, there is a prior stage in which y2 is not small but
y2 �O�1�: in this case the kinetic term of the inflaton is of
the same order as the potential V���. That is, the initial
energy of the inflaton is distributed between kinetic and
potential energy with approximate equipartition.

Thus, there are two distinct regimes determined by the
dimensionless variable y2: (i) y2 � O�1N� � 1 corresponds
to the usual slow roll regime _�2 � V���; (ii) in contrast,
y2 * 1 in which _�2 � V��� describes a fast roll regime.
Inflation requires:

 

�a
a
� H2�1� y2�> 0; (3.5)

thus, the range of the variable y2 for inflationary evolution
is 0< y2 < 1.

A. Fast roll dynamics

Notice that the same description of inflation (the same
inflaton potential) gives rise to the two different regimes:
fast roll and slow roll regimes. The dynamics in the effec-
tive field theory of inflation giving rise to a fast roll stage
followed by the slow roll stage is simple: consider an initial
condition on the inflaton field and its first derivative that
corresponds to an initial value of y2 � 1. The potential and
kinetic energy of the inflaton in this state are of the same
order, this is the beginning of the fast roll stage. The strong
friction term in the equation of motion for the inflaton
equation (3.1) results in that if initially _� � 0 and large,
the kinetic energy of the inflaton dissipates away and _�
diminishes. This means that when y2 begins with a large
value y2 � 1 the dynamics drives it towards smaller values.

Even if initially y2 > 1 produces a noninflationary stage
[see Eq. (3.6)], this only occurs for a short period of time
until y2 < 1 where the evolution becomes inflationary. The
inflaton friction term continues to dissipate away the ki-
netic energy and when y2 � O�1=N� � 1 the dynamics
enters the slow roll inflationary regime in earnest.

We have restricted the above discussion to the case of
homogeneous inflaton fields, where the energy is carried
by the zero mode of the inflaton up to small quantum
fluctuations. However, a fast roll stage prior to slow roll
has also been studied in Ref. [27], where a large amplitude
inhomogeneous condensate (tsunami inflation) was con-
sidered. In that case modes with wave vectors of the order
of the inflaton mass were initially excited with large am-
plitude, the resulting nonperturbative evolution of this
initial state also leads to a fast roll stage which smoothly
merges with the standard de Sitter regime [27]. The rapid
redshift of nonhomogeneous modes leads to the formation
of an effective homogeneous condensate after a few e-
folds. Therefore, a fast roll regime prior to the standard
slow roll regime is a rather generic feature, either a result of
an almost equipartition between kinetic and potential en-
ergies for a homogeneous inflaton condensate, or from an
inhomogeneous nonperturbative condensate.

B. Curvature perturbations during the fast roll stage

For curvature perturbations, from Eq. (2.1)

 WR��� 
1

z
d2z

d�2 � VR��� �
�2
R �

1
4

�2 ; (3.6)

where �R �
3
2� 3�v � �v [see Eq. (2.5)] and z is defined

by Eq. (2.3).
In order to compute WR���, it is more convenient to

pass to cosmic time, in terms of which,

 

d2z

d�2
� a2��z�H _z�: (3.7)

From Eqs. (2.3) and (3.6) and using the inflation equations
of motion (3.3) and (3.4), the exact potential WR��� can be
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written as
 

WR��� � C2���H2

�
2� 7y2 � 2y4

� sign� _��
2
���
2
p
jyjV0

MPlH2 �
V 00

H2

�
: (3.8)

With the notation defined by Eqs. (2.6) and (3.3) we find

 WR��� � C2���H2�2� 7y2 � 2y4 � �3� y2�

� �4
�����
�v
p
jyjsign� _�� � �v�	: (3.9)

In order to clearly exhibit the natural scale of the potential
WR��� it is convenient to use the variables [24]

 V � Nm2M2
Plw�	�; � �

����
N
p

MPl	;

H � mh
����
N
p

; t �

����
N
p

m

;

(3.10)

whereN � 55 is the number of e-folds during slow roll and
m (the inflaton mass) defines the scale of the Hubble
parameter during the stage of slow roll inflation.

This rescaling builds in the natural scales and results in
that w�	� � 1; h� 1 during the slow roll stage of inflation.
Furthermore, as shown in Ref. [24], the hierarchy of slow
roll parameters is actually a hierarchy in powers of 1=N,
for example

 �v �
1

2N

�
w0

w

�
2
; �v �

1

N
w00

w
: (3.11)

In terms of these variables we obtain for the exact potential

 WR��� � C2���h2m2N
�

2� 7y2 � 2y4

� 2

����
2

N

s
w0

h2 jyjsign� _�� �
w00

h2N

�
;

y2 � 3
�
1�

w

3h2

�
�

_	2

2h2N
> 0

(3.12)

displaying that for y�O�1� the last two terms in WR���
Eq. (3.12) are of order O�1=

����
N
p
� � 1 and O�1=N� � 1

and can be neglected.
The above expressions in terms of the variable y are

exact and allow to analyze, besides slow roll inflation,
other regimes for inflation different from slow roll.
Recall the expression for W��� in terms of the slow roll
parameters as given by:

 

WR��� � a2h2m2N2�2� 2�v � 3�H � 2�2
v

� 4�v�H � �
2
H �  

2
H	; (3.13)

where, �H � �v � �v,  H �  v � 3�v�v � 3�2
v,  v �

1
N2

w0w000

w2 . This expression is exact and appropriate in the
slow roll approximation, but it is not convenient in regimes
different from slow roll.

In the slow roll approximation,

 y2 � �v � O�1=N� � 1; C��� � �
1

�H�1� �v�
;

(3.14)

and we recover

 Wsr
R��� �

2

�2

�
1�

3

2
�3�v � �v�

�
)V sr

R��� � 0:

(3.15)

As shown in Eq. (3.5) the range of the variable y2 for
inflationary evolution is 0< y2 < 1, which in turn implies:

 3>
w

h2 > 2 or
����
w
3

r
< h<

����
w
2

r
: (3.16)

The expression of the potential equation (3.12) in terms of
the variable y2 is very instructive. General properties of
W���, such as the sign of the potential, can be analyzed
from this expression revealing different regimes. In the fast
roll stage �y2; w0=h2; w00=h2� � O�1� and the dominant
part of W��� is given by the polynomial in y, the terms
in the derivatives w0 and w00 are of order O�1=

����
N
p
� and

O�1=N� respectively, namely:

 WR��� � C2H2

�
2� 7y2 � 2y4 �O

�
1����
N
p

��
: (3.17)

The roots of WR��� are up to corrections O� 1���
N
p �

 y2
� �

7�
������
33
p

4
� 0:313 86 . . . ;

y2
� �

7�
������
33
p

4
� 3:138 59 . . .

The potential VR��� is obtained by subtracting the slow
roll contribution from W���, namely

 V R��� � WR��� �
2� 9�v � 3�v �O� 1

N2�

�2 ; (3.18)

in the fast roll stage

 V R��� � C2H2

�
2� 7y2 � 2y4 �O

�
1����
N
p

��

�
2� 9�v � 3�v �O� 1

N2�

�2 : (3.19)

Thus, the full range 0 � y2 � 3, the range y2 < 1 for
which inflation occurs, and the roots of W��� allow to
identify three different regimes:

(i) 0< y2 < y2
�, in this region the potential VR��� is

repulsive and small. This regime includes slow roll
inflation for y2 � O�1N� � 1.

(ii) y2
� < y2 < 1, corresponds to a fast roll inflationary

regime in which WR��� is attractive and conse-
quently VR��� is attractive.
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(iii) 1< y2 � 3< y2
� describes a fast roll but noninfla-

tionary regime in which the potentials WR��� and
VR��� are attractive.

In summary, when the initial value of y2 is * 1 the
dynamics drives it monotonically towards smaller values.
The inflaton friction term continues to dissipate away the
kinetic energy and when y2 < y2

�, the potential VR���
becomes repulsive but small and finally when y2 � y2

� the
dynamics enters the slow roll inflationary regime in ear-
nest. Unless the initial conditions on the inflaton determine
that y2 < y2

�, there is always a period of fast roll inflation
during which the potential V ��� for both curvature and
tensor perturbations is attractive. As we will see below, this
attractive fast roll potential V ��� produces a suppression
of the quadrupole contributions to the angular power
spectrum.

C. Tensor perturbations during the fast roll stage

The mode functions for tensor perturbations (gravitons)
obey Eq. (2.1) with

 WT���  C00���=C���:

Again, it is convenient to pass to cosmic time in terms of
which

 WT��� � a2�t�H2�t�
�

2�
_H

H2

�
� C2���H2�2� y2�;

(3.20)

where we used the equation of motion (3.4).
In the slow roll limit y � �v � O�1N� � 1;V T��� � 0

and Eq. (2.7) becomes a Bessel equation,

 

�
d2

d�2 � k
2 �

�2
T �

1
4

�2

�
S�k;�� � 0;

where
 

�T �
3

2
� �v�O

�
1

N2

�
; Wsr

T ��� ’
2� 3�v
�2 ;

and V sr
T ��� � 0:

Notice that �T differs from the index �R of the scalar
fluctuations at order O�1N� [see Eq. (2.5)].

During the fast roll stage previous to the slow roll
regime, y > 0 is not small and introduces an attractive
potential V T���,

 V T��� � WT��� �
2� 3�v
�2 < 0:

D. Fast roll in new and chaotic inflation

We consider models both of new inflation (small inflaton
field) and chaotic inflation (large inflaton field) to inves-
tigate the fast roll dynamics prior to slow roll and its
imprint on the quadrupole mode as well as in the higher

l-modes. Let us focus first on new inflation with the in-
flaton potential

 V��� � V�0�
�

1� �
M2
Pl

m2

�2

M2
Pl

�
2
; V�0�  3H2

i M
2
Pl;

(3.21)

where Hi is the Hubble parameter during slow roll infla-

tion. We note that during slow roll �
M2
Pl

m2 � ��v=4 and take

�
M2
Pl

m2 � 0:008 as an example for numerical study. We solve
the Eqs. (3.1) with the initial conditions ��0�=MPl � 0;
_�2�0�=�2V0	 � 1; a�0� � 1. These initial conditions entail

an equipartition between the kinetic and potential energy
of the inflaton field at the initial time. Figure 1 displays
y2��� (left panel) and y2�Ne� (right panel) with Ne the
number of e-folds from the beginning of the evolution at
t � 0.

These conditions initially yield y2 > 1 which produces
noninflationary dynamics, but after a very short time
(about one e-fold) y2 drops below one and so inflationary
dynamics begins in the fast roll regime y � O�1�, and after
about one half e-fold when y2 � 0:02 slow roll inflation
begins in earnest.

The potentials VR��� (left panel) and V T��� (right
panel) are shown in Fig. 2, and the evolution of the Hubble
parameter is displayed in Fig. 3. Figures 1 and 2 show two
distinct time scales: �0 � �1=Hi at which the potential is
localized and features its minimum, this is the beginning of
the fast roll stage, and ���0:3=Hi at which the potential
vanishes, y2 � �v and slow roll begins. The brief fast roll
stage is clearly seen from these figures to correspond to the
first e-fold of evolution. Figure 3 confirms that the fast roll
stage lasts approximately one e-fold and that � corre-
sponds to about 56–57 e-folds before the end of inflation,
namely, 1–2 e-folds before the modes corresponding to
today’s Hubble radius exit the horizon during inflation.

For these parameters, the height of the potentials are
approximately jVRj � 10H2

i ; jV Tj � 1:2H2
i . The widths

of the potentials are approximately the same in both cases
j�=�0j ��Hi � 0:2, see Fig. 2.

We have carried out analogous numerical studies in
scenarios of chaotic inflation with similar results: if the
initial kinetic energy of the inflaton is of the same order as
the potential energy, a fast roll stage is always present. The
evolution of y2 and the potentials for curvature and tensor
perturbations, VR��� and V T��� are again similar to
those for new inflation and they are always attractive
during the fast roll stage.

An initial state for the inflaton (inflaton classical dynam-
ics) with approximate equipartition between kinetic and
potential energies is a more general initialization of cos-
mological dynamics in the effective field theory than slow
roll which requires that the inflaton kinetic energy be much
smaller than its potential energy. Therefore, we conclude
that the most generic initialization of the inflaton dynamics
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in the effective field theory leads to a fast roll stage
followed by slow roll inflation.

IV. QUADRUPOLE SUPPRESSION

In the Born approximation, the Bogoliubov coefficients
equations (2.19) are given by [23],

 A�k� � 1� i
Z 0

�1
V ���jg��k;��j2d�;

B�k� � �i
Z 0

�1
V ���g2

��k;��d�:
(4.1)

The transfer function of initial conditions given by
Eq. (2.22) can be computed in the Born approximation,
which is appropriate in this situation, using Eqs. (4.1) for
the Bogoliubov coefficients A�k� and B�k�,
 

D�k� �
1

k

Z 0

�1
d�V ���

�
sin�2k��

�
1�

1

k2�2

�

�
2

k�
cos�2k��

�
: (4.2)

The fractional change in the C0ls is obtained by inserting
this transfer function in the expression (2.24). We take the
lower limit in the integral in Eq. (4.2) to be �0 ��1=Hi at
which the fast roll stage begins. The results of the numeri-
cal integrations for the quadrupole l � 2 and the higher
multipoles are shown in Fig. 4.

The results displayed in this figure are strikingly similar
to those found in the examples studied in Secs. V.B and V.C
of Ref. [23] lending support to the conclusion that the
quadrupole suppression as a consequence of the attractive
fast roll potential V ��� is robust.

From Eq. (2.29), the relevant dimensionless ratio �
Hi

that
governs the multipole suppression �Cl=Cl, is

 

�
Hi
�
asr
3:3

; (4.3)

where asr is the scale factor when the mode corresponding
to the quadrupole wave vector kQ exits the Hubble radius
during inflation.

 

FIG. 3. H�t�=Hi vs the number of e-folds.

 

FIG. 2. The potentials VR���=H
2
i (left panel) and V T���=H

2
i (right panel) felt by curvature and tensor perturbations, respectively,

vs Hi�, Hi being the Hubble parameter during the slow roll stage (see Fig. 3).

 

FIG. 1. y2��� vs � (left) and y2�Ne� vs Ne (right) for initial conditions with kinetic and potential inflaton energy of the same order.
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We have fixed the initial value for the evolution to be at
� � �0 with C��0�  1, thus asr > 1 is the logarithm of
the number of e-folds between the initial time of the
evolution and horizon crossing of kQ. The left panel of
Fig. 4 clearly shows that the largest suppression for the
quadrupole corresponds to smallest values of asr, with a
10%–20% suppression for 1:7 � �=Hi < 2:2. This pre-
cisely corresponds to 3– 4 e-folds between the onset of
the fast roll stage at �0 and horizon crossing of the mode
corresponding to today’s Hubble radius. The fast roll stage
itself only lasts about one e-fold and is followed by slow
roll.

Thus, we conclude that there is a substantial suppression
of the quadrupole �10%–20% consistent with the obser-
vations, if kQ exits the horizon within 3–4 e-folds after the
beginning of the slow roll stage, preceded by a short fast
roll stage. Therefore, the observed quadrupole suppression
is successfully explained by the inflationary dynamics—
fast roll followed by slow roll—if inflation lasts not much
more than approximately Ntot � 59 e-folds.

The similar form of the tensor potential V T leads to a
similar behavior in the change of the C0ls for the B-modes,
and the fractional change for the quadrupole of tensor
modes is smaller by almost an order of magnitude as
gleaned from the potentials displayed in Fig. 2. This is a
general prediction, again a consequence of a fast roll stage
prior to slow roll.

A numerical analysis reveals that �Cl=Cl � 1=l2 in
agreement with the result of Eq. (2.28), therefore the
suppression in the higher multipoles falls below the band
of irreducible cosmic variance and it is too small to be
observable within the present data.

A numerical fit to the curvature potential VR��� yields

 V R��� ’VR��0�e�����0�=�; (4.4)

with �0 ��1=Hi and j�=�0j � 0:2. With this analytic
expression which provides an excellent fit, we obtain the
following asymptotic behavior of the transfer function
DR�k� and distribution function NR�k� for large momenta:

 DR�k� �
k!1VR��0�

4k2 ; NR�k� �
k!1V 2

R��0�

16k4 ; (4.5)

clearly indicating that these initial conditions are indeed
ultraviolet allowed and consistent with the form of
Eq. (2.27). We notice from Figs. 1 and 2 that indeed
VR��� vanishes when the slow roll regime y2 � 1 is
reached.

From Eq. (3.18) with y2��0� � 1, C��0� � 1 and taking
the initial conditions on the inflaton with approximate
equipartition between potential and kinetic energies, im-
plies that H2��0� � 2H2

i yielding

 V R��0� � �10H2
i ; V T��0� � �2H2

i ; (4.6)

which is consistent with Fig. 4. Comparing with the form
equation (2.27), and taking as an example N� � 0:01,
indicates that the characteristic asymptotic k-scale � at
which the asymptotic form equation (2.27) sets is � �
10Hi, namely, a few times the Hubble scale during slow
roll inflation. This shows that the energy scales involved in
the quadrupole suppression are of the same order as the
scale of inflation.

Therefore, the condition for observable suppression of
the quadrupole is that the modes with physical wavelengths
of the order of the Hubble radius today must cross the
horizon during inflation just 2–3 e-folds after the begin-
ning of the slow roll stage. This condition is easily under-
stood from the approximate form equation (4.5) of the
transfer function D�k�. Since D�k� is strongly suppressed
for k2 � jV j, the potential V ��� will substantially influ-
ence the modes with wave vector k if k2 & jV ��0�j �
10H2

i . Since k � asrHi, then clearly only 2–3 e-folds of
evolution between the end of fast roll and the horizon
crossing lead to substantial effects on the mode functions
from the V ��� potential.

We have also studied chaotic inflationary scenarios with
initial conditions on the inflaton characterized by y2 � 1
namely with inflaton kinetic energy of the same order as
the inflaton potential energy. We find similar results on the
fractional variation of low multipoles, the duration of the
fast roll stage, and the scale of the fast roll potentials
VR���, V T��� as for new inflation.

Therefore, we conclude that the phenomena associated
with the fast roll stage as a precursor to slow roll are robust,
they do not depend on the inflationary model, but solely on
the scale of inflation and on approximate equipartition

 

FIG. 4. �C2=C2 vs �=Hi (left panel) and �Cl=Cl vs l for �=Hi � 0:8, 1, 2, respectively, for curvature perturbations, � � a0H0=3:3.
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between the kinetic and potential energies in the initial
condition for the classical dynamics of the inflaton. This
initialization of the inflaton dynamics and inflationary
potentials that fulfill the slow roll conditions generally
guarantee that the dynamical evolution of the inflaton
features an initial fast roll stage that merges with the usual
slow roll inflationary stage. In turn, the fast roll stage
results in an attractive potential in the wave equations for
the mode functions of curvature and tensor perturbations,
and a consequent suppression of the quadrupole moment in
their power spectra.

V. THE EVOLUTION OF PERTURBATIONS AS A
SCATTERING PROBLEM

The equivalence between the equations for the mode
functions and the Schrödinger equation with a potential
allows us to bring to bear the powerful results of potential
scattering theory to provide general statements on the
properties of the solutions.

Equation (2.1) has the form of the radial Schrödinger
equation in the radial variable r  ��; 0 � r <1 for the
L-wave, L being a real number, L  �� 1

2 . We recognize
in Eq. (2.7) the centrifugal barrier

 

�2 � 1
4

�2
�
L�L� 1�

�2 ; L  ��
1

2
; r  ��:

Thus, in the slow roll regime:

 L  ��
1

2
� 1�O

�
1

N

�
:

Equation (2.7) takes then the form

 

�
d2

dr2 � k
2 �

L�L� 1�

r2 �V �r�
�
f��k; r� � 0: (5.1)

The scattering solution of Eq. (5.1) with unit outgoing
amplitude is defined by

 f��k; r� �
r!�1

eikr: (5.2)

This solution f��k; r� is called the Jost solution in scatter-
ing theory [28], it is identical to the Bunch-Davies initial
conditions equation (2.13) up to a normalization factor�����

2k
p

.
When V �r� � 0 the Jost solution is given by

 f��k; r�V�0 � i���1=2�
���������
�kr
p

H�1�� �kr�:

This function coincides with Eq. (2.10) up to a normaliza-
tion factor

�����
2k
p

. In particular,

 f��k; r�V�0 �
r!0 ��������

�
p

�
kr
2i

�
1=2��

: (5.3)

For r! 0, Eq. (2.7) has two linearly independent solutions
of the form: r�1=2��� and r�1=2���; since � > 0 the first
solution dominates the behavior of f��k; r� for r! 0.

The Jost function of scattering theory is defined as the
ratio

 F��k�  lim
r!0

f��k; r�
f��k; r�V�0

�

����
�
p

����
lim
r!0

�
kr
2i

�
���1=2�

f��k; r�:

(5.4)

A. Scattering solutions and the primordial power

By construction, the solution S�k;�� fulfills the Bunch-
Davies asymptotic condition

 S�k;�� �
�!�1 e�ik������

2k
p : (5.5)

This solution S�k;�� is proportional to the scattering Jost
solution as

 S�k;�� �
1�����
2k
p f��k; r� with r � ��> 0: (5.6)

It can be shown on general grounds that f��k; r� is an
analytic function of k for Imk > 0 and k � 0 [28].
Moreover, k���1=2�f��k; r� as well as k�S�k;�� are analytic
in a neighborhood of and including k � 0.

For �! 0�, Eq. (2.7) admits two independent solu-
tions: ����1=2�� and ����1=2��. Since � > 0, the first
solution is the irregular one for �! 0� and it dominates
over the regular solution �����1=2���. The �! 0� behav-
ior of the modes in the V ���  0 case is given by
Eq. (2.14), while in the general case V ��� � 0 we have

 S�k;�� �
�!0� �������������

2�k
p

�
2

ik�

�
���1=2�

F��k�; (5.7)

where F��k� stands for the Jost function. It follows that
F��k� is analytic for Imk > 0 and [28]

 lim
k!1

F��k� � 1: (5.8)

The primordial power spectra are given by Eqs. (2.21).
Equation (2.23) for Bunch-Davies (BD) initial conditions
is valid when V ��� � 0 and the mode functions behave as
in Eq. (2.14) for �! 0�. From Eqs. (2.14) and (5.7) we
find for V � 0,

 

jS�k;��j2

jg��k;��j2
�

�!0�

jF��k�j2: (5.9)

Therefore, we find the equivalence

 

P�k�V
Psr�k�

� jF��k�j
2 � 1�D�k�: (5.10)

Namely, jF��k�j2 yields the change in the primordial power
spectrum due to the potential V ���. This is an important
result, which allows to obtain general information on the
transfer function of initial conditions D�k� from estab-
lished results of potential scattering.
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We obtain the Jost function F��k� from the �! 0�

behavior of Eq. (2.16) with the result
 

F��k� � 1� i�1=2���
����
�
p Z 0

�1

��������
��
p

d�J���k��

�V ���S�k;��; (5.11)

where J��z� is Bessel’s function.
In the scale invariant case � � 3

2 the Jost function takes
the simpler form

 F3=2�k� � 1� i

���
2

k

s Z 0

�1
d�

�
sin�k��
k�

� cos�k��
�
V ���S�k;��: (5.12)

The large k behavior of the Jost solutions and Jost func-
tions follows by solving Eqs. (2.16) and (5.11) by iteration.
To dominant order we find that the Jost solution is given by
the V ��� � 0 solution equation (2.10) while the Jost
function equals unity [see Eq. (5.8)].

The logarithm of the Jost function has the following
asymptotic expansion around k � 1 [29],

 logF��k� � �
X1
n�1

cn
�2ik�n

;

where the cn are real coefficients functionals of the poten-
tial V ���. The first coefficients take the form

 c1 �
Z 0

�1
d�V ���; c2 � V � ���:

Therefore,

 logjF��k�j2 �
V � ���

2k2 �O

�
1

k4

�
: (5.13)

We see that asymptotically jF��k�j2 < 1 for a potential
which is attractive at the end of fast roll [V � ���< 0].
Combined with Eq. (5.10) this result shows in general
that an attractive potential V ��� suppresses the primordial
power.

Computing the �! 0� behavior of S�k;�� from
Eq. (2.18) permits to relate the Bogoliubov coefficients
A�k� and B�k� with the Jost function as

 A�k� � i1�2�B�k� � F��k�; (5.14)

where we used Eqs. (2.10) and (5.7).
Therefore,

 jF��k�j
2 � 1 � 2jB�k�j2 � 2 Re�A�k�B
�k�i2��3	 � D�k�

(5.15)

and we recover the transfer function for the initial con-
ditionsD�k� introduced in Rref. [23]. Using Eqs. (2.20) and
(5.15) reduces exactly to Eqs. (2.22).

For large k, the mode functions S�k;�� as well as the
g��k;�� tend to their plane wave asymptotic behavior

 S�k;�� �
k!1

g��k;�� �
k!1 e�ik������

2k
p :

A look at Eq. (2.18) shows that this implies B�1� � 0,
A�1� � 1. More precisely, we find from Eq. (2.19)

 A�k� �
k!1

1�
i

2k

Z 0

�1
V ���d�;

B�k� �
k!1
�

i
2k

Z 0

�1
e�2ik�V ���d�

(5.16)

According to the Riemann-Lebesgue lemma, B�k� vanishes
for k! 1 faster than any negative power of k. Hence, the
convergence at large k in the integrals for the energy
momentum tensor is guaranteed.

The Bogoliubov coefficients A�k� and B�k� are related to
the usual transmission (T) and reflection (R) coefficients of
scattering theory by the relation

 T�k� �
1

A��k�
; R�k� �

B��k�
A��k�

;

jR�k�j2 � jT�k�j2 � 1:

(5.17)

We provide with Table I a dictionary to translate from the
fluctuations language to the scattering framework.

B. The quadrupole suppression: General results

We now implement the exact relations between the
scattering problem and the power spectra of perturbations
derived in the previous subsection to obtain general results
for the quadrupole produced by the potential V ���. From
Eq. (2.24) for l � 2 and to zeroth order in slow roll, the
fractional change in the quadrupole is given by

TABLE I. Correspondence between the scalar fluctuations as functions of the conformal time �< 0 and the radial wave functions,
of r > 0 and angular momentum L  �� 1

2 .

Fluctuations Scattering problem

�1<�< 0 0< r <1
Bunch-Davies initial conditions: S�k;�� � e�ik�����

2k
p for �! �1 Jost solutions: f��k; r� � eikr for r! 1

Superhorizon modes: S�k;�� ��!0� �����1=2��� Jost function: F��k� 
���
�
p

���� limr!0�
kr
2i�

���1=2�f��k; r�
Power spectra P��k�

Psr�k� Modulus square of the Jost function � jF��k�j2

CMB QUADRUPOLE . . .. II. THE EARLY FAST . . . PHYSICAL REVIEW D 74, 123007 (2006)

123007-11



 

�C2

C2
�

R
1
0 D��x�f2�x�dxR
1
0 f2�x�dx

� 3
Z 1

0

dx
x
D��x��j2�x�	2;

(5.18)

where j2�x� is the spherical Bessel function of order two
[26]. We compute the transfer function D�k� from the Jost
function using Eqs. (5.12) and (5.15) in the Born approxi-
mation, which turns to be an excellent one for this purpose;
since in fact the potential V ��� is small. The Jost function
in the Born approximation to zeroth order in slow roll is
given by

 F3=2�k� � 1�
i

2k

Z 0

�1
d�V ���

�
1�

i
k�

��
1� e�2ik�

�
1� e�2ik�

ik�

�
:

Therefore up to first order in V ��� (Born approximation)
we find
 

D�k� � jF3=2�k�j
2 � 1

�
1

k

Z 0

�1
d�V ���

�
sin�2k��

�
1�

1

k2�2

�

�
2

k�
cos�2k��

�
:

Inserting this expression for D�k� into Eq. (5.18) yields

 

�C2

C2
�

1

�

Z 0

�1
d�V ��������; (5.19)

where
 

��x�  3
Z 1

0

dy

y4 �j2�y�	
2

��
y2 �

1

x2

�
sin�2yx�

�
2y
x

cos�2yx�
�

(5.20)

��x� is an odd function of x. The integral in Eq. (5.20) can
be computed in terms of elementary functions by using the
power series expansion [30]

 �j2�x�	
2 �

����
�
p

2

X1
k�0

��1�kx2k�4

k!��k� 7
2��k� 3��k� 4��k� 5�

;

with the result
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�
: (5.21)

These series can be summed up explicitly with the result

 

��x� �
1

105x2
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p�x��1� x�3 log
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1
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2x5

21
; (5.22)

where p�x� is the sixth order polynomial

 p�x�  10x6 � 30x5 � 33x4 � 19x3 � 9x2 � 3x� 1:

The function ��x� is negative for x > 0 and positive for
x < 0. It vanishes for x! 0 and for x! 1 as

 ��x� �
x!0
�
x
6
�O�x3�

and

 ��x� �
x!1
�

1

60x3 �O

�
1

x5

�
:

Figure 5 displays ��x� as a function of x for negative x.
��x� features a maximum at x � xM � �0:555 . . . with
��xM� � 0:084 53 . . .

Equation (5.19) highlights the general result that an
attractive potential V ���< 0 yields a suppression of the
quadrupole since ��x�> 0 for negative values of its argu-
ment x.

These results establish unequivocally that the attractive
potentials VR���; V T���, which are a consequence of the
fast roll stage, lead to a suppression of the quadrupole for
curvature and tensor perturbations.
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FIG. 5. The odd function ��x� vs x for negative x [see
Eq. (5.20)]. This function convoluted with the potential V ���
yields the change on the quadrupole �C2

C2
[see Eq. (5.19)].
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C. The inverse problem. Reconstructing the fast roll
potential V ��� from the primordial power

In scattering theory, the potential can be obtained from
the scattering data, through the Gelfand-Levitan equation.
This is a linear integral equation which determines the
potential V �r� from the knowledge of the modulus of the
Jost function and the bound states [29].

The Gelfand-Levitan equation can be written as

 K��r; r
0� �G��r; r

0� �
Z r

0
dr00K��r; r

00�G��r
00; r0� � 0;

(5.23)

where G��r; r0� is a known function that can be expressed
in terms of the Jost function as follows

 G��r; r0� �
�������
r r0
p Z 1

0
k dk J��kr�J��kr0�

�
1

jF��k�j2
� 1

�
;

(5.24)

where the J��z� are Bessel functions, and the kernel
K��r; r

0� is obtained by solving Eq. (5.23). Once K��r; r0�
is computed, the potential follows as

 V �r� � 2
d
dr
K��r; r�: (5.25)

Equation (5.23) is the Gelfand-Levitan equation in the
absence of bound states. By bound states we mean solu-
tions of Eq. (5.1) which are regular at r � 0 and decay
exponentially for r! 1. We will not consider their pres-
ence since the analysis in Secs. II and III of Ref. [23]
indicates that bound states are absent in the present case.

We have seen in Eq. (5.10) that the deviation of the
primordial power from slow roll is given by the square
modulus of the Jost function. Equations (5.23), (5.24), and
(5.25) show that this deviation from the BD-slow roll
primordial power explicitly determines the potential
V ���. The present quantitative information about the
deviation of the primordial power from slow roll is too
scarce to feed back into the Gelfand-Levitan equation, but
it is important to see that the fast roll potential VR��� felt
by the fluctuations and hence WR��� can be explicitly
determined from the primordial power data.

VI. CONCLUSIONS

Although the latest analysis of the WMAP data confirms
the basic paradigm of slow roll inflation and renders much
less statistical significance to potential departures from its
basic predictions, the anomalously low quadrupole in the
CMB remains a long-standing challenge.

In this article we proposed a mechanism that yields a
suppression of the low multipoles both for curvature and
tensor perturbations, within the effective field theory of
inflation. The main premise of our observation is that a
more general initialization of the classical dynamics of the
inflaton, allowing for approximate equipartition between

initial kinetic and potential energy of the inflaton leads to a
brief period of fast roll dynamics that is the precursor to the
usual slow roll stage. This early fast roll stage results in an
attractive potential in the wave equation for the mode
functions of curvature and tensor perturbations.
Implementing the methods and borrowing the results
from our companion article [23], we show that this attrac-
tive potential yields a transfer function for initial condi-
tions D�k� which fulfills the stringent criteria of
renormalizability and small backreaction and yields a
10%–20% suppression of the CMB quadrupole consistent
with the observational data. We also predict a small
�2%–4% quadrupole suppression for B-modes.

Our main results are summarized as follows:
(i) Within the framework of the effective field theory of

inflation at the GUT scale we show that allowing for
an initial state of the inflaton for which its kinetic
energy is of the same order as the potential energy,
there emerges a brief stage prior to slow roll in which
the inflaton rolls fast. We call this brief, but conse-
quential stage, the fast roll regime. The inflaton
potential fulfills the slow roll conditions and is the
same both in the slow roll and in the fast roll regime.
We prove that this brief fast roll stage generates an
attractive localized potential for the mode functions
of metric and tensor perturbations. Such potential
leads to initial conditions for the fluctuations during
the slow roll stage which are different from Bunch-
Davies and are consistent with renormalization and
negligible backreaction.

(ii) We provide an exhaustive numerical analysis for
several inflationary models with the result that for
generic inflaton initial conditions with equipartition
between kinetic and potential inflaton energy there is
a brief period of fast roll that lasts approximately�1
e-fold. This brief stage translates in a potential V ���
in the wave equation for the mode functions of
curvature and tensor perturbations. The typical
scales of these potentials are VR ��10H2

i for
curvature perturbations and V T ��2H2

i for tensor
perturbations, where Hi is the Hubble parameter
during slow roll inflation. A suppression of the
CMB quadrupole of about 10%–20%, consistent
with observation is obtained if the mode correspond-
ing to the quadrupole, whose physical wavelength is
of the order of the Hubble radius today, crossed the
horizon within 1–2 e-folds after the beginning of the
slow roll stage.

(iii) Our study also predicts a suppression of the quadru-
pole for the B-modes, with a fractional change of at
least an order of magnitude smaller than that for
temperature fluctuations.

(iv) The evolution of the inflationary perturbations has
been shown to be equivalent to the scattering by a
potential and useful expressions between the two sets
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of solutions and observables have been derived. By
implementing the methods of scattering theory we
prove in general that the CMB quadrupole is sup-
pressed by the attractive potential V ��� which is a
consequence of the fast roll stage.

(v) Thus, we conclude that generic ultraviolet-finite ini-
tial conditions imprinted upon Gaussian curvature
perturbations from a fast roll stage just prior to
slow roll inflation successfully explain the low quad-
rupole. Such suppression happens provided the infla-
tionary stage does not last more than �57–58 e-
folds. Therefore this suppression mechanism suc-
cessfully explains the low CMB quadrupole provided
there is the upper bound Ntot � NQ � 4 � 59 on the
total number of e-folds during inflation. This upper
bound results from the following accounting: the

modes corresponding to the quadrupole crossed out
of the Hubble radius during the slow roll stage ap-
proximately NQ � 55 e-folds before the end of in-
flation. However for the potential VR��� to
influence these modes, the exit time cannot be
more than approximately 3 e-folds after the end of
the fast roll stage, which itself lasts approximately 1
e-fold, yielding a total of about Ntot � NQ � 4 � 59
e-folds.
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